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A RIGIDITY RESULT FOR OVERDETERMINED ELLIPTIC PROBLEMS IN THE
PLANE

ANTONIO ROS, DAVID RUIZ, AND PIERALBERTO SICBALDI

ABSTRACT. Let f : [0,+∞) → R be a (locally) Lipschitz function and Ω ⊂ R2 a C1,α

domain whose boundary is unbounded and connected. If there exists a positive bounded
solution to the overdetermined elliptic problem















∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u
∂~ν = 1 on ∂Ω

we prove that Ω is a half-plane. In particular, we obtain a partial answer to a question
raised by H. Berestycki, L. Caffarelli and L. Nirenberg in 1997.

1. INTRODUCTION

Given a locally Lipschitz function f , a widely open problem is to classify the set of
domains Ω ⊂ R

n where there exists a bounded solution u to the overdetermined elliptic
problem

(1)



























∆u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω
∂u
∂~ν

= 1 on ∂Ω .

Here ~ν(x) stands for the interior normal vector to ∂Ω at x. In this case we say that Ω is
an f -extremal domain (see [28] for a motivation of that definition). The case of bounded
f -extremal domains was completely solved by J. Serrin in [29] (see also [26]): the ball is
the unique such domain and any solution is radial. This result has many applications to
Physics and Applied Mathematics (see [17, 18, 28, 32]). Instead, the case of unbounded
domains Ω is far from being completely understood.

Overdetermined boundary conditions arise naturally in free boundary problems, when
the variational structure imposes suitable conditions on the separation interface, see for
example [3]. In this context, several methods for studying the regularity of the interface
are based on blow-up techniques which lead to the study of an elliptic problem in an
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unbounded domain. In this framework, problem (1) in unbounded domains was con-
sidered in [7] for f(u) = u− u3 (the Allen-Cahn equation). In that paper, H. Berestycki,
L. Caffarelli and L. Nirenberg proposed the following:

Conjecture BCN: If Rn\Ω is connected, then the existence of a bounded solution to
problem (1) implies that Ω is either a ball, a half-space, a generalized cylinder Bk×Rn−k

(Bk is a ball in Rk), or the complement of one of them.

That question was motivated by the results of the same authors in [7], and some other
results concerning exterior domains, i.e. domains that are the complement of a compact
region (see [1, 27]).

In [31] the third author gave a counterexample to that conjecture for n ≥ 3, construct-
ing a periodic perturbation of the straight cylinder Bn−1 × R that supports a periodic
solution to problem (1) with f(t) = λ t. The goal of this paper is to prove that Conjecture
BCN is true for n = 2 if ∂Ω is unbounded.

In the last years, a deep parallelism between overdetermined elliptic problems and
constant mean curvature (CMC) surfaces has been observed. Serrin’s result can be
seen as the analogue of the Alexandrov’s one ([2]), which asserts that the only embed-
ded compact CMC hypersurfaces in Rn are round spheres. In [30] F. Schlenk and the
third author show that the counterexamples to Conjecture BCN built in [31] belong to a
smooth one-parameter family that can be seen as a counterpart of the family of Delau-
nay surfaces. In [34] M. Traizet finds a one-to-one correspondence between 0-extremal
domains in dimension 2 and a special class of minimal surfaces (see Section 2 for the ex-
act statement of this result). In [14] M. Del Pino, F. Pacard and J. Wei consider problem
(1) for functions f of Allen-Cahn type and they build new solutions in domains in R

3

whose boundary is close to a dilated Delaunay surface or a dilated minimal catenoid.
They also build bounded and monotone solutions to problem (1) for epigraphs in case
n ≥ 9 (this type of solutions do not exist if n ≤ 8, as has been proved by K. Wang
and J. Wei in [36]). The domain in [14] has boundary close to a dilated Bombieri-De
Giorgi-Giusti entire minimal graph ([9]).

We point out that almost all those examples of f -extremal domains have boundary
with some nontrivial topology. The only exception is the epigraph extremal domain
found in [14], which requires n ≥ 9. Therefore it is natural to consider BCN Conjecture
if ∂Ω has the topology of the Euclidean space and n ≤ 8. In this paper we solve the case
n = 2.

Some partial results have been already given in the literature for dimension 2. In [16]
A. Farina and E. Valdinoci prove BCN Conjecture if u is monotone along one direction
and ∇u is bounded. In [36] the case of f -extremal epigraphs is solved for some nonlin-
earities f of the Allen-Cahn type. Finally, in [28] the result is proved if either f(t) ≥ λt
or Ω is contained in a half-plane and ∇u is bounded (see also [13] for a generalization
to other geometries). Observe that the assumption f(t) ≥ t excludes the prototypical
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Allen-Cahn nonlinearity; we point out that not even the half-plane is an f -extremal do-
main for those nonlinearities f . In this paper we prove Conjecture BCN for n = 2 under
the only assumption that ∂Ω is unbounded. The exact statement of our result is the
following:

Theorem 1.1. Let Ω ⊂ R2 a C1,α domain whose boundary is unbounded and connected. As-
sume that there exists a bounded solution u to problem (1) for some (locally) Lipschitz function
f : [0,+∞) → R. Then Ω is a half-plane and u is parallel, that is, u depends only on one
variable.

We point out that, generally speaking, f -extremal domains always have C2,α regular-
ity, as shown in [35]. Hence, Theorem 1.1 could be stated under less regularity require-
ments, but for the sake of clarity we have preferred to leave it in that form.

The proof is divided in several steps. First, we show that the curvature of ∂Ω is
bounded. This is done via a blow-up argument, making use of the classification re-
sults of [34] for the case f = 0. This argument needs some uniform regularity estimates
that are given in Section 2, together with other preliminary results. In particular this
result implies, via standard regularity for elliptic problems, that ∇u is bounded. This
allows us to prove Theorem 1.1 if u is monotone along one direction. This result is ba-
sically contained in [16] if ∂Ω is C3; in Section 4 we relax this regularity assumption by
using ideas from the proof of the De Giorgi conjecture in dimension 2. In Section 5 we
combine the previous result and the moving plane method (as well as the so-called tilted
moving plane method) to show that Ω must contain a half-plane. A crucial ingredient in
our proof is given in Section 6: we prove the existence of a divergent sequence of points
in pn ∈ ∂Ω such that ∂Ω converges to a straight line near such sequence. In particular, a
parallel solution in a half-plane exists, which is given as the limit of u(· − pn). In Section
7 we use the variational method to construct solutions in large balls converging to the
parallel solution as the radius goes to +∞. Section 8 concludes the proof of Theorem
1.1. First we show that the graph of u is above the graphs of those solutions defined
in balls: passing to the limit, it is above the parallel solution too. But both solutions
are in contact and have the same boundary conditions, so Theorem 1.1 follows from the
maximum principle.

Acknowledgments. This paper was written when P. S. visited the University of Granada
during his period of “Délégation CNRS”. A. R. has been partially supported by Mineco-
Feder Grant MTM2011-22547 and by J. Andalucı́a FQM-325. D. R. has been supported
by the Mineco Grant MTM2011-26717 and by J. Andalucia (FQM 116). P. S. was partially
supported by the GDRE network on Geometric Analysis and ANR-11-IS01-0002 grant.

2. PRELIMINARY TOOLS

In this section we discuss some preliminary results that will be useful throughout the
paper. Throughout the paper, BR(p) stands for the open ball of center p and radius R.
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2.1. C2,α regularity. In this paper we assume that the boundary of our domains is of
class C1,α. Standard regularity arguments for elliptic equations show that a solution u
of (1) is C2,α in Ω and C1,α up to the boundary. However, f -extremal domains always
exhibit more regularity, namely C2,α. Moreover, the following uniform estimate holds.

Lemma 2.1. Fix R > 0, α ∈ (0, 1), p = (p1, p2) ∈ ∂Ω and let φ ∈ C1,α(p1 − R, p1 + R) be
such that ΓR = ∂Ω ∩ BR(p) ⊂ {(x, φ(x)); x ∈ (p1 − R, p1 + R)}. Define ΩR = Ω ∩ BR(p).
Let u be a bounded solution of the problem:

(2)



























∆u = h(x) in Ω

u > 0 in Ω

u = 0 on ∂Ω
∂u
∂~ν

= 1 on ∂Ω

for some h ∈ C0,α. Take M = ‖h‖C0,α(ΩR) + ‖u‖C0(ΩR) + ‖φ‖C1,α(p1−R,p1+R). Then, u, φ belong
to C2,α and

‖u‖C2,α(ΩR/2) + ‖φ‖C2,α(p1−R/2,p1+R/2) ≤ C,

for some C > 0 depending only on M , R.

Remark 2.2. The C2,α regularity for overdetermined problems in this fashion was given
in [23] (see also [35]). However, the result in [23] needs some additional conditions that
do not hold under our assumptions. Moreover, Lemma 2.1 is also concerned with the
uniformity of the regularity estimate, which will be crucial later on. The proof we give
here is different from [23] and takes advantage of some regularity results for problems
with nonlinear oblique boundary conditions (see [25]). It is also worth pointing out that
Lemma 2.1 is valid for any dimension n.

Proof: By standard regularity results, we conclude that

‖u‖C1,α(Ω2R/3) ≤ C,

with C depending on M , R (see [20], Theorem 8.33 and the comment that follows,
and also Corollaries 8.35, 8.36). Then, we are under the hypotheses of [25][Proposition
11.21]1. Therefore, there exists C > 0 depending on M , R with

‖u‖C2,α(ΩR/2) ≤ C.

Now observe that ΓR is the 0 level of u, and |∇u| = 1 there. The implicit function
theorem implies that, enlarging C if necessary,

‖φ‖C2,α(p1−R/2,p1+R/2) ≤ C.

1In [25][Proposition 11.21] the estimates are written with respect to a certain weighted Holder norms,
and those weights vanish when a point approaches ∂BR(p) ∩ Ω. We avoid the use of those norms by
considering estimates in a smaller ball BR/2(p). Moreover, b(x, u,∇u) = |∇u|2 − 1 and the obliquity

condition (11.57b) trivially holds in our setting.
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This concludes the proof of the lemma. ✷

2.2. The moving plane method in unbounded domains. One of the most important
tools coming from the maximum principle of elliptic operators is the moving plane method,
introduced firstly by A. D. Alexandrov [2] for constant mean curvature surfaces and
then adapted by J. Serrin [29] to elliptic overdetermined problems (see also [6, 12, 19]).

Let L be a line in R2 that intersects Ω, and let L+ and L− be the two connected compo-
nents of R2\L. Let us suppose that Ω∩ L− has a bounded connected component C (Fig.
1).

Ω

C

L

L−

L+

C ′

FIGURE 1.

It is easy to prove that:

i. the closure of ∂C ∩ L− is a graph over ∂C ∩ L,
ii. the closure of ∂C ∩ L− is not orthogonal to L at any point,

iii. If C ′ is the reflection of C about L, then the closure of C ∪ C ′ stays within Ω,
iv. If for every x ∈ C we define u′(x′) = u(x) where x′ is the symmetric point to x

with respect to L, then the graph of the function u′ over C ′ stays under the graph
of u, and the two graphs are not tangent in the points of L,

v. ∂u
∂~n
> 0 in C where ~n is the normal direction to L pointing towards L+.

The proof of these facts is a simple application of the moving plane method, and is given
in [28].

In this case, we will say that the moving plane method applies to C in L− with respect
to lines parallel to L. We give then the following definition, where we generalize this
expression to the case where C is not supposed to be connected and bounded.

Definition 2.3. Let Ω be an f -extremal domain in Rn. Let L be a hyperplane intersecting
Ω, L− be one of the two components of Rn\L, and C = Ω ∩ L−. We say that the moving
plane method applies to C in L− with respect to lines parallel to L when properties i.-ii.-iii.-
iv.-v. above are all satisfied.
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An immediate consequence of the moving plane method is the following:

Lemma 2.4. Let Ω ⊂ R2 be an unbounded f -extremal domain such that ∂Ω is connected. Then
for any point p ∈ ∂Ω, the half-line N(p) given by the half-line starting at p and pointing in the
inward normal direction about ∂Ω with respect to Ω, is contained in Ω. We say that Ω has the
property of the inward normal half-line.

p

q

N(q)
N(p)

FIGURE 2.

Proof. This follows immediately from property (iii). ✷

The property of the inward normal half-line has an interesting consequence, that will
be exploited later on:

Lemma 2.5. Let Ω ⊂ R2 be an unbounded f -extremal domain such that ∂Ω is connected,
p ∈ ∂Ω and R > 0. Denote D the connected component of Ω ∩ BR(p) with p in its boundary.
Then ∂D ∩ BR(p) is connected.

Proof. Otherwise, let us call U the connected component of ∂D ∩ BR(p) containing p.
There exists q ∈ ∂D∩BR(p)\U that minimizes the distance from p. Clearly, the segment
[p, q] touches q perpendicularly.

We now claim that the points of [p, q] close to q belong to Ω. Define U ′ the connected
component of ∂D ∩ BR(p) containing q. Clearly, U ′ separates BR(p) in two connected
components, V and V ′, and p belongs to one of them, say, V . Since D is connected,
D ⊂ V . The claim follows from the perpendicular intersection of [p, q] and U .

By the property of the inward normal half-line, [p, q] ⊂ N(q) but this is a contradiction
because p ∈ ∂Ω. ✷

2.3. Graph estimates. Let γ be an embedded curve of class C2,α in R
2, and let p ∈ Γ :=

Im(γ). Up to a rigid motion we can assume that p is the origin O of R2 and ~ν(p) = (0, 1).
Let κ be the curvature of Γ. As Γ is locally a graph, we have that around the origin Γ
can be expressed as

(3) ψ(x) = (x, y(x)),

with y(0) = 0 and y′(0) = 0 and then we have the following result.
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Lemma 2.6. If |κ| ≤ C in Γ then, for any p ∈ Γ, Γ contains a graph (3) defined over the interval
(−ε, ε) with ψ(0) = p. Here ε depends only on C, and the functions y(x), y′(x) and y′′(x) are
uniformly bounded in that interval.

Proof. As |κ| ≤ C and |x| < 1
2C

by integrating the formula

(4) κ(x) =
d

dx

y′
√

1 + (y′)2
=

y′′

(1 + (y′)2)3/2

we get
|y′|

√

1 + (y′)2
≤ C |x| < 1

2
.

Observe now that the tangent vector ~t = 1√
1+(y′)2

(1, y′) satisfies |〈~t, (0, 1)〉| < 1/2. This

inequality implies that the graph ψ(x) can be extended to the interval |x| < ε with
ε = 1/2C. Moreover |y′| is bounded in that interval in terms of ε. We estimate the
second derivative by using the identity

|y′′| = |κ| (1 + (y′)2)3/2 .

and that proves the lemma. ✷

2.4. Harmonic overdetermined domains in the plane. When f ≡ 0, a classification of
the domains of the plane where problem (1) is solvable is given in [34]. Assume that Ω
is unbounded and ∂Ω has a finite number of connected components; then, there exist
only three domains Ω where problem (1) is solvable (even for unbounded functions u!):

• the half-plane,
• the complement of a ball, and
• the domain

(5) Ω∗ =
{

(x, y) ∈ R
2 : |y| < π

2
+ cosh(x)

}

that was first described in [21].

This correspondence gives in particular the following result.

Lemma 2.7. (Corollary of Theorem 5 of [34]). If Ω is a domain of the plane where problem
(1) can be solved for f ≡ 0, and the boundary of Ω is unbounded and connected, then Ω is a
half-plane and u is linear.

3. BOUNDEDNESS OF THE CURVATURE

The main result of this section is the following.

Proposition 3.1. Let Ω be an f -extremal domain with boundary unbounded and connected, and
u a bounded solution to (1). Then:

i) The curvature of ∂Ω is bounded.
ii) The C2,α norm of the function u is bounded in Ω.
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Proof. If i) holds, Lemma 2.1 implies a uniform estimate of the C2,α norm of u near the
boundary. In the interior of Ω, the C2,α norm of u is also bounded due to interior regu-
larity estimates (here we use in a essential way the global boundedness of u). Therefore
ii) follows immediately.

We now turn our attention to the proof of i). We recall that the accumulation set of a
sequence Fn of subsets of R2 is the closed set defined by

Acc(Fn) = {p ∈ R
2 : ∃ pn ∈ Fn such that pn → p} .

Let us suppose that ∂Ω has unbounded curvature, and we will reach a contradiction.
The proof uses a blow-up technique.

Step 1: curvature rescaling. Let κ(q) denote the curvature of ∂Ω at the point q ∈ ∂Ω.
If κ is unbounded, then there exists a sequence of points qn ∈ ∂Ω such that |qn| and
|κ(qn)| diverge to +∞ increasingly. Let In be the connected component of ∂Ω ∩ B1(qn)
containing qn and let pn = (xn, yn) ∈ In be the point where the function

p→ d(p, ∂B1(qn)) |κ(p)| = (1− |p− qn|) |κ(p)| , p ∈ In
attains its maximum, that clearly exists. We set

rn := d(pn, ∂B1(qn)) = (1− |pn − qn|)
and

Rn = rn |κ(pn)| .
We have

|κ(qn)| ≤ (1− |pn − qn|) |κ(pn)| = rn |κ(pn)| = Rn

and then Rn → +∞. Since rn ≤ 1, we have also that |κ(pn)| and Rn/rn diverge to +∞.
Consider the transformation Tn in R2 given by

(x, y) 7→ |κ(pn)| (x− xn, y − yn) .
Define Ωn = Tn(Ω). The image by Tn of the balls Brn(pn) ⊂ B1(qn) is given by the balls
BRn(O), where O is the origin of R2. If κn is the curvature of ∂Ωn, we have clearly that

κn =
κ

|κ(pn)|
.

Let Jn = Tn(In). The function

p 7→ d(p, ∂BRn/rn(O)) |κn(p)| = (Rn/rn − |p|) |κn(p)| , p ∈ Jn
attains its maximum at p = O and |κn(O)| = 1 for all n. Let R > 0. For n large enough
and p ∈ Jn ∩ BR(O) we have

(Rn/rn − R) |κn(p)| ≤ (Rn/rn − |p|) |κn(p)| ≤ (Rn/rn − |O|) |κn(O)| = Rn/rn .

Then

|κn(p)| ≤
Rn/rn

Rn/rn −R
for all p ∈ Jn ∩BR(O), and the curvature of ∂Ωn is uniformly bounded on compact sets.
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Step 2: existence of a limit curve. Given R > 0, define Dn(R) the connected com-
ponent of Ωn ∩ BR(O) which has O in its boundary, and Γn(R) = ∂Dn(R) ∩ BR(O). By
Lemma 2.5, Γn(R) is connected.

Lemma 2.6 implies the existence of δ > 0 such that ∀p ∈ Γn(R/2), the connected
component of Bp(δ)∩Γn(R/2) passing through p contains a graph Yn of a function yn(x)
defined on a segment of length δ. Moreover, Lemma 2.1 implies that the functions yn
are of class C2,α for all α ∈]0, 1[ and satisfy that their C2,α norm is uniformly bounded.
Ascoli-Arzela’s Theorem implies that a subsequence of yn converges to a function y∞ ∈
C2,α(IR(O)) in the C2,α-topology, for all α ∈]0, 1[. A prolongation argument allows to
obtain Γn and Dn as the union of a subsequence of Γn(Rn) and Dn(Rn), where Rn is
chosen so that Rn → ∞, and a connected maximal sheet Γ∞ of class C2,α for all α ∈
]0, 1[, such that Γ∞ belongs to the accumulation set of {Γn} and admits an arc-length
parametrization γ∞(s) with s ∈ R.

Step 3: Γ∞ is proper. If this was not the case, there exists pn = γ∞(sn) ∈ Γ∞, where sn
is a divergent sequence and pn → p ∈ R2. By Lemma 2.6 and passing to the limit, there
is a δ > 0 such that each connected component of Γ∞ ∩ Bδ(p) is a graph. Therefore we
can choose n so that Γn∩Bδ(p) has at least three connected component which are curves
passing through the consecutive points pn, pn+1 and pn+2. Enlarging n if necessary, we
can assume that the distance of those components to p is smaller than δ/4.

Now we can consider a connected component of Dn ∩Bδ(p) with a boundary formed
by two connected components, both of them at a distance to p smaller than δ/4. Take
q ∈ ∂Ωn with |q − p| < δ/4. Then, Bδ/2(q) ∩Dn gives a contradiction with Lemma 2.5.

Step 4: Γ∞ is embedded. By construction, Γ∞ cannot have transversal self-intersections
because this would give rise to transversal self-intersections of Γn for n large. But even-
tually Γ∞ could have double tangential points, i.e. points p such that there exist c1 < c2
such that p = γ∞(c1) = γ∞(c2), and the tangent vectors to γ∞ satisfy ~t∞(c1) = −~t∞(c2).
Let γ(s), s ∈ R, be a parametrization of ∂Ω, ~ν(s) be the unit normal vector of the curve
γ(s) pointing to Ω, and ~ν∞ its induced limit unit normal on γ∞. Since Γ∞ belongs to
the accumulation set of {Γn}, then the geometry of the curves γ(s) and γ∞(s) depend
locally on the homotheties Tn although the arc parameters s of these curves are not
globally related.

We can suppose that the two values of ~ν∞ at p are given by (−1, 0) and (1, 0). More-
over, as it is not possible that all the points γ∞(s) with s ∈ [c1, c2] to be double points,
we can assume that γ∞(s) is an embedded curve in the open interval c1 < s < c2 and
there exist

c1 < c3 < c4 < c2

such that the angle between ~ν∞(c3) and ~ν∞(c4), measured in the counterclockwise sense,
is strictly less than π.

By using the arc parameter s of the curve γ we get that there exist four sequences ci1,
ci2, c

i
3 and ci4, i = 1, 2, 3, · · · , such that

• c11 < c13 < c14 < c12 < c21 < c23 < c24 < c22 < · · ·
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γ∞(c3)

y

p

Γ∞

x
~ν∞(c4)

γ∞(c4)
~ν∞(c3)

FIGURE 3.

• |ci1 − ci2| → 0,
• ~ν(ci1) converges to (−1, 0) and ~ν(ci2) converges to (1, 0) as i→ +∞,
• ~ν(ci3) converges to ~ν∞(c3) and ~ν(ci4) converges to ~ν∞(c4) as i→ +∞.

In particular, for i large enough we have that the angle between ~ν(ci3) and ~ν(ci4), mea-
sured in the counterclockwise sense, is strictly less than π− δ for some δ > 0. This gives
easily a contradiction with the property of the normal inward half-line. In conclusion,
Γ∞ is embedded.

Step 5: one of the connected components of R2\Γ∞ is contained in the accumulation
set Acc(Dn). The curve Γ∞ is properly embedded in R2 and hence it separates R2 in
two connected components. Recall also that Dn and Γn are connected (the former by
definition, the latter by Lemma 2.5). From these facts the proof of Step 5 is elementary,
and we denote by Ω∞ the domain in R2 given by the connected component of R2\Γ∞
contained in the accumulation set Acc(Dn).

Step 6: conclusion. Clearly Ω∞ is a C2,α domain and ∂Ω∞ = Γ∞ with curvature κ∞
satisfying

|κ∞(s)| ≤ 1 = |κ∞(0)| for all s .

Define

vn(x, y) = |κ(pn)| u
(

x

|κ(pn)|
+ xn,

y

|κ(pn)|
+ yn

)

,

fn(x, y) =
1

|κ(pn)|
f

(

1

|κ(pn)|
vn(x, y)

)

.
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Then vn solves the problem:

(6)



























∆vn(x, y) + fn(x, y) = 0 in Ωn

vn > 0 in Ωn

vn = 0 on ∂Ωn
∂vn
∂~ν

= 1 on ∂Ωn .

Take p0 ∈ R2 \ Ω∞, with distance to the boundary greater or equal to a certain positive
constant r0 > 0 (this is possible by Step 5). Define ψ in BR(p0) as the solution to the
problem:

(7)

{

∆ψ = 4πR2δp0 − 1 in BR(p0)

ψ = 0 on ∂BR(p0) .

Here we denote by δp0 the Dirac delta measure centered at p0. Observe that the function

ψ is radially symmetric, has a logarithmic singularity at p0 and ∂ψ
∂~ν

= 0 on ∂BR(p0).
If n is large enough, then Rn > R, Dn ∩ BR(p0) is connected and the closure of Ω∞ ∩

BR(p0) coincides with Acc(Dn ∩ BR(p0)).
We claim that ‖vn‖C2,α is bounded in Dn ∩ BR(p0) for any R fixed. For that we apply

Green formula and we obtain:
∫

Dn∩BR(p0)

vn − ψ fn =

∫

Dn∩BR(p0)

(ψ∆vn −∆ψ vn)

=

∫

∂Dn∩BR(p0)

(

∂ψ

∂~ν
vn − ψ

∂vn
∂~ν

)

= −
∫

Dn∩BR(p0)

ψ .

Observe that the last term is uniformly bounded as it converges to
∫

∂Ω∞∩BR(p0)

ψ .

Moreover fn is bounded in L∞. Hence we obtain that
∫

Dn∩BR(p0)
vn is bounded. Theorem

9.26 of [20] implies that vn is bounded in L∞ sense on compact sets. Then we apply [20],
Theorem 8.33 and the comment that follows (see also Corollaries 8.35, 8.36 there), to
obtain that vn is bounded in C1,α sense on compact sets. In particular, fn is bounded in
C0,α, always on compact sets. Finally, Lemma 2.1 yields the claim.

Then, by Ascoli-Arzela’s Theorem vn converges in C2,α sense (on compact sets) to a
solution v of the problem:

(8)



























∆v(x, y) = 0 in Ω∞

v > 0 in Ω∞

v = 0 on ∂Ω∞
∂v
∂~ν

= 1 on ∂Ω∞ .
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We apply now Lemma 2.7 and conclude that Ω∞ is a half-plane. But ∂Ω∞ has a point
(the origin O) with curvature equal to ±1, and this yields the desired contradiction. ✷

4. THE CASE WHEN u IS INCREASING IN ONE VARIABLE

The main result of this section is the following, that represents the answer to our
problem if u is increasing in one variable.

Proposition 4.1. Let Ω be a domain of R2 and suppose that u = u(x, y) is a solution of (1) with
∂u
∂y
> 0 in Ω. Then Ω is a half-plane and u is parallel, that is, u depends only on one variable.

Remark. The same result is proved in [16], but under the hypothesis that the domain is
of class C3. Our proof follows the one in [4, 8].

Proof of Proposition 4.1. Let ux and uy be the derivatives of u with respect to x and y.
Then, we can define:

σ =
ux
uy
, F = u2y∇σ.

Then σ is a function of class C1,α in Ω and F is just C0,α. We claim that

(9) ∇ · F = 0 in Ω

in the distributional sense. To see that, we multiply both sides of ∆u+f(u) = 0 by a test
function ξ ∈ C∞

0 (Ω) and integrate by parts, to obtain:

(10)

∫

Ω

[〈∇ξ,∇u〉 − ξf(u)] = 0.

Differentiating such equation with respect to y we obtain
∫

Ω

[〈∇ξy,∇u〉 − ξyf(u)] +
∫

Ω

[〈∇ξ,∇uy〉 − ξf ′(u)uy] = 0 .

Then v = uy is a weak solution of

(11) ∆v + f ′(u)v = 0

in Ω and the same holds for v = ux.

Observe that F = uy∇ux − ux∇uy and therefore,
∫

Ω

F · ∇ξ =
∫

Ω

uy∇ux · ∇ξ − ux∇uy · ∇ξ =
∫

Ω

uyf
′(u)uxξ − uxf ′(u)uyξ = 0

and (9) is proved.

As F is continuous in Ω with 0 divergence in the distributional sense, by [5][Remark
1.8] (see also [10][Theorem 7.2]), we have that the Divergence Gauss theorem is valid in
this framework. So, for any ζ ∈ C∞

0 (R2 we have
∫

Ω

∇ · (ζ2 σ F ) =
∫

∂Ω

ζ2 σ 〈F, ~ν〉,
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where ~ν is the inward normal vector about ∂Ω. Recall that in ∂Ω, ∇u = ~ν; denoting by
~e1, ~e2 the vectors (1, 0) and (0, 1), we have

〈F, ~ν〉 = 〈∇ux, ~ν〉 uy − 〈∇uy , ~ν〉 ux = (∇2u)(~ν, ~e1) 〈∇u, ~e2〉 − (∇2u)(~ν, ~e2) 〈∇u, ~e1〉
= (∇2u)(~ν, ~ν) 〈~ν, ~e1〉 〈~ν, ~e2〉 − (∇2u)(~ν, ~ν) 〈~ν, ~e2〉 〈~ν, ~e1〉 = 0

and then
∫

Ω

∇ · (ζ2 σ u2y∇σ) = 0 .

A simple computation gives

∇ · (ζ2 σ F ) = ζ2 σ∇ · F + 2 ζ σ u2y 〈∇ζ,∇σ〉+ ζ2 u2y |∇σ|2

and using (9) we have
∫

Ω

ζ2 u2y |∇σ|2 = −2
∫

Ω

ζ σ u2y 〈∇ζ,∇σ〉 .

From this last formula, using the Hölder inequality we obtain

∫

Ω

ζ2 u2y |∇σ|2 ≤ 2

[
∫

Ω

ζ2 u2y |∇σ|2
]1/2 [

∫

Ω

u2y σ
2 |∇ζ |2

]1/2

.

By Proposition 3.1, the gradient of u is bounded, hence so it is ux = uyσ. Therefore

(12)

∫

Ω

ζ2 u2y |∇σ|2 ≤ C1

∫

R2

|∇ζ |2

for some constantC1. It is well known that in the plane there is a sequence of logarithmic
cutoff functions {ζn}n ⊂ C∞

0 (R2), such that

0 ≤ ζn ≤ 1, ζn = 1 in Bn(O) lim
n

∫

R2

|∇ζn|2 = 0.

Putting ζ = ζn in (12) and letting n→∞we obtain
∫

Ω

u2y |∇σ|2 = 0

which means that σ is constant, and then

ux(x, y) = C uy(x, y)

for a constant C. Then ∇u is normal to the vector (1,−C), and then u is constant on
every line parallel to that vector, i.e. u is parallel. ✷
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5. AN f -EXTREMAL DOMAIN CONTAINS A TANGENT HALF-PLANE

In this section we shall prove the following:

Proposition 5.1. Let Ω be an f -extremal domain in R
2 whose boundary ∂Ω is unbounded and

connected. Then Ω contains a half-plane H such that ∂Ω and ∂H are tangent.

Actually our result is stronger than stated in the above proposition. In order to state
and prove our results, we introduce the concept of limit direction for the boundary of a
domain.

Definition 5.2. Let Ω be an unbounded domain in R
2 with ∂Ω unbounded and con-

nected, and let P ∈ R2. We say that v ∈ S1 is a limit direction for ∂Ω if there exists a
sequence of points pn ∈ ∂Ω such that |pn| → +∞ and

lim
n→+∞

pn − P
|pn − P |

= v .

Obviously, the set of limit directions is not empty and it does not depend on the choice
of the initial point P . We can fix the coordinates of R2 in order that O = (0, 0) ∈ ∂Ω, ∂Ω
is tangent to the x-axis in O, and the normal inward half-line N(O) is the positive part
of the y-axis. Let (∂Ω)l and (∂Ω)r the two components of ∂Ω\{O}, such that (∂Ω)l near
O stays to the left of the y-axis, and (∂Ω)r near O stays to the right of the y-axis.

Definition 5.3. We say that vl ∈ S1 is a limit direction to the left if there exists a sequence
of points ln ∈ (∂Ω)l such that |ln| → +∞ and

(13) lim
n→+∞

ln − O
|ln − O|

= vl .

We say that vr ∈ S
1 is a limit direction to the right if there exists a sequence of points

rn ∈ (∂Ω)r such that |rn| → +∞ and

(14) lim
n→+∞

rn −O
|rn −O|

= vr .

In particular, limit directions to the left or right are limit directions. Moreover, there
exist always at least one limit direction to the left and one limit direction to the right. If
vl and vr are the limit directions respectively to the left and to the right, let us denote by
θ(vl, vr) ∈ [0, 2π] the angle between vl and vr (measured from vl to vr in the clockwise
sense).

Lemma 5.4. Let Ω be un f -extremal domain with boundary unbounded and connected. Let vl
and vr be two limit directions, respectively to the left and to the right. Then

θ(vl, vr) ≥ π .

Proof. The proof uses an argument inspired by [15]. Let us suppose that 0 ≤ θ(vl, vr) <
π, and let ln = (xln, y

l
n) and rn = (xrn, y

r
n) be the two sequences of points of ∂Ω (as in

Definition 5.3) for the limit directions vl = (xvl , yvl) ∈ S1 and vr = (xvr , yvr) ∈ S1. After a
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suitable rotation and translation, we can suppose thatO ∈ ∂Ω, vr ∈ (0, π/2], vl ∈ [π/2, π).
This means that, up to consider subsequences, we have that yln, yrn → +∞.

Since (∂Ω)r is connected, it is possible to replace the sequences ln and rn by other two
sequences of points such that yrn = yln for all n ∈ N. Hence, consider the segment Ln that
joins ln with rn. It is easy to see that the moving plane method applies to the part of Ω
that lies under Ln with respect to horizontal lines. Indeed, all connected componentes
of L−

n ∩Ω are bounded, where L−
n = {y ≤ yrn}. Since this can be done for all n ∈ N, at the

limit for n→ +∞ we get that the moving plane method applies to all Ω with respect to
horizontal lines. Then ∂Ω is a graph with respect to the x-coordinates over an interval
in R, and the solution u of problem (1) depends only on the variable y and is increasing
in y. By Proposition 4.1 we conclude that Ω is a half-plane, but this is a contradiction
with the hypothesis that 0 ≤ θ(vl, vr) < π.

✷

Next lemma excludes from our study the case θ(vl, vr) = π.

Lemma 5.5. Let Ω be f -extremal domain with boundary unbounded and connected, and vl and
vr be two limit directions, respectively to the left and to the right, with θ(vl, vr) = π. Then Ω is
a half-plane and the bounded solution u to problem (1) is parallel.

Proof. The proof of this lemma is inspired on the tilted moving plane introduced in [24]
for constant mean curvature surfaces. This procedure has also been applied to elliptic
problems in half-planes in [11], and to overdetermined problems in [28].

Up to a suitable rotation R of R2 with center in O we can suppose that vl = (−1, 0)
and vr = (1, 0). Up to a translation, we can suppose that the origin O of R2 belongs to
∂Ω, and ∂Ω intersect the y-axis transversally. Up to a reflection on the x-axis, we can
suppose that there exist δ > 0 such that {(0, y) : 0 ≤ y ≤ δ} stays in Ω.

Consider Ω1 = Ω ∩ {x > 0} and Ω2 = Ω ∩ {x < 0}. Given a straight line T , for any
x ∈ R

2 and any subsetX ⊂ R
2 let x′ be the reflection of x about T andX ′ be the reflected

image of X about T . Fix ε > 0 small enough and consider the two families of parallel
straight lines

Ta = {y = a} and Tε,a = {y = −ε x+ a}
for a ∈ R. Let T = Tε,a be an element of the second family. For a ≥ 0 the line T cut
off from Ω1 a bounded cap Σ(T ) defined as follows. As the part of Ω1 below T is made
only by bounded connected components (because (1, 0) is a limit direction of ∂Ω to the
right), it follows from the moving plane method that the reflected image with respect to
T of the connected components of Ω1∩{y < −ε x+a} is contained in Ω, except possibly
for the component whose boundary contains O. Let us denote this component by Σ(T ).
The portions of the boundary of Σ(T ) contained in T , x = 0 and ∂Ω will be denoted
respectively by I , J and K. Note that O ∈ J ∩K.
Let Σ′(T ), K ′, J ′ and O′ be respectively the symmetric image of Σ(T ), K, J and O with
respect to T . Define on the closure of Σ′(T ) the function u′T given by u′T (x) = u(x′). At
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the beginning Σ′(T ) is contained in Ω and u′T ≤ u and we continue the process while
this occurs.

(0, a)
Ω

T = Tε,a

O′

J

J ′

Σ(T )

Σ′(T )

y

x

O

FIGURE 4.

The process ends if we meet a first value a = a(ε) > 0 for which one of the following
events holds:

(1) at an interior point, the reflected arc K ′ touches the boundary of Ω,
(2) K meets T orthogonally,
(3) at a point of Σ′(T ) ∪ I , the graph of the resulting function u′T is tangent to the

graph of the function u,
(4) O′ belongs to ∂Ω,
(5) when restricted to the segment J ′, the graph of the resulting function u′T is tan-

gent at some interior point to the graph of the function u.

By the moving plane method, we deduce that each one of the first three options implies
that K ′ ⊂ ∂Ω. Therefore both events (4) and (5) are also true. We conclude that in fact
the process can be carried on either for all a ≥ 0 or until either event (4) or event (5)
occurs for a first value a = a(ε) > 0. We can say that the process can be carried on till
a reaches the limit value a(ε), being a(ε) = +∞ if the process can be carried on for all
a ≥ 0. Since ∂Ω intersect the y-axis transversally, we have that there exists a constant
C > 0 such that a(ε) > C.

Now take a sequence of εi > 0 going to zero, and repeat all the reasoning with ε = εi.
Let a1 ∈ [C,+∞] be the limit of a subsequence of a(εi). If a1 = +∞, we conclude that
the moving plane method can be applied to Ω1 with respect to all horizontal lines. If
a1 6= +∞, we conclude that the moving plane method can be applied to Ω1 ∩ {y < a1}
with respect to all horizontal lines and one of the two events (4) or (5) for T = Ta1 .
Moreover, since now J is an interval of Ω∩{x = 0}, the value of a1 depends only on the
behavior of u restricted to Ω ∩ {x = 0}.
Now repeat all the process for Ω2 = Ω ∩ {y < 0} instead of Ω1, with lines of positive
slope defined by T ∗

ε,a = {y = εx + a}. We obtain that the moving plane can be applied
either to Ω2 with respect to all horizontal lines (in this case we will define a2 = +∞),
or to Ω2 ∩ {y < a2}, for some a2 > 0, with respect to all horizontal lines and one of the
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two events (4) or (5) holds for T = Ta2 . As it happens for a1, the generalized number
a2 depends only on the behavior of the solution u along Ω ∩ {x = 0}. From this last
property, it follows that a1 = a2. If a1 6= +∞, the line Ta1 satisfies that the reflected
image of Ω ∩ {y < a1} with respect to T is contained in Ω, u′T ≤ u and one of the
assertions (1), (2) or (3) holds (at some point of the y-axis). From the moving plane
method we obtain that Ω, and in particular ∂Ω, is symmetric with respect to T .

Now, we know that the origin O ∈ ∂Ω stays under T . Since ∂Ω is connected, we have
that (∂Ω) intersects T and, since ∂Ω is symmetric with respect to T , the vector (1, 0)
would be a limit direction to the left, which is not possible by Lemma 5.4. We conclude
that a1 = +∞, and then the moving plane method can be applied to Ω with respect to
all horizontal line. Proposition 4.1 concludes the proof. ✷

From those two lemmas the proof of Proposition 5.1 is immediate.

Proof of Proposition 5.1. By Lemmas 5.4, 5.5, there are two possibilities: either Ω is a
half-plane or θ(vl, vr) > π for any limit directions to the left and right. In this last case,
assume that O ∈ ∂Ω, and make a convenient rotation so that:

vr < 0 and vl > π,

for any limit directions to the right and left, respectively. Then ∂Ω ∩ {y ≥ −1} is non-
empty and compact. Therefore there exists c ≥ 0 so that H = {y ≥ c} is the claimed
half-plane. ✷

6. BUILDING A PARALLEL SOLUTION STARTING FROM AN f -EXTREMAL DOMAIN

The main result of this section is the following:

Proposition 6.1. There exists a sequence of points qn ∈ ∂Ω satisfying that:

(1) |qn| → +∞ and qn
|qn| → v ∈ S

1 for some direction to the right v.

(2) If Tn is the translation in R2 that moves qn to the origin, then Ωn = Tn(Ω) converges to
the half-plane

Ω∞ = {p ∈ R
2 : 〈v⊥, p〉 > 0}.

Here v⊥ denotes the vector obtained by rotating v of angle π/2 measured in the counter-
clockwise sense. Moreover, the sequence of functions un(x, y) = u((x, y)−qn) converges
to a bounded parallel solution of (1) in Ω∞.

Remark 6.2. An analogous statement is true for a certain direction to the left ṽ.

Proof. As always, we can assume that the origin O belongs to ∂Ω. Observe that the set
of the limit directions to the right is closed. Moreover, it is not the whole S1 because Ω
contains a half-plane. Then, we can choose v = eiθ a limit direction to the right such that
ei(θ−ǫ) is not a limit direction to the right for any ǫ ∈ (0, ǫ0). Up to a rigid motion, we can
assume that v = (1, 0).
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Take ǫ small enough. Consider the sector of R2 given by

Cǫ = {(x, y) ∈ R
2 : |y| ≤ ǫx } .

By the choice of v we know that (∂Ω)r ∩ Cǫ is unbounded but the part of (∂Ω)r that
lies under Cǫ is compact. If p = (xp, yp) ∈ (∂Ω)r we define also the sector of R2 given by

Gp,ǫ = {(x, y) : y ≤ yp − 2ǫ|x− xp|} .

Choose pǫ = (xǫ, yǫ) such that

• pǫ ∈ Cǫ ∩ (∂Ω)r,
• the distance of pǫ to the origin is bigger than 1/ǫ2

Observe that (∂Ω)r ∩ Gpǫ,ǫ is compact and contained in Cǫ if ǫ is sufficiently small. In
particular there exists a point qǫ ∈ (∂Ω)r ∩ Gpǫ ∩ Cǫ minimizing the function (x, y) 7→ y
(see Figure 5). Such value qǫ satisfies that:

• |qǫ| → +∞ as ǫ→ 0.
• (∂Ω)r ∩Gqǫ,ǫ = {qǫ}.

Now letDǫ be the connected component of B1/
√
ǫ(qǫ)∩Ω containing qǫ in its boundary.

Observe that Dǫ is above the sector Gqǫ. We do a translation Tǫ in R2, moving qǫ to the
origin O, and we set D′

ǫ = Tǫ(Dǫ).

(∂Ω)r

O

y
Ω

Cǫ

Gpǫ

Gqǫ

Dǫ

x

pǫ

qǫ

FIGURE 5.

We now make ǫ converge to 0. By Proposition 3.1, the curvature of Ω and the C2,α

norm of u in Ω are bounded. Following the arguments in the proof of Proposition 3.1
(see in particular Steps 2, 3, 4, 5) we have that the domainsD′

ǫ converges to an f -extremal
domain with boundary unbounded and connected Ω∞. Since Gǫ = Tǫ(Gqǫ) converges
to the half-plane {y > 0}, the domain Ω∞ is contained in a half-plane. By Lemma 5.5
Ω∞ = {y > 0}, and then the sequence un converges to a bounded parallel solution. ✷
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7. EXISTENCE OF SOLUTIONS IN BALLS AND ASYMPTOTIC PROPERTIES

The main result of this section is the following:

Proposition 7.1. Assume that there exists a solution of the problem:

(15)















ϕ′′(y) + f(ϕ(y)) = 0

ϕ(0) = 0, ϕ′(0) = 1,

lim
t→+∞

ϕ(y) = L > 0.

Then, there exists R0 > 0 such that for any R > R0 the problem:

(16)















∆u+ f(u) = 0 x ∈ BR(O),

u > 0, x ∈ BR(O),

u = 0, x ∈ ∂BR(O).

admits a radially symmetric solution uR. Moreover, uR has the following asymptotic behavior:

i) uR < L and for any ρ ∈ (0, 1), uR|BρR(O) converges uniformly to L as R→ +∞.
ii) The functions vR(z) = uR(z − (0, R)) converges to u(x, y) = ϕ(y) locally in compact

sets of H = {y > 0}.

Remark 7.2. Actually, it will be clear from the proof that if f(0) ≥ 0 there exist solutions
of (16) for any R > 0. Instead, if f(0) < 0 such existence result is limited to large values
of the radius.

In order to prove Proposition 7.1, we need some preliminary work. First, we show
that the existence of the ODE (15) is equivalent to some properties on f and its primitive,
denoted by:

(17) F (u) =

∫ u

0

f(s) ds .

Lemma 7.3. The following two assertions are equivalent:

i) There exists a solution to (15).
ii) f(L) = 0 and F (L) = 1/2 > F (u) for all u ∈ [0, L).

Moreover, in such case, there exists a sequence µn < L, µn → L such that F (µn) > F (u) for all
u ∈ [0, µn).

Proof: i)⇒ ii). The limit at infinity of ϕ in (15) implies that f(L) = 0. Moreover, let us
recall that the Hamiltonian:

H =
1

2
(ϕ′)2 + F (ϕ),
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is a constant in y. Observe that ϕ′(y) → 0 if y → +∞, so that such constant is nothing
but F (L). Moreover, replacing y = 0 we obtain the exact value of F (L):

(18) F (L) =
1

2
ϕ′(0)2 + F (ϕ(0)) =

1

2
.

Moreover, it is easy to observe that ϕ′(y) > 0 for any y ≥ 0. Then,

F (L) =
1

2
ϕ′(y)2 + F (ϕ(y)) > F (ϕ(y)) ∀ y ∈ [0,+∞).

ii)⇒ i). In the phase space, let us consider the level set:

C = {(ϕ, ϕ′) ∈ [0,+∞)2 :
1

2
(ϕ′)2 + F (ϕ) = 1/2}.

This is a smooth curve for any ϕ′ > 0 as the Implicit function theorem shows. Moreover,
for any ϕ ∈ [0, L], there exists a unique ϕ′ ≥ 0 such that (ϕ, ϕ′) ∈ C. Observe that ϕ′ = 1
if ϕ = 0 and ϕ′ = 0 if and only if ϕ = L. Then, the solution of the Initial Value Problem:

(19)

{

ϕ′′(y) + f(ϕ(y)) = 0

ϕ(0) = 0, ϕ′(0) = 1,

has image in C. Since ϕ′ > 0 for any ϕ ∈ (0, L), the image of the solution contains all C
except, eventually, the point (L, 0).

We now show that limt→+∞ ϕ(t) = L. Otherwise, ϕ arrives to the value L at a certain
time t, and ϕ′(t) = 0. However, since f(L) = 0, L is an equilibrium of the ODE, and this
gives a contradiction with the uniqueness of the solution for the initial value problem.

Observe that the last assertion of Lemma 7.3 would be immediate if f where positive
below the value L, and actually we would have a continuum of values satisfying such
condition. In general, though, f could change infinitely many times below L. Define

mn = max

{

F (x) : x ∈
[

0, L− 1

n

]}

, and µn = min

{

x ∈
[

0, L− 1

n

]

: F (x) = mn

}

.

By the definition of µn, F (µn) = mn > F (x) for all x ∈ [0, µn). We now show that µn → L.
Otherwise, we could pass to a subsequence (still denoted by µn) such that µn → µ < L.
Then, F (µ) ← F (µn) = mn → F (L), which implies that F (µ) = F (L), contradicting ii).

✷

Our intention is now to settle the problem variationally. For that, we need to truncate
the function f conveniently for u < 0 and u > L. Given δ > 0, we define:

f̃(u) =



























0 if u ≥ L,

f(u) if u ∈ [0, L],

f(0)(1 + u
δ
) if u ∈ [−δ, 0],

0 if u ≤ −δ.
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Accordingly, we define F̃ (u) =
∫ u

0
f̃(s) ds. Observe that for u ≤ −δ, F̃ (u) = −f(0)δ/2.

We now fix δ > 0 so that

(20) F (u) > |f(0)|δ/2 ∀u ∈ [L− 2δ, L].

It is then clear that:

(21) 1/2 = F̃ (L) > F̃ (u) ∀u < L, and F̃ (µn) > F̃ (u) ∀u < µn

where µn is given by Lemma 7.3, c), and we consider only the terms of the sequence so
that |µn − L| < δ. With this truncation, our aim is to find solutions of the problem:

(22)















∆u+ f̃(u) = 0 in BR(O),

u > 0, in BR(O),

u = 0, in ∂BR(O).

Lemma 7.4. Let u be a solution of (22). Then

(23)

{

u(z) ∈ (0, L) if f(0) ≥ 0,

u(z) ∈ (−δ, L) if f(0) < 0,
∀ z ∈ BR(O).

Proof. First let us show that u(z) ≤ L for any z ∈ BR(O). Otherwise, assume that
maxu = u(z0) > L. Let Ω = {z ∈ BR(O) : u(z) > L}. Clearly u is harmonic in Ω and
attains a maximum in its interior, which is impossible. In the same way we can prove
that u(z) ≥ 0 (if f(0) ≥ 0) or u(z) ≥ −δ (if f(0) < 0).

We now show the strict inequality. Otherwise, assume that maxu = L. Observe also
that the constant function L is a solution of ∆u+ f(u) = 0. Therefore both solutions are
in contact, and this is in contradiction with the maximum principle. ✷

Let us define the energy functional:

IR : H1
0 (BR(O))→ R, IR(u) =

∫

BR(O)

1

2
|∇u|2 − F̃ (u).

Here H1
0 (BR(O)) denotes the closure of the space C∞

0 (BR(O)) with the usual Sobolev
norm

‖u‖ =
(
∫

BR(O)

|∇u|2 + u2
)1/2

.

Clearly (22) is the Euler-Lagrange equation of the functional IR. The following lemma
establishes the existence of a minimum for IR and, therefore, a solution for (22).

Lemma 7.5. For any fixedR > 0, the functional IR attains its minimum at a radially symmetric
function uR.
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Proof. This is quite standard. Observe that since F̃ is continuous and bounded, the
energy functional IR is coercive and weakly lower semi-continuous. From this we ob-
tain the existence of a minimizer uR. By making use of the Schwartz rearrangement (see
for instance [22]), we can assume that uR is radially symmetric. ✷

Observe that if f(0) ≥ 0, by Lemma 7.4 we already have a solution of our problem
(16). Instead, if f(0) < 0 we still need to show that uR is positive. But, before, let us give
some energy estimates on uR.

In what follows, we denote by A(p;R1, R2) the annulus of radii R1 < R2.

Lemma 7.6. There exists C > 0 independent of R so that:

(24) − 1

2
πR2 ≤ IR(uR) ≤ −

1

2
πR2 + CR,

(25)
1

2
πR2 ≥

∫

BR(O)

F̃ (uR) ≥
1

2
πR2 − CR.

Proof. Taking into account (21), we have

IR(uR) =

∫

BR(O)

1

2
|∇uR|2 − F̃ (uR) ≥ −

∫

BR(O)

F̃ (uR) ≥ −
1

2
πR2.

From this we obtain the first inequality of (24) and (25).
For the second inequality, let us define φR ∈ H1

0 (BR(O),

φR(|z|) =
{

L |z| ≤ R− 1,

L(R− |z|) |z| ∈ [R− 1, R].

We now estimate IR(φR). The gradient term can be estimated as:
∫

BR(O)

|∇φR|2 = 2π

∫ R

R−1

φ′
R(r)

2r dr ≤ CR.

In order to estimate the term
∫

BR(O)
F̃ (φR), we split it into two terms:

∫

BR−1(O)

F̃ (φR) =
1

2
π(R− 1)2 ≥ 1

2
πR2 − CR,

∫

A(0;R−1,R)

F̃ (φR) ≥ −CR.

In the last estimate we have just used the boundedness of F̃ . The above estimates imply
that IR(φR) ≤ −1

2
πR2 + CR. Since IR(uR) ≤ IR(φR), we conclude (24). Finally,

−
∫

BR(O)

F̃ (uR) ≤ IR(uR) ≤ −
1

2
πR2 + CR,

and (25) follows. ✷
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Next lemma is devoted to show the asymptotic behavior of uR.

Lemma 7.7. The following assertions hold:

a) For any fixed ρ < L, there exists C = Cρ independent of R so that:

Ωρ = {z ∈ BR(O) : uR(z) < ρ} ⊂ A(0;R− Cρ, R).
b) There exists R0 > 0 such that uR is positive for R ≥ R0.

Proof. The proof of a) will be made in two steps.

Step 1. For any fixed ρ < L, there exists C = Cρ independent of R so that |Ωρ| ≤ CρR.
Indeed,

∫

BR(O)\Ωρ

F̃ (uR) ≤
1

2
(πR2 − |Ωρ|),

∫

Ωρ

F̃ (uR) ≤ max{F̃ (x) : x < ρ}|Ωρ| =
(

1

2
− ε

)

|Ωρ|,

where ε = 1
2
−max{F̃ (x) : x < ρ} > 0 by (21). Adding both terms, we get:

∫

BR(O)

F̃ (uR) ≤
1

2
πR2 − ε|Ωρ|,

and Step 1 follows from (25).

Step 2. Let us fix R > 0 and µ = µn one of the elements of the sequence in Lemma 7.3
satisfying (21). Then Ωµ = {z ∈ BR(O) : uR(z) < µ} is connected.

Observe that Ωµ always has a connected component touching the boundary ∂BR(O).
Suppose by contradiction that it has an interior connected component too, denoted by
U . Then, uR(z) < µ for z ∈ U and uR(z) = µ if z ∈ ∂U .

Define:

v(z) =

{

uR(z) z /∈ U,
µ z ∈ U.

O

L

µ

uR

R−R

FIGURE 6.
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Clearly, v ∈ H1
0 (BR(O)) and

∫

U
|∇uR|2 ≥

∫

U
|∇v|2 = 0. Moreover, taking into account

(21),
∫

U

F̃ (uR) ≤
∫

U

F̃ (µ) =

∫

U

F̃ (µ).

Therefore IR(v) < IR(uR), a contradiction that proves Step 2.
Step 1 and 2 readily imply a). Indeed, given ρ < L, take µ = µn ∈ (ρ, L) one of

the elements of the sequence. Since Ωµ satisfies the statements of Step 1 and 2, Ωµ ⊂
A(0, R− C,R) for some positive constant C. But Ωρ ⊂ Ωµ, concluding the proof.

We now turn our attention to assertion b). The case f(0) ≥ 0 is clear from Lemma
7.4, so let us consider the case f(0) < 0. Suppose that there exists r0 ∈ [0, R) with
uR(r0) = −δR ≤ 0, u′R(r0) = 0. By Lemma 7.4, δR ∈ [0, δ). Moreover, by a) we have that
r0 ∈ (R− C,R) for some positive C > 0 independent of R.

Define v(z) = uR(z) + δR, which is a solution of the problem:














∆v + g(v) = 0 in Br0(O),

v = 0 in ∂Br0(O),
∂v
∂ν

= 0 in ∂Br0(O)

where g(t) = f̃(t − δR). We now apply the Pohozaev identity (see [33][Chapter III,
Lemma 1.4]) to the previous problem, to obtain that

(26)

∫

Br0 (O)

G(v) = 0,

with G(t) =
∫ t

0
g(s) ds = F̃ (v − δR)− F̃ (−δR).

We will show now that this is impossible if R is sufficiently large. Indeed, take Ωµ the
set defined in Step 2. Then,

∫

Br0 (O)\Ωµ

G(v) =

∫

Br0 (O)\Ωµ

F̃ (uR − δR)− F̃ (−δR).

Now, F̃ (−δR) ≤ |F̃ (−δ)| = |f(0)| δ2 . Moreover, in Ωµ, uR − δR ≥ µ− δR ≥ L− 2δ. By (20),

we conclude that F̃ (uR − δR)− F̃ (−δR) > c > 0 for any z ∈ Ωµ. Then,
∫

Br0 (O)\Ωµ

G(v) ≥ c|Br0(O) \ Ωµ| ≥ c′R2.

Moreover,
∣

∣

∣

∣

∣

∫

Ωµ

G(v)

∣

∣

∣

∣

∣

≤
∫

A(0;R−C,R)
|G(v)| = O(R),

and hence (26) cannot hold for large R. ✷

We are now able to prove Proposition 7.1.
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Proof of Proposition 7.1 With the previous results, we just need to prove iii). Take
Rn → +∞, n ∈ N, vn = un(z − (0, Rn)). We first show that in any compact set of
H = {(x, y) ∈ R2 : y > 0}, vn is bounded in with respect to the C2,α norm. We use a
bootstrap argument in two steps: f(un) is a uniformly bounded function, and then u is
of class C1,α. Then, f(un) is a Lipschitz function, and we repeat the argument with C2,α

regularity.
As a consequence, vn converges (up to a subsequence) to a solution of the problem

∆v+f(v) = 0 defined in H . This convergence is C2,α in compact sets of H , with 0 < α <
1. We now claim that v is parallel.

Take p = (x, y) ∈ H . We denote by ρn its distance to the center of the ball (0, Rn), that

is, ρn =
√

x2 + (Rn − y)2. Since un is radially symmetric, then vn(p) = vn(0, Rn − ρn).
Observe now that that Rn − ρn → y. Therefore vn(p)→ v(0, y), which is independent of
x.

We now prove that v(0) = 0. With the previous information, we can consider the
convergence of sequence vn(r) = un(r − n), which solves:

v′′n(r) +
v′n(r)

r
+ f(vn(r)) = 0, vn(0) = 0.

If we consider that equation in r ∈ [0, 1], it is easy to show that it converges in C2,α sense
to v(r). In particular, v(0) = 0.

Finally, we will show that v = ϕ given in (15) by showing that limr→+∞ v(r) = L.
Observe that Lemma 7.4 implies that actually v(r) ≤ L for any r ∈ (0,+∞). Fix now
ρ > 0 and take C > 0 as given by Lemma 7.7, a). Then, for any r ∈ (C, 2Rn − C)
we have that vn(r) ≥ ρ. As a consequence, v(r) ≥ ρ for any r ∈ (C,+∞), which
implies that limr→+∞ v(r) = L. Therefore we have proved the convergence of an ad-
equate subsequence. The uniqueness of the limit implies that actually the whole se-
quence converges. ✷

8. PROOF OF THE MAIN THEOREM

In order to conclude the proof of our main theorem, we recollect the information from
the previous sections.

From Proposition 5.1 we know that Ω contains a half-plane H internally tangent to
∂Ω. Moreover, from Lemmas 5.4, 5.5 we can assume that θ(vl, vr) > π for any directions
to the left and right vl, vr. We can suppose that H is the half-plane {y > 0} and the
interior tangent point with ∂Ω is the origin. Moreover, by Proposition 6.1 there exists
an unbounded sequence qn ∈ ∂Ω such that, doing translations in R2 that move qn to
the origin we get a sequence of domain Ωn converging to a limit half-plane Ω∞, and a
sequence of functions un converging to a parallel solution. Recall also that qn

|qn| → v and

Ω∞ = {p ∈ R2 : 〈p, v⊥〉 > 0}. By making a small rotation and reflection, if necessary, we
can assume that v = eiθ, θ ∈ (−π/2, 0).
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In section 7 we proved that for every R large enough there exists a radial solution uR
to the problem (16), such that as R→ +∞

i) uR < L and uR|BρR(O) converