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In this paper we construct nontrivial exterior domains Ω ⊂ R N , for all N ≥ 2, such that the problem

admits a positive bounded solution. This result gives a negative answer to the Berestycki-Caffarelli-Nirenberg conjecture on overdetermined elliptic problems in dimension 2, the only dimension in which the conjecture was still open. For higher dimensions, different counterexamples have been found in the literature; however, our example is the first one in the form of an exterior domain.

Introduction

This paper is concerned with the existence of solutions of a semilinear overdetermined elliptic problem in the form (1.1)

       ∆u + f (u) = 0 in Ω, u > 0 in Ω, u = 0 on ∂Ω, ∂u ∂ν = c = 0 on ∂Ω.
Here Ω ⊂ R N is a regular domain, f is a Lipschitz function and ν stands for the exterior normal vector to ∂Ω. Observe that the presence of two boundary conditions makes the problem overdetermined. Overdetermined boundary conditions arise naturally in free boundary problems, when the variational structure imposes suitable conditions on the separation interface, see for example [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF].

In 1971 J. Serrin proved that if (1.1) is solvable for a bounded domain Ω, then Ω must be a ball ( [START_REF] Serrin | A Symmetry Theorem in Potential Theory[END_REF][START_REF] Pucci | The maximum principle[END_REF]). This is also true if we replace the Laplacian operator by another strongly elliptic operator and if the function f depends also on the gradient of u. This result has many applications in Physics, and some of them are the following: 1) when a viscous incompressible fluid is moving in straight parallel streamlines through a pipe of given cross section, the tangential stress per unit area on the pipe wall is the same at all points if and only if the cross section is circular; 2) when a solid straight bar is subject to torsion, the magnitude of the resulting traction which occurs at the surface of the bar is independent of the position if and only if the bar has a circular cross section; 3) when a liquid is rising in a straight capillary tube, the liquid will rise to the same height at the tube wall if and only if the tube has circular section. Serrin's proof is based on the Alexandrov reflection principle, introduced in 1956 by Alexandrov in [START_REF] Alexandrov | Uniqueness theorems for surfaces in the large[END_REF] to prove that the only compact, connected, embedded hypersurfaces in R N whose mean curvature is constant are the spheres. The reflection principle was used also in 1979 by Gidas, Ni and Nirenberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] to derive radial symmetry results for positive solutions of semilinear elliptic equations. After that paper the reflection principle has been named the moving plane method.

A natural dual version of the previous situation is to consider problem (1.1) in exterior domains, i.e., domains Ω given as the complement of a compact connected region D ⊂ R N . In Physics this situation corresponds to the case of very big domains (mathematically considered as unbounded) with a hole. We refer the reader to the survey [START_REF] Sirakov | Overdetermined elliptic problems in physics[END_REF] for more specific applications in Physics of elliptic overdetermined problems in exterior domains.

In the case of exterior domains, the problem that has been considered is the following:

(1.2)        ∆v + g(v) = 0 in Ω, v = a > 0 on ∂Ω, ∂v ∂ ν = c on ∂Ω, 0 ≤ v < a in Ω.
With the change of variables u := a -v we have immediately a problem in the form (1.1) with the extra assumptions u ≤ a. In this framework, the main research line has aimed to prove the counterpart of the Serrin's symmetry result, that is, to prove that Ω is the complement of a ball. For example under the assumptions that g(t) ≥ 0 and that t -n+2 n-2 g(t) is nonincreasing, Aftalion and Busca proved in [START_REF] Aftalion | Radial symmetry of overdetermined boundary value problems in exterior domains[END_REF] that if problem (1.2) has a solution then Ω is the complement of a ball. In [START_REF] Reichel | Radial symmetry by moving planes for semilinear elliptic boundary value problems on exterior domains[END_REF] Reichel proved the same symmetry result but under different assumptions: he assumes that g(t) is decreasing for small positive t and that u → 0 at infinity. This last result in [START_REF] Reichel | Radial symmetry by moving planes for semilinear elliptic boundary value problems on exterior domains[END_REF] is still true if we replace the Laplacian operator ∆ by a regular strongly elliptic operator, as shown by Sirakov in [START_REF] Sirakov | Symmetry for exterior elliptic problems and two conjectures in potential theory[END_REF]. In the proofs the main tool used is the moving plane method from infinity, sometimes combined with the moving spheres method. As a consequence, their proofs show not only symmetry, but also monotonicity along the radius. To fix ideas, if Ω is a exterior domain and f (u) = u -u 3 (the so-called Allen-Cahn nonlinearity), one infers from [START_REF] Reichel | Radial symmetry by moving planes for semilinear elliptic boundary value problems on exterior domains[END_REF] that (1.1) is solvable only if Ω is the complement of a ball.

Our first observation is that there are radially symmetric solutions of problem (1.1) which are not monotone along the radius. For instance, there exists a non-monotone radial solution to the problem:

(1.3)    ∆u + u p -u = 0 in B c R , u > 0 in B c R , u = 0 on ∂B R ,
for any p > 1 and R > 0, where B R is the ball of radius R and B c R is its complement (see for instance [START_REF] Esteban | Existence and nonexistence results for semilinear elliptic problems in unbounded domains[END_REF]). This equation receives the name of Nonlinear Schrödinger Equation and has been widely studied in the literature. Its solution increases in the radius up to a certain maximum, and then it decreases and converges to 0 at infinity. Therefore, the usage of the moving plane method from infinity is intrinsically restricted to some kind of nonlinearities and/or solutions u. The goal of this paper is to prove that (1.1) is solvable for some exterior domain different from the complement of a ball. For that, we use a local bifurcation argument from the solutions of (1.3).

Before going further presenting our results, let us review the literature on overdetermined semilinear elliptic problems. In [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF] Berestycki, Caffarelli and Nirenberg consider free boundary problems where the variational structure imposes overdetermined conditions on the boundary. The study of the regularity of the solutions by a blow-up technique led them to study problem (1.1) in epigraphs. Under some hypothesis on the nonlinearity f and on the behavior of the epigraph at infinity, they proved that the epigraph must be a half-space (these results were later extended by Farina and Valdinoci [START_REF] Farina | Flattening Results for Elliptic PDEs in Unbounded Domains with Applications to Overdetermined Problems Arch[END_REF]). Motivated by this, and by the aforementioned results on exterior domains by Aftalion, Busca and Reichel, they proposed in [START_REF] Berestycki | Monotonicity for elliptic equations in unbounded Lipschitz domains[END_REF] the following conjecture: BCN Conjecture: If R N \Ω is connected, then the existence of a bounded solution to problem (1.1) implies that Ω is either a ball, a half-space, a generalized cylinder

B k × R N -k (B k is a ball in R k ), or the complement of one of them.
This conjecture has been answered negatively for N ≥ 3 in [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF], where the third author finds a periodic perturbation of the straight cylinder B N -1 × R that supports a periodic solution to problem (1.1) with f (t) = λ t.

In the last years, a parallelism between overdetermined elliptic problems and constant mean curvature surfaces, in the spirit of the correspondence of Alexandrof's and Serrin's results, has been observed. Indeed, the counterexample to the BCN Conjecture built in [START_REF] Sicbaldi | New extremal domains for the first eigenvalue of the Laplacian in flat tori[END_REF] belongs to a smooth one-parameter family that can be seen as a counterpart of the family of Delaunay surfaces, see [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF]. Such domains exist also in other homogeneous manifolds, as S n × R or H n × R, as shown in [START_REF] Morabito | Delaunay type domains for some elliptic overdetermined problems in S 2 × R and H 2 × R[END_REF] as the counterpart of other well known families of constant mean curvature surfaces. In [START_REF] Hélein | A note on some overdetermined problems[END_REF] Hélein, Hauswirth and Pacard establish a kind of Weierstrass representation for overdetermined elliptic problems in dimension 2 with f ≡ 0 in analogy with minimal surfaces. Moreover, Traizet finds a one-to-one correspondence between solutions of problem (1.1) in dimension 2 with f ≡ 0 and a special class of minimal surfaces ( [START_REF] Traizet | Classification of the solutions to an overdetermined elliptic problem in the plane[END_REF]). Finally, in [START_REF] Del Pino | Serrin's overdetermined problem and constant mean curvature surfaces[END_REF] Del Pino, Pacard and Wei consider problem (1.1) for functions f of Allen-Cahn type and they build new solutions in domains Ω with boundary close to a dilated embedded minimal surface in R 3 with finite total curvature and nondegenerate, or to a dilated Delaunay surface.

If Ω is an epigraph, the problem is also related to the De Giorgi's conjecture (1978), that is still open in its full generality. This conjecture states that the entire solutions of the Allen-Cahn equation ∆u + u -u 3 = 0 monotone in one direction must have level sets which are parallel hyperplanes if N ≤ 8. The relationship between the De Giorgi's conjecture and overdetermined problems is not surprising if we recall that this conjecture is the counterpart of the Bernstein's conjecture on minimal surfaces (1914), that stated that all entire minimal graphs in R N should be hyperplanes, and which has been disproved by E. Bombieri, E. De Giorgi and E. Giusti for N ≥ 9 ( [START_REF] Bombieri | Minimal cones and the Bernstein problem Invent[END_REF]). Starting from the Bombieri-De Giorgi-Giusti entire minimal graph, Del Pino, Kowalczyk and Wei build entire nontrivial monotone solutions to the Allen-Cahn equation if N ≥ 9. In this spirit, Del Pino, Pacard and Wei has recently built nontrivial solutions for (1.1) for f of Allen-Cahn type in nontrivial epigraphs if N ≥ 9, see [START_REF] Del Pino | Serrin's overdetermined problem and constant mean curvature surfaces[END_REF]. In [START_REF] Wang | On Serrin's overdetermined problem and a conjecture of Berestycki, Caffarelli and Nirenberg[END_REF] Wang and Wei prove that this type of solutions do not exist if N ≤ 8, a result that can be put in analogy with that of Savin for the De Giorgi conjecture ( [START_REF] Savin | Regularity of at level sets in phase transitions[END_REF]). Finally, the notion of stability plays an important role in the De Giorgi conjecture, and also in overdetermined problems, see [START_REF] Wang | The structure of finite Morse index solutions to two free boundary value problems in R 2[END_REF].

Coming back to the BCN Conjecture, we point out that all counterexamples mentioned above require N ≥ 3, and we underline that all the examples of domains solving an overdetermined elliptic problem are linked to minimal or constant mean curvature surfaces.

In this paper we give a counterexample in the form of a exterior domain for any dimension N ≥ 2. This gives a definitive negative answer to the conjecture. Partial positive answers to the BCN conjecture in dimension 2 have been given in several works, see [START_REF] Farina | Flattening Results for Elliptic PDEs in Unbounded Domains with Applications to Overdetermined Problems Arch[END_REF][START_REF] Hélein | A note on some overdetermined problems[END_REF][START_REF] Ros | A rigidity result for overdetermined elliptic problems in the plane[END_REF][START_REF] Ros | Geometry and Topology of some overdetermined elliptic problem[END_REF][START_REF] Traizet | Classification of the solutions to an overdetermined elliptic problem in the plane[END_REF][START_REF] Wang | On Serrin's overdetermined problem and a conjecture of Berestycki, Caffarelli and Nirenberg[END_REF]. In [START_REF] Ros | A rigidity result for overdetermined elliptic problems in the plane[END_REF] the authors show that the conjecture holds in dimension 2 under the hypothesis that ∂Ω is unbounded. The counterexample we give in this paper shows that such hypothesis is actually sharp.

Finally, this is the first example of a domain solving an overdetermined elliptic problem that has no clear counterpart in the theory of minimal or constant mean curvature surfaces.

A first statement of our result (see Section 2 for a more detailed statement) is the following:

Theorem 1.1. Let N ∈ N, N ≥ 2, 1 < p < N +2 N -2 (p > 1 if N = 2).
There exist smooth exterior domains Ω different from the complement of a ball such that the overdetermined problem

(1.4)    -∆u + u -u p = 0, u > 0 in Ω, u = 0 on ∂Ω, ∂u ∂ν = cte on ∂Ω,
admits a bounded solution.

Observe that, for any R > 0, the solutions to (1.3) form a trivial family of solutions of (1.4). In this paper we use a local bifurcation argument to show that, from this family of trivial solutions, there are nontrivial solutions in nontrivial domains bifurcating at some values of the radius. The proof uses a general bifurcation result in the spirit of Krasnoselskii. In order to do that, the nondegeneracy of the Dirichlet problem is essential, but in general this is false at least for some radii R. Under some symmetry assumptions, we find a spectral gap for the Dirichlet problem associated to (1.3), that is, we show that it is nondegenerate for R ∈ (0, R 0 ), for some R 0 > 0. Another important issue of the proof is to show that bifurcation occurs exactly in that interval. This is made by studying the behavior of the first Steklov eigenvalue of the linearized operator.

The paper is organized as follows. In Section 2 we present some notations and preliminaries, we state our precise result, and we show the existence of the spectral gap for the Dirichlet problem; some proofs of the results of this section are postponed to the last section. In Section 3 we define the operator that appears naturally in our problems, and we compute its linearization. Section 4 is devoted to the study of the linearized operator and its spectrum. Finally, in Section 5 we use a local bifurcation result to conclude the proof.

Acknowledgments. A. Ros has been partially supported by Mineco-Feder Grant MTM2014-52368-P. D. Ruiz has been supported by the Mineco-Feder Grant MTM2015-68210-P and by J. Andalucia (FQM 116). P. Sicbaldi was partially supported ANR-11-IS01-0002 Grant.

Preliminaries

Let us first set some notations. Given a symmetry group G acting on R N , we say that Ω ⊂ R N is G-symmetric if it is invariant under the action of the group G. In such case, we can define the Sobolev spaces of G-symmetric functions as follows: andby H -1 G (Ω) the dual space of H 1 0,G (Ω). We will use the same kind of notations for functions defined in ∂Ω. In particular:

H 1 G (Ω) = {u ∈ H 1 (Ω) : u = u • g ∀g ∈ G}, H 1 0,G (Ω) = {u ∈ H 1 0 (Ω) : u = u • g ∀g ∈ G},
H 1/2 G (∂Ω) = {u ∈ H 1/2 (∂Ω) : u = u • g ∀g ∈ G}.
We denote by B R ⊂ R N the ball of radius R centered at 0, and we may also write S N -1 instead of ∂B 1 . If Ω is radially symmetric, we shall denote the spaces of radially symmetric functions as:

H 1 r (Ω) = {u ∈ H 1 (Ω) : u(x) = u(|x|) a.e. x ∈ Ω}, H 1 0,r (Ω) = {u ∈ H 1 0 (Ω) : u(x) = u(|x|) a.e. x ∈ Ω}. For a function u ∈ H 1 (Ω), we denote u = ∇u 2 L 2 + u 2 L 2 1/2
its Sobolev norm. Other norms will be clear from the subscript. In the case of the Holder regularity we can define the following spaces:

C k,α G (Ω) = {u ∈ C k,α (Ω) : u = u • g ∀g ∈ G}, C k,α G (∂Ω) = {u ∈ C k,α (∂Ω) : u = u • g ∀g ∈ G}.
Moreover, we will denote by C k,α G,m (S N -1 ) the set of functions in C k,α G (S N -1 ) whose mean is 0. Given a positive function w ∈ C 2,α G (S N -1 ) let us denote

B w := x ∈ R N : 0 ≤ |x| < w x |x| .
and B c w its complement in R N . We denote ∆ S N-1 the Laplace-Beltrami operator in S N -1 , and {µ i } i∈N its eigenvalues, i.e. µ i = i(i + N -2). From now on, we will fix a symmetry group G with the following property:

(G) G leaves invariant the origin and, denoting by

{µ i k } k∈N the eigenvalues of ∆ S N-1
restricted to G-symmetric functions and m k their multiplicity, we require i 1 ≥ 2 and m 1 odd.

We are now able to state the main result of this paper, from which Theorem 1.1 follows immediately.

Theorem 2.1. Let N ∈ N, N ≥ 2, 1 < p < N +2 N -2 (p > 1 if N = 2). Let G be a group of symmetries of R N satisfying (G). Then there exist R * = R * (i 1 , p) > 0, a sequence of non-zero functions v n ∈ C 2,α
G,m (S N -1 ) converging to 0, and a sequence of positive real numbers R n converging to R * such that the overdetermined problem:

       -∆u + u -u p = 0, in B c Rn(1+vn) u = 0 on ∂B Rn(1+vn) ∂u ∂ν = cte on ∂B Rn(1+vn) admits a positive bounded solution u ∈ C 2,α G B c Rn(1+vn) ∩ H 1 0,G B c Rn(1+vn) .
Remark 2.2. There are many examples of groups G satisfying (G). For instance, if

1 ≤ m ≤ N -1, the group G = O(m) × O(N -m) satisfies that i 1 = 2 and m 1 = 1.
Indeed, in this case, the corresponding eigenvalue is given as the restriction to S N -1 of the 2-homogeneous harmonic polynomial:

p(x) = (N -m)(x 2 1 + • • • + x 2 m ) -m(x 2 m+1 + • • • + x 2 N ).
In dimension 2, we can take as G any dihedral group D k , k ≥ 3. In this case, i 1 = k and m 1 = 1. In dimension 3 we can take G as the group of isometries of the tetrahedron (i 1 = 3 and m 1 = 1), the octahedron (i 1 = 4 and m 1 = 1) or the icosahedron (i 1 = 6 and m 1 = 1), see [START_REF] Laporte | Polyhedral harmonics[END_REF]. Remark 2.3. One could ask whether two different groups G 1 , G 2 give rise to different domains Ω. The answer is (partially) affirmative. Indeed, define G = G 1 , G 2 , and denote:

(1)

{µ i k } the eigenvalues of ∆ S N-1 restricted to G 1 -symmetric functions, ( 2 
) {µ j k } the eigenvalues of ∆ S N-1 restricted to G 2 -symmetric functions, ( 3 
) {µ l k } the eigenvalues of ∆ S N-1 restricted to G-symmetric functions. Clearly, l 1 ≥ max{i 1 , j 1 }. If l 1 > min{i 1 , j 1 },
then the two groups G 1 and G 2 give rise to different domains Ω. In particular, this is true if i 1 = j 1 . In fact the value of the bifurcation radius R * is different; this is due to the fact that the value R * is strictly increasing with respect to i 1 , as can be see in the proof of Lemma 5.4.

As commented in the introduction, we will prove Theorem 2.1 by means of a bifurcation argument to show the existence of such domain Ω close to the exterior of a ball. For that, we shall need some facts of the Dirichlet problem; given any p > 1, consider:

(2.1) -∆u + u -u p = 0, u > 0 in B c R , u = 0 on ∂B R .
It will be convenient to make a change of scale and pass to the equivalent problem:

(2.2)

-λ∆u + u -u p = 0, u > 0 in B c 1 , u = 0 on ∂B 1 , where λ = 1 R 2 .
In the proposition below we list some known properties of this problem. Proposition 2.4. There follows: a) For any λ > 0, there exists a radially symmetric C ∞ solution of (2.2). This solution increases in the radius up to a certain maximum, and then it decreases and converges to 0 at infinity. b) The positive and radial solution to (2.2) is unique: we denote it by u λ . c) Let us define the linearized operator L λ :

H 1 0,G (B c 1 ) → H -1 G (B c 1 ), (2.3) L λ (φ) = -λ∆φ + φ -pu p-1
λ φ , and consider the eigenvalue problem:

L λ (φ) = τ φ.
In the space of radially symmetric functions H 1 0,r (B c R ) this problem has a unique negative eigenvalue and no zero eigenvalues. In other words, u λ is nondegenerate in H 1 0,r (B c 1 ) and has Morse index 1. We denote by z λ ∈ H 1 0,r (B c 1 ) (normalized by z λ = 1) the positive eigenfunction with negative eigenvalue, i.e.

(2.4)

-∆z λ + z λ -pu p-1 λ z λ = τ 0 z λ in B c 1 , z λ = 0 on ∂B 1 ,
where

τ 0 = τ 0 (λ) < 0. Moreover z λ is a C ∞ function.
Proof. Statement a) is quite well known and has been proved in [START_REF] Esteban | Existence and nonexistence results for semilinear elliptic problems in unbounded domains[END_REF], for instance. The results b) and c) are more recent and have been obtained in [START_REF] Felmer | Uniqueness of radially symmetric positive solutions for -∆u + u = u p in an annulus[END_REF][START_REF] Tang | Uniqueness of positive radial solutions for ∆u -u + u p = 0 on an annulus[END_REF].

Let us define the bilinear operator associated to (2.3):

Q λ : H 1 0,G (B c 1 )× H 1 0,G (B c 1 ) → R, (2.5) Q λ (ψ 1 , ψ 2 ) = ˆBc 1 λ∇ψ 1 • ∇ψ 2 + ψ 1 ψ 2 -pu p-1 λ ψ 1 ψ 2 . By Proposition 2.4, c), Q λ is positive definite for ψ ∈ H 1 0,r (B c 1 ) with ´Bc 1 ψ z λ = 0.
In next lemma we show that this property may fail if we do not impose radial symmetry. This might be known in the literature, but we have not been able to find a specific reference. Proposition 2.5. Let G be a symmetry group satisfying hypothesis (G). Then there exists ε > 0 such that for any λ ∈ (0, ε), there exists ψ ∈ H 1 0,G (B c 1 ) such that (1) ´Bc

1 ψz λ = 0. (2) Q λ (ψ, ψ) < 0.
Remark 2.6. The proof of Proposition 2.5 can be adapted to show that the Morse index of u λ in H 1 0 (B c 1 ) diverges as λ → 0. This is in contrast with what happens in the radial case. Hence, one expects the existence of infinitely many branches of nonradial solutions to the problem (2.2) bifurcating from u λ . As far as we know, this result has not been explicitly written in the literature. In any case, the existence of this kind of solutions is outside the scope of this paper.

Proof of Proposition 2.5. Let µ i 1 be the first eigenvalue of the operator ∆ S N-1 restricted to G-symmetric functions, and φ one of the corresponding normalized eigenfunctions. Let us define the function ψ in polar coordinates:

ψ(r, θ) = u λ (r)φ(θ), with θ ∈ S N -1 . Since z λ is radially symmetric, ´Bc 1 ψz λ = 0. Observe now that |∇ψ| 2 = u ′ λ (r) 2 φ 2 (θ) + 1 r 2 u λ (r) 2 |∇ θ φ(θ)| 2 . Therefore, Q λ (ψ, ψ) = ˆ+∞ 1 r N -1 λu ′ λ (r) 2 + u λ (r) 2 -p|u λ (r)| p+1 ˆSN-1 φ 2 (θ) dθ dr +λ ˆ+∞ 1 r N -1 1 r 2 u λ (r) 2 ˆSN-1 |∇ θ φ(θ)| 2 dθ dr = ˆ+∞ 1 λu ′ λ (r) 2 + u λ (r) 2 -p|u λ (r)| p+1 + λ µ i 1 r 2 u λ (r) 2 r N -1 dr .
If we multiply the equation in (2.2) (with u = u λ ) by u λ and integrate, we obtain:

ˆ+∞ 1 λu ′ λ (r) 2 + u λ (r) 2 r N -1 dr = ˆ+∞ 1 |u λ (r)| p+1 r N -1 dr.
Plugging this identity in the above expression, we obtain:

Q λ (ψ, ψ) = ˆ+∞ 1 (1 -p) λu ′ λ (r) 2 + u λ (r) 2 + λ µ i 1 r 2 u λ (r) 2 r N -1 dr ≤ ˆ+∞ 1 (1 -p + λµ i 1 ) u λ (r) 2 r N -1 dr,
and this last quantity is negative if λ < ε := p-1

µ i 1 .
In view of Proposition 2.5, the operator L λ may be degenerate if we consider non radially symmetric functions. However, as a consequence of next proposition, we conclude that L λ is nondegenerate for large values of λ. Proposition 2.7. There exists M > 0 such that for any λ > M , Q λ (ψ, ψ) > 0 for any ψ ∈ H 1 0,G (B c 1 ) such that ´Bc

1 ψz λ = 0.
The proof of this proposition is postponed to Section 6.

We define:

(2.6) Λ 0 = sup λ > 0 : Q λ (ψ, ψ) ≤ 0 for some ψ ∈ H 1 0,G (B c 1 ) \ {0}, ˆBc 1 ψz λ = 0 ,
Observe that Proposition 2.7 implies that the set above is bounded from above, whereas Proposition 2.5 implies Λ 0 > 0. For λ > Λ 0 , the Dirichlet problem (2.2) is nondegenerate, in the sense that the operator L λ has trivial kernel. The following result is rather standard but, since the domain under consideration is unbounded, we prefer to state it and include its proof.

Lemma 2.8. Assume that the operator L λ has trivial kernel. Then:

a) The operator L λ is an isomorphism. b) Given v ∈ H 1/2 G (S N -1
), there exists a unique solution

ψ v ∈ H 1 G (B c 1 )
of the problem:

(2.7) -λ∆ψ v + ψ v -pu p-1 λ ψ v = 0 in B c 1 , ψ v = v on ∂B 1 .
Proof. We observe that the operator

ψ → λ∆ψ + ψ is an isomorphism from H 1 0,G (B c 1 ) → H -1 G (B c 1 )
. Moreover, the operator

ψ → pu p-1 λ ψ is a compact operator from H 1 0,G (B c 1 ) → H -1 G (B c 1 )
, because u λ (x) tends to 0 when |x| → +∞ (see Proposition 2.4). Our operator L λ is the sum of the two previous operators, and since it has trivial kernel by assumption, we conclude that it is an isomorphism.

In order to prove b), take

φ ∈ H 1 G (B c 1 ) such that φ| ∂B 1 = v. Observe that ξ = -λ∆φ + φ -pu p-1 λ φ is a element of H -1 G (B c 1 )
in the sense that:

(ξ, ψ) = ˆBc 1 λ∇φ • ∇ψ + φ ψ -pu p-1 λ φψ.
for all ψ ∈ H 1 0,G (B c 1 ). By a), we can find θ ∈ H 1 0,G (B c 1 ) with L λ (θ) = ξ. Then φ -θ is a solution of (2.7).

The Dirichlet-to-Neumann operator and its linearization

The main result of this section is the following: Proposition 3.1. Assume that λ > Λ 0 , where Λ 0 is given by (2.6). Then, for all function v ∈ C 2,α G,m (S N -1 ) whose norm is sufficiently small, there exists a unique positive solution

u = u(λ, v) ∈ C 2,α (B c 1+v ) ∩ H 1 0,G (B c 1+v ) to the problem (3.1) -λ∆u + u -u p = 0 in B c 1+v u = 0 on ∂B 1+v .
In addition u depends smoothly on the function v, and u = u λ when v ≡ 0.

Proof. Let v ∈ C 2,α G,m (S N -1
). Instead of working on a domain depending on the function v, it will be more convenient to work on the fixed domain B c 1 , endowed with a new metric depending on the function v. This can be achieved by considering the diffeomorphism

Y : B c 1 → B c 1+v given by (3.2) Y (y) := 1 + χ(y) v y |y| y
where χ is a cut-off function such that:

χ(y) = 0 |y| ≥ 3/2, 1 |y| ≤ 5/4.
Hence the coordinates we consider from now on are y ∈ B c 1 and in these coordinates the new metric g can be written as

g = δ ij + i,j C ij dy i dy j ,
where the coefficients

C ij ∈ C 1,α G (B c 1 )
are functions of y depending on v and the first partial derivatives of v. Moreover, C ij ≡ 0 when v = 0 and the maps v -→ C ij (v) are smooth. Up to some multiplicative constant, the problem we want to solve can now be rewritten in the form

(3.3) -λ∆ g û + û -ûp = 0 in B c 1 û = 0 on ∂B 1 .
When v ≡ 0, the metric g is nothing but the Euclidean metric and a solution of (3.3) is therefore given by û = u λ . In the general case, the relation between the function u and the function û is simply given by Y * u = û .

For ψ ∈ H 1 0,G (B c 1 ) we define

N (v, ψ) := -λ∆ g (u λ + ψ) + (u λ + ψ) -[(u λ + ψ) + ] p .
where (u λ + ψ) + denotes the positive part of the function u λ + ψ. We have

N (0, 0) = 0.
The mapping N is a smooth map from a neighborhood of (0, 0) in

C 2,α G (S N -1 )×H 1 0,G (B c 1 ) into H -1 G (B c 1 )
. The partial differential of N with respect to ψ, computed at (0, 0), is given by

D ψ N | (0,0) (ψ) = -λ∆ψ + ψ -pu p-1 λ ψ . Since λ > Λ 0 , D ψ N | (0,0) : H 1 0,G (B c 1 ) → H -1 G (B c 1 
) is an isomorphism by Lemma 2.8. Therefore, the Implicit Function Theorem implies that, for v in a neighborhood of 0 in C 2,α G (S N -1 ), there exists of ψ(λ, v) ∈ H 1 0,G (B c 1 ) such that N (v, ψ(v, λ)) = 0. The regularity of u = u λ + ψ(v, λ) follows from classical Schauder regularity theory, whereas the fact that u is positive comes from the maximum principle.

For any λ > Λ 0 , after canonical identification of ∂B 1+v with S N -1 , we can take an open set U ∈ (Λ 0 , +∞) × C 2,α G,m (S N -1 ) containing (Λ 0 , +∞) × {0}, as the domain of the operator

F : U → C 1,α G,m (S N -1 ) defined by (3.4) F (λ, v) = ∂u(λ, v) ∂ν - 1 Vol(∂B 1+v ) ˆ∂B 1+v ∂u(λ, v) ∂ν
where ν denotes the unit normal vector field to ∂B 1+v pointing to the interior of B 1+v and u(λ, v) is the solution of (3.1) provided by Proposition 3.1.

Observe that F (λ, v) = 0 if and only if ∂u ∂ν is constant at the boundary ∂B 1+v . Clearly, F (λ, 0) = 0 for all λ ∈ (Λ 0 , +∞). Our purpose is to find a bifurcation branch from those solutions, so that we get F (λ, v λ ) = 0, with v λ ∈ C 2,α G,m (S N -1 ) small, but different from 0.

We will compute now the Frechet derivative of the operator F . Before this, we state a useful lemma.

Lemma 3.2. Let v ∈ C 2,α G,m (S N -1 ) and ψ = ψ v ∈ C 2,α G (B c 1 ) ∩ H 1 G (B c
1 ) be a solution of (2.7). Then:

ˆBc 1 ψz λ = 0, ˆ∂B 1 ∂ψ ∂ν = 0.
Proof. We multiply the equation in (2.4) by ψ, the equation in (2.7) by z λ , and integrate by parts to obtain:

τ 0 ˆBc 1 z λ ψ = ˆ∂B 1 ∂ψ ∂ν z λ - ∂z ∂ν ψ .
We know that z λ = 0 and ∂z λ ∂ν is constant on ∂B 1 (recall that z λ is radially symmetric) ψ = v on ∂B 1 . The first identity follows immediately. Now, define κ λ ∈ H 1 r (B c 1 ) as the unique solution of the problem:

(3.5) -∆κ λ + κ λ -pu p-1 λ κ λ = 0 in B c 1 , κ λ = 1 on ∂B 1 .
The existence of such solution is guaranteed for any λ ∈ R by Proposition (2.4) c) and Lemma 2.8 b). We multiply (3.5) by ψ, (2.7) by κ λ and integrate by parts to conclude:

0 = ˆ∂B 1 ∂ψ ∂ν κ λ - ∂κ λ ∂ν ψ .
We know that k λ = 1 and ∂k λ ∂ν is constant on ∂B 1 (k λ is also radially symmetric), and that ψ = v on ∂B 1 . The second identity follows immediately.

We define the operator

H λ : C 2,α G,m (S N -1 ) → C 1,α G,m (S N -1 ), (3.6) 
H λ (v) = ∂ψ v ∂ν -(N -1) v.
Here ψ v is given by Lemma 2.8, b). Observe that by Schauder Elliptic Estimates, if

v ∈ C 2,α G,m (∂B 1 ), ψ v ∈ C 2,α G (B c 1 )
, and then the operator is well defined.

Proposition 3.3. The map F defined in 3.4 is a C 1 operator in a neighborhood of (λ, 0) for all λ > Λ 0 , and

D v F | (λ,0) = H λ .
Proof. The operator F is a C 1 operator by Proposition 3.1 (the function u depends smoothly on v). The linear operator obtained by linearizing F with respect to v at (λ, 0) is then given by the directional derivative

F ′ (w) = lim s→0 F (λ, s w) -F (λ, 0) s = lim s→0 F (λ, s w) s . Writing v = s w, we consider the diffeomorphism Y : B c 1 → B c 1+v given in (3.2).
We set ĝ the induced metric, so that û = Y * u is the solution (smoothly depending on the real parameter s) of

-λ∆ ĝ û + û -ûp = 0 in B c 1 û = 0 on ∂B 1 . We remark that ûλ := Y * u λ is a solution of -λ∆ ĝ ûλ + ûλ -ûp λ = 0 in a neighborhood of B c
1 (note that u λ is radial and then can be extended in a neighborhood of ∂B 1 ), and ûλ (y) = u λ ((1 + s w) y) , on ∂B 1 . Writing û = ûλ + ψ we find that

(3.7)    -λ∆ ĝ ψ + (û λ + ψ) -(û λ + ψ) p -ûλ + ûp λ = 0 in B c 1 ψ = -û λ on ∂B 1
Obviously ψ is a smooth functions of s. When s = 0, we have u = u λ . Therefore, ψ = 0 and ûλ = u λ when s = 0. We set ψ = ∂ s ψ| s=0 .

Differentiating (3.7) with respect to s and evaluating the result at s = 0, we obtain

   -λ∆ ψ + (1 + pu p-1 λ ) ψ = 0 in B c 1 ψ = -∂ r u λ w on ∂B 1
where we have set r := |y|. To summarize, we have proved that

û = ûλ + s ∂ r u λ ψ + O(s 2 )
where ψ is the solution of (2.7). In particular, in B where e is the metric on S N -1 induced by the Euclidean metric. It follows from this expression that the unit normal vector field to ∂B 1 for the metric ĝ is given by ν

= (1 + s w) -1 + O(s 2 ) ∂ r + O(s) ∂ θ j
where ∂ θ j are vector fields induced by a parameterization of S N -1 . Using this, we conclude that ĝ(∇û, ν) = ∂ r u λ + s w ∂ 2 r u λ + ∂ r ψ + O(s 2 ) on ∂B 1 . The result then follows at once from the fact that ∂ r u λ and ∂ 2 r u λ are constant on ∂B 1 , while the terms w and ∂ r ψ have mean 0 on ∂B 1 , and

-λ(∂ 2 r u λ + (N -1)∂ r u λ ) = 0 on ∂B 1 .
This completes the proof of the proposition.

Study of the linearized operator

In view of Proposition 3.3, a bifurcation might appear only for values of λ so that H λ becomes degenerate (H λ was defined in (3.6)). We shall see that this is indeed the case for some λ > Λ 0 . Let us define the first eigenvalue of the operator H λ as

σ 1 (H λ ) = inf ˆSN-1 v H λ (v) : v ∈ C 2,α G,m (S N -1 ) , ˆSN-1 v 2 = 1 ∈ [-∞, +∞).
The main result of this section is the following:

Proposition 4.1. There exists Λ 2 > Λ * > Λ 0 (Λ 0 is given in (2.6)) such that: (1) if λ ≥ Λ 2 then σ 1 (H λ ) > 0; (2) σ 1 (H Λ * ) = 0;
(3) there exists a sequence of real numbers λ n , increasing and converging to Λ * , such that σ 1 (H λn ) < 0.

In order to prove Proposition 4.1, let us define the following bilinear forms:

T λ : H 1/2 G (S N -1 ) × H 1/2 G (S N -1 ) → R defined by T λ (v 1 , v 2 ) = ˆSN-1 v 1 ∂ψ v 2 ∂ν ,
and Tλ :

H 1/2 G (S N -1 ) × H 1/2 G (S N -1 ) → R defined by Tλ (v 1 , v 2 ) = ˆSN-1 v 1 ∂ψ v 2 ∂ν - ˆSN-1 (N -1)v 1 v 2 .
Observe that T λ , Tλ are symmetryc. Moreover, it is clear that:

σ 1 (H λ ) = inf ˆSN-1 Tλ (v, v) : v ∈ C 2,α G,m (S N -1 ), ˆSN-1 v = 0, ˆSN-1 |v| 2 = 1 .
We also define the bilinear form Qλ :

H 1 G (B c 1 ) × H 1 G (B c 1 ) → R, by (4.1) Qλ (ψ 1 , ψ 2 ) = Q λ (ψ 1 , ψ 2 ) -λ (N -1) ˆ∂B 1 ψ 1 ψ 2 ,
where Q λ has been defined in (2.5). It is easy to verify that

T λ (v 1 , v 2 ) = 1 λ Q λ (ψ v 1 , ψ v 2 ) , Tλ (v 1 , v 2 ) = 1 λ Qλ (ψ v 1 , ψ v 2 ).
The following lemma relates σ 1 (H λ ) with the bilinear form Q.

Lemma 4.2. For any λ > Λ 0 we have

σ 1 (H λ ) = inf 1 λ Q(ψ, ψ) : ψ ∈ E , ˆ∂B 1 ψ 2 = 1 .
where

(4.2) E = ψ ∈ H 1 G (B c 1 ), ˆ∂B 1 ψ = 0, ˆBc 1 ψz λ = 0 .
Moreover this infimum is attained.

Proof. Fix λ > Λ 0 . First we prove that (4.3)

γ 1 := inf Q λ (ψ, ψ) : ψ ∈ E , ˆ∂B 1 ψ 2 = 1 . is achieved. Take ψ n ∈ E such that Q λ (ψ n , ψ n ) → γ 1 ∈ [-∞, +∞). We show that ψ n is bounded by contradiction; if ψ n → +∞, define φ n = ψ n -1
ψ n , and we can assume that up to a subsequence φ n ⇀ φ 0 . Observe that ´∂B 1 φ 2 n → 0, which implies that φ 0 ∈ H 1 0,G (B c 1 ). We also point out that ˆBc

1 u p-1 λ φ 2 n → ˆBc 1 u p-1 λ φ 2 0 .

Now, let us consider two cases:

Case 1: φ 0 = 0. In such case,

Q λ (ψ n , ψ n ) = ψ n 2 ˆBc 1 λ|∇φ n | 2 + φ 2 n -pu p-1 λ φ 2 n → +∞, which is impossible. Case 2: φ 0 = 0. In this case, lim inf n→+∞ Q λ (ψ n , ψ n ) = lim inf n→+∞ ψ n 2 ˆBc 1 λ|∇φ n | 2 + φ 2 n -pu p-1 λ φ 2 n ≥ lim inf n→+∞ ψ n 2 Q λ (φ 0 , φ 0 ), but Q λ (φ 0 , φ 0 ) > 0 since λ > Λ 0
. This is again a contradiction. Therefore, ψ n is bounded, so up to a subsequence we can pass to the weak limit ψ n ⇀ ψ.

As before,

1 = ˆ∂B 1 ψ 2 n → ˆ∂B 1 ψ 2 , ˆBc 1 u p-1 λ ψ 2 n → ˆBc 1 u p-1 λ ψ 2 .
Then ψ is a minimizer for γ 1 , and in particular γ 1 > -∞.

Now we observe that under the constraints ψ ∈ E, and ´∂B 1 ψ 2 = 1 we have

(4.4) Qλ (ψ, ψ) = Q λ (ψ, ψ) -λ (N -1)
and in particular, also

inf 1 λ Qλ (ψ, ψ) : ψ ∈ E , ˆ∂B 1 ψ 2 = 1 .
is achieved.

Let ψ ∈ E be the minimizer such that Q λ (ψ, ψ) = γ 1 . By the Lagrange multiplier rule, there exist α 0 , α 1 , α 2 ∈ R so that for any ρ ∈ H 1 G (B c 1 ), ˆBc

1 ∇ψ • ∇ρ + ψρ -pu p-1 λ ψρ -α 0 ρz λ = ˆ∂B 1 ρ(α 1 ψ + α 2 ).
Taking ρ = ψ, we conclude that α 1 = γ 1 . Moreover, taking ρ = z λ and ρ = κ λ (recall the definitions of z λ and k λ in (2.4) and (3.5)), we conclude that α 0 = 0 and α 2 = 0, respectively. In other words, ψ is a (weak) solution of the equation:

(4.5) -λ∆ψ + ψ -pu p-1 λ ψ = 0 in B c 1 , ∂ψ ∂ν = γ 1 ψ on ∂B 1 .
By the regularity theory,

ψ ∈ C 2,α G (B c 1 ). Now recall that T λ (v, v) = 1 λ Q λ (ψ v , ψ v ). By Lemma 3.2 ψ v ∈ C 2,α G (B c 1 
) ∩ E, and then

γ 1 ≤ inf λ T λ (v, v) : v ∈ C 2,α G (S N -1 ), ˆSN-1 v = 0, ˆSN-1 |v| 2 = 1
Moreover, γ 1 is achieved at a certain ψ ∈ C 2,α G (B c 1 ), which solves (4.5). In particular, denoting v = ψ| ∂B 1 , we conclude that λ T λ (v, v) = γ 1 . Then we have (4.6)

γ 1 = inf λ T λ (v, v) : v ∈ C 2,α G (S N -1 ), ˆSN-1 v = 0, ˆSN-1 |v| 2 = 1 .
Now we observe that under the constraints ´SN-1 v = 0, and ´SN-1

|v| 2 = 1 we have Tλ (v, v) = T λ (v, v) -(N -1)
and then the result follows at once from (4.3), (4.4) and (4.6).

The previous lemma leads us to the study of the bilinear form Qλ . The first key result for our purposes is the following: Proposition 4.3. There exists M > Λ 0 such that for any λ > M , Qλ (ψ, ψ) > 0 for any ψ ∈ E \ {0}, where E is the subspace defined in (4.2).

The proof of this proposition is somehow delicate and it is postponed to Section 6. We point out that this is the only point where the assumption p < N +2 N -2 (if N > 2) is needed. Let us define now: (4.7)

Λ * = sup{λ > 0 : Qλ (ψ, ψ) < 0 for some ψ ∈ E}.

By Proposition 4.3, Λ * < +∞. Moreover, since Qλ (ψ, ψ) = Q λ (ψ, ψ) for all ψ ∈ H 1 0,G (B c 1 )
, we have also that Λ * ≥ Λ 0 . The last main ingredient to prove Proposition 4.1 is the following:

Lemma 4.4. Λ * > Λ 0
Proof. It suffices to show that for λ = Λ 0 , Qλ (ψ, ψ) < 0 for some ψ ∈ E. Reasoning by contradiction, assume that Qλ is semipositive definite in E. By definition of Λ 0 , there exists ψ 0 ∈ H 1 0,G (B c 1 ), with Q λ (ψ 0 , ψ 0 ) = 0, and ψ 0 is a solution of (2.3). We have ψ 0 ∈ E and by our assumptions it is also a minimizer for Qλ when defined in E. By the Lagrange multiplier rule, there exist α 0 and α 1 ∈ R so that for any ρ ∈ H 1 G (B c 1 ), ˆBc

1 ∇ψ • ∇ρ + ψρ -pu p-1 λ ψρ -α 0 ρz λ = α 1 ˆ∂B 1 ρ
Taking ρ = z λ and ρ = κ λ (recall the definitions of z λ and k λ in (2.4) and (3.5)), we conclude that α 0 = 0 and α 1 = 0, respectively. In other words, ψ is a (weak) solution of the equation:

-λ∆ψ 0 + ψ 0 -pu p-1 λ ψ 0 = 0 in B c 1 , ∂ψ 0 ∂η -(N -1)ψ 0 = 0 on ∂B 1 .
Since ψ 0 = 0 on ∂B 1 , we have ∂ψ 0 ∂ν = 0 on ∂B 1 . By unique continuation we should have ψ 0 = 0, but this is a contradiction.

We are now able to give the proof of the main proposition of this section. 

The bifurcation argument

In order to use a local bifurcation result we need to rewrite our problem in a more convenient way. For that, the following lemma will be essential. Lemma 5.1. There exists ε > 0 such that for any λ ∈ (Λ * -ε, +∞), the operator

H λ + Id : C 2,α G,m (S N -1 ) → C 1,α G,m (S N -1 ) v → H λ (v) + v is invertible.
Proof. It suffices to prove that the operator

v → H λ (v) + σ v defined in C 2,α G,m (S N -1
) is invertible for all σ > -σ 1 (H λ ). Equivalently, we can prove that the operator

v → ∂ψ v ∂ν ∂B 1 + γ v defined in C 2,α G,m (S N -1
) is invertible for all γ > -γ 1 , where γ 1 is defined in (4.3). Then, define the bilinear form

Q λ,γ : E × E → R as Q λ,γ (ψ 1 , ψ 2 ) = Q λ (ψ 1 , ψ 2 ) + λ γ ˆ∂B 1 ψ 1 ψ 2 ,
and the bilinear form T λ,γ :

H 1/2 G (S N -1 ) × H 1/2 G (S N -1 ) → R as T λ,γ (v 1 , v 2 ) = T λ (v 1 , v 2 ) + γ ˆSN-1 v 1 v 2 .
Since γ > γ 1 , those bilinear forms are positive definite. We claim that they are indeed coercive. Let us start with Q λ,γ , and show that:

α := inf{Q λ,γ (ψ, ψ) : ψ ∈ E, ψ = 1} > 0.
Take

ψ n ∈ E, ψ n = 1, Q λ,γ (ψ n , ψ n ) → α,
and assume that ψ n ⇀ ψ 0 . If the convergence is strong, then the infimum α is attained, which implies that α > 0. Otherwise,

α = lim sup n→+∞ ˆBc 1 λ|∇ψ n | 2 + ψ 2 n -pu p-1 λ ψ 2 n + γ ˆ∂B 1 ψ 2 n > ˆBc 1 λ|∇ψ 0 | 2 + ψ 2 0 -pu p-1 λ ψ 2 0 + γ ˆ∂B 1 ψ 2 0 ≥ 0.
Hence Q λ,γ is coercive. Now, observe that:

T λ,γ (v, v) = ˆ∂B 1 v ∂ψ v ∂ν + γ v 2 = 1 λ Q λ,γ (ψ v , ψ v ) ≥ c ψ v 2 H 1 (B c 1 ) ≥ c ′ v 2 H 1/2 (S N-1 ) ,
where we have used the trace estimate in the last inequality. Therefore T λ,γ is coercive. By the Lax-Milgram Theorem, the operator

v → ∂ψ v ∂ν ∂B 1 + γ v is invertible for all γ > -γ 1 in the spaces H 1/2 G (S N -1 ) → H -1/2 G (S N -1 )
. By the regularity theory and the fact that the mean property is preserved, it is invertible also in the spaces

C 2,α G,m (S N -1 ) → C 1,α G,m (S N -1 ).
According to Proposition 4.1, we can take Λ 1 ∈ (Λ 0 , Λ * ) sufficiently close to Λ * so that σ 1 (H Λ 1 ) < 0. We define G :

[Λ 1 , Λ 2 ] × V → W by (5.1) G(λ, v) = F (λ, v) + v.
Here

V ⊂ C 2,α G,m (S N -1 ) and W ⊂ C 1,α G,m (S N -1
) are open neighborhoods of the 0 function, and Λ 2 is given by Proposition 4.1. By Lemma 5.1, taking Λ 1 close enough to Λ * we can assume that D v G| (λ,0) is an isomorphism for all λ ∈ [Λ 1 , Λ 2 ]. By using the Inverse Function Theorem, we can further restrict V and W so that

G(λ, •) is invertible for all λ ∈ [Λ 1 , Λ 2 ]. Define now R : [Λ 1 , Λ 2 ] × W → W, R(λ, w) = w -w,
where w is such that G(λ, w) = w. We point out that R has the form of identity plus a compact operator. Clearly, F (λ, v) = 0 ⇔ R(λ, v) = 0. Hence Theorem 2.1 follows if we show local bifurcation of solutions of the equation R(λ, v) = 0.

We have

D w R| (λ,0) (w) = w -D w G| -1 (λ,0) (w). Hence (5.2) D w R| (λ,0) (w) = µw ⇔ H λ (w) = µ 1 -µ w.
By the proof of Lemma 5.1, µ < 1 if λ ≥ Λ 1 . Therefore D w R| (λ,0) (w) has the same number of negative eigenvalues as H λ .

In this framework we can use a local bifurcation result by Krasnoselskii.

Theorem 5.2. (see for instance [START_REF] Kielhofer | Bifurcation Theory: An Introduction with Applications to PDE's[END_REF], [II. 3.2]). Let F : [a, b] × Z → X be C 1 map defined in Z ⊂ X a neighborhood of the origin in the Banach Space X. Assume that F is given by F (λ, x) = x -K(λ, x) where K(λ, •) is a compact map. Assume moreover, that choosing by convention that µ i 0 = 0. Since ψ ∈ E we have that ψ 0 (1) = 0 and that ψ 0 is orthogonal to the function z λ restricted to the radial variable. By Proposition 2.4 we have Qλ,0 (ψ 0 ) > 0. For λ = Λ * , the bilinear form Qλ is positive semi-definite in E × E, and then from (5.3) we have that all the quadratic forms Qλ,k are positive semi-definite. Moreover, it is clear that Qλ,k

D x F | (a,
1 (φ) < Qλ,k 2 (φ) if 1 ≤ k 1 < k 2 .
We know also that there exists a ψ ∈ E such that Qλ (ψ, ψ) = 0. Therefore Qλ,1 is positive semi-definite, and Qλ,k are positive definite for k > 1. This implies that the kernel of H Λ * has dimension equal to m 1 , which is odd by assumption (G).

6. Proof of Propositions 2.7 and 4.3

Observe that the bilinear form Qλ defined in (4.1), when restricted to functions in H 1 0,G (B c 1 ), is nothing but Q λ (recall (2.5)). Hence Proposition 2.7 follows immediately from Proposition 4.3.

In order to prove Proposition 4.3, we shall consider the problem in the form (2.1); that is, we aim to prove that QR :

H 1 G (B c R ) × H 1 G (B c R ) → R, QR (ψ 1 , ψ 2 ) = ˆBc R ∇ψ 1 • ∇ψ 2 + ψ 1 ψ 2 -pu p-1 R ψ 1 ψ 2 - N -1 R ˆ∂B R ψ 1 ψ 2
is positive definite if R > 0 is sufficiently small, when ψ 1 , ψ 2 belong to the space:

E R = ψ ∈ H 1 G (B c R ), ˆ∂B R ψ = 0, ˆBc R ψz R = 0 .
Here u R and z R stand for

u R (x) = u λ x R , z R (x) = z λ x R , λ = R -2 .
The strategy of the proof is to make R = R n → 0 to and assume that QR is not positive definite in E R to reach a contradiction. For that, the behavior of u R , z R as R → 0 is needed. This result might be known, but we have not been able to find a specific reference.

Lemma 6.1. Let u n be the positive radial solution of (2.1) for R = R n ↓ 0, and z n = z Rn -1 z Rn . Let us consider those functions extended to R N by 0. Then, u n → U and z n → Z in H 1 (R N ), where U is the radial ground state solution of problem:

(6.1) -∆U + U = U p , U > 0, in R N ,
and Z is the normalized positive eigenfunction corresponding to the negative eigenvalue of the linearized problem, that is,

(6.2) -∆Z + Z -pU p-1 Z = τ Z, in R N , with τ < 0.
Proof. Let us define the energy functional associated to (2.1):

I(u) = 1 2 ˆBc Rn |∇u| 2 + u 2 - 1 p + 1 ˆBc Rn |u| p+1 .
It is well known that,

I(u n ) = inf{max{I(tu) : t > 0} , u ∈ H 1 0,r (B c Rn )} > 0,
see for instance [START_REF] Szulkin | The method of Nehari manifold, Handbook of nonconvex analysis and applications[END_REF]. Since H 1 0,r (B c Rn ) ⊂ H 1 0,r (B c R n+1 ) (up to extension by 0), then I(u n ) is decreasing in n. In particular, I(u n ) is bounded. Moreover, multiplying (2.1) by u n and integrating, we obtain that DI un (u n ) = 0. What follows is standard (see for instance [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF]); first, observe that:

(p + 1)I(u n ) = (p + 1)I(u n ) -DI un (u n ) = p -1 2 u n 2 ,
frow which u n is bounded. Passing to a subsequence, we can assume that u n ⇀ u 0 in H 1 sense. Multiplying (2.1) by φ ∈ C ∞ 0 (R N \ {0}), we conclude that u 0 is a weak solution of the problem:

(6.3) -∆u 0 + u 0 = u p 0 in R N \ {0}
. Since u 0 is in the Sobolev class, the singularity is removable. Multiplying (2.1) by u n and (6.3) by u 0 , we have:

u n 2 = ˆRN |u n | p+1 , u 0 2 = ˆRN |u 0 | p+1 .
By [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF], u n → u 0 strongly in L p+1 , so that u n → u 0 . From this we conclude that u n → u 0 strongly in H 1 (R N ) and u 0 is a nontrivial positive solution of (6.1). By uniqueness ( [START_REF] Kwong | Uniqueness of positive solutions of ∆u-u+u p = 0 in R n[END_REF]), u 0 = U . Regarding z n , it is a radially symmetric function solving:

(6.4) -∆z n + z n -pu p-1 n z n = τ n z n in B c
Rn , z n = 0 on ∂B Rn , with τ n < 0. Since z n = 1, z n converges weakly to some z 0 . Multiplying the above equation by z n we get: (6.5)

ˆRN |∇z n | 2 + (1 -τ n )z 2 n -pu p-1 n z 2 n = 0.
By compact embedding of radial functions ( [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF]), for instance, we conclude that:

(6.6) ˆRN u p-1 n z 2 n → ˆRN U p-1 z 2 0 .
This implies in particular that z 0 is not zero. Moreover, lim inf n→+∞ ´RN z 2 n ≥ ´RN z 2 0 . In particular τ n is bounded, and we can assume τ n → τ 0 ≤ 0. Then, z 0 is a weak solution of -∆z 0 + z 0 -pU p-1 z 0 = τ 0 z 0 in R N \ {0}. Since z 0 belongs to the Sobolev class, the singularity is removable, and it is an entire solution; hence z 0 = Z. In particular,

ˆRN |∇z 0 | 2 + (1 -τ 0 )z 2 0 -pU p-1 z 2 0 = 0.
This, together with (6.5) and (6.6), allows us to conclude that z n → z 0 strongly, concluding the proof.

The following lemmas will be of use: Lemma 6.2. For any f ∈ C ∞ 0 (R), the following inequality holds:

r N -2 f (r) 2 ≤ 1 λ ˆ+∞ r f ′ (s) 2 s N -1 ds + (2 -N + λ) ˆ+∞ r f (s) 2 s N -3 ds,
where N ≥ 2, λ > 0 and r > 0.

Proof. Observe that:

r N -2 f (r) 2 = - ˆ+∞ r (2s N -2 f (s)f ′ (s) + (N -2)s N -3 f (s) 2 ) ds.
We now estimate the first term in the right hand side by using Cauchy-Schwartz inequality: This lemma follows at once. 

+ µ i k ψ k (r) 2 r N -3 ) dr ˆ∂B 1 φ k (θ) 2 dθ. Moreover, 1 R ˆ∂B R |ψ k (r)φ k (θ)| 2 ds x = R N -2 ψ k (R) 2 ˆ∂B 1 φ k (θ) 2 dθ.
By assumption (G), µ i 1 ≥ µ 2 = 2N . Now it suffices to take λ = N in Lemma 6.2 to conclude.

We are now able to prove Proposition 4.3.

Proof. (Proposition 4.3) Take R = R n → 0, denote B n = B Rn , u n = u Rn and z n = z Rn , and define:

χ n = inf QR (ψ, ψ) : ψ ∈ H 1 G (B c n ), ˆ∂Bn ψ = 0, ˆBc n ψz n = 0, ˆBc n |ψ| 2 = 1 .
Assume, by contradiction, that χ n ≤ 0. The proof will be divided in several steps:

Step 1: We show here that χ n is attained. Take ψ k a minimizing sequence for χ n . If ψ k is unbounded in the H 1 norm, define

φ k = ψ k -1 ψ k . Then, 0 ≤ ˆBc n |∇φ k | 2 + (1 -χ n )|φ k | 2 -pu p-1 n |φ k | 2 - N -1 R n ˆ∂Bn |φ k | 2 → 0.
But φ k → 0 in the L 2 norm, so that ´Bc n u p-1 n |φ k | 2 → 0 as k → +∞. Moreover, φ k ⇀ 0 in H 1 , so ´∂Bn |φ k | 2 → 0, yielding a contradiction. Hence ψ k is bounded in H 1 , so that we can assume that ψ k ⇀ ψ. Then,

ˆBc n u p-1 n |ψ k | 2 → ˆBc n u p-1 n |ψ| 2 , ˆ∂Bn |ψ k | 2 → ˆ∂Bn |ψ| 2 .
Above we have used the fact that u n decays to 0 at infinity and the fact that the embedding H 1 (B c n ) ֒→ L 2 (∂B n ) is compact. We conclude that the convergence is strong and that ψ is a minimizer for χ n .

Step 2: We pass now to the limit. Let us denote by ψ n the minimizer of χ n renormalized with respect to the H 1 norm. Observe that ψ n is a solution of the equation: (6.7)

-∆ψ n + ψ n -pu p-1 n ψ = χ n ψ in B c n . Moreover, (6.8)

ˆBc n |∇ψ n | 2 + (1 -χ n )|ψ n | 2 -pu p-1 n |ψ n | 2 - N -1 R n ˆ∂Bn |ψ n | 2 = 0.
By a Cantor diagonal process, ψ n ⇀ ψ 0 ∈ H 1 G (B c r ) for any r > 0, where ψ 0 ∈ H 1 (R N ) (recall that H 1 0 (R N \ {0}) = H 1 (R N )).

Step 3: We show here that

ˆBc n u p-1 n |ψ n | 2 → ˆRN U p-1 |ψ 0 | 2 .
Indeed, given any ε > 0, ψ n ⇀ ψ 0 in H 1 (B c ε ), which implies that ψ 2 n ⇀ ψ 2 0 in L p+1 2 . Moreover u n → U in H 1 (R N ), hence:

ˆBc ε u p-1 n |ψ n | 2 → ˆBc ε U p-1 |ψ 0 | 2 .
Apply now the Hölder inequality:

ˆBε\Bn u p-1 n |ψ n | 2 ≤ ˆBε u p+1 n p-1 p+1 ˆBc n |ψ n | p+1 2 p+1 .
Recall that u n → U in L p+1 so that

ˆBε |u n | p+1 ≤ ˆRN |u n -U | p+1 + ˆBε |U | p+1 ≤ Cε N ,
by choosing sufficiently large n. Since ε is arbitrary, we conclude the proof of step 2.

Step 4: We get now the desired contradiction. By Lemma 6.3,

N -1 R n ˆ∂Bn |ψ n | 2 ≤ N -1 N ˆBc n |∇ψ n | 2 .
This, together with Step 2 and (6.8), implies that ψ 0 = 0. In particular,

lim inf n→+∞ ˆBc n |ψ n | 2 ≥ ˆBc n |ψ 0 | 2 > 0.
Plugging this information in (6.8), and taking into account Lemma 6.3, we conclude that χ n is bounded. Let us assume that χ n → χ 0 ≤ 0. By (6.7), ψ 0 is a nontrivial weak solution of the problem:

-∆ψ 0 + ψ 0 -pU p-1 ψ 0 = χ 0 ψ 0 , in R N \ {0}.

Since ψ 0 ∈ H 1 (R N ), the singularity is removable and ψ is a weak solution in the whole R N . Since ψ 0 is G-symmetric, the only possibility is ψ 0 = kZ, k = 0 (see [START_REF] Kwong | Uniqueness of positive solutions of ∆u-u+u p = 0 in R n[END_REF]). Observe now that ´Bc n ψ n z n = 0. By the same arguments as in Step 2, we conclude that ˆBc n ψ n z n → ˆRN ψ 0 Z, which yields the desired contradiction.
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 54 , we have û(y) = u λ 1 + s w(y/|y|) y + s ∂ r u λ ψ(y) + O(s 2 ) = u λ (y) + s ∂ r u λ rw(y/|y|) + ψ + O(s 2 )In order to compute the normal derivative of the function û when the normal is computed with respect to the metric ĝ, we use polar coordinates y = r θ where θ ∈ S N -1 . Then the metric ĝ can be expanded in B 5/4 \ B 1 as ĝ = (1 + sw) 2 dr 2 + 2 s (1 + sw) r dw dr + r 2 (1 + sw) 2 e + s 2 r 2 dw 2

  Proof. (Proposition 4.1.) Assertion (1) follows immediately from Proposition 4.3. Statements (2) and (3) follow by the definition of Λ * in (4.7) and Lemma 4.4.

Remark 5 . 3 . 1 λ φ ′ φ ′ + φ 2 -p u p- 1 λ φ 2 r 2 +µ i k ˆ+∞ 1 φ 2 r

 531212212 0) and D x F | (b,0) are isomorphisms of X. Denote by i DxF (a) and i DxF (b) their indices, that is, the number of negative eigenvalues (counted with algebraic multiplicity). Assume finally that i DxF (a) -i DxF (b) is an odd integer. Then every neighborhood of [a, b] × {0} contains solutions of F (λ, x) = 0, with λ ∈ (a, b), x ∈ X, x = 0. The above version of the Krasnoselskii bifurcation result differs slightly from the classical one; usually one imposes the existence of an unique value λ ∈ (a, b) such that the derivative D x F | (λ,0) is degenerate. Under this assumption, one concludes bifurcation at the point (λ, 0). The version we give above follows immediately from the proof of the classical Krasnoselskii bifurcation result, which is based on a change of the Leray-Schauder degree of the 0 solution. A drawback of this version is that we cannot identify exactly the bifurcation point.We now apply Theorem 5.2 to R(λ, w). For λ = Λ 2 , i DvR (Λ 2 ) = 0 by Proposition 4.1. Therefore we just need to show the validity of the following Lemma.Lemma 5.4. i DvR (Λ 1 ) is odd if Λ 1 is chosen sufficiently close to Λ * .Proof. In view of (5.2), it suffices to prove that H Λ * has a kernel with odd multiplicity. For any ψ ∈ E, there exist functions ψ 0 , ψ k,j defined in [1, +∞) such that we can write ψ(r, θ) = ψ 0 (r) + +∞ k=1 mk j=1 ψ k,j (r) ζ k,j (θ) , where r = |x|, θ = x |x| and ζ k,j are the G-symmetric spherical harmonics (normalized to 1 in the L 2 -norm) with eigenvalue µ i k of multiplicity m k . Then the quadratic form ψ → Qλ (ψ, ψ) defined in E can be written as (5.3) Qλ (ψ, ψ) = Qλ,0 (ψ 0 ) + +∞ k=1 mk j=0 Qλ,k (ψ k,j ) where for a function φ : (1, +∞) → R we denote Qλ,k (φ) = ˆ+∞ N -1 dr -(N -1) φ(1) N -3 dr

ˆ+∞ r 2s N - 2

 2 |f (s)||f ′ (s)| ds = 1 f ′ (s) 2 ds .

Lemma 6 . 3 .

 63 Let G be a group of symmetries satisfying (G). Then,1 R ˆ∂B R ψ(x) 2 ds x ≤ 1 N ˆBc R |∇ψ(x)| 2 dx for any ψ ∈ H 1 G (B c R ) with ´∂B R ψ(x) ds x = 0. Proof.By density arguments, we can assume that ψ ∈ C ∞ 0 (B c R ). We decompose it in Fourier series:ψ(r, θ) = ∞ i=0 ψ k (r)φ k (θ),where φ k are the eigenfunctions of ∆ S N-1 under G-symmetry. Observe that φ 0 (θ) = 1 and ψ 0 ( 1 R ) = 0. Therefore it suffices to prove the inequality for the summandsψ k (r)φ k (θ), i ≥ 1. Observe that: ˆBc R |∇(ψ k (r)φ k (θ))| 2 dr dθ = ˆ+∞ R (ψ ′ k (r) 2 r N -1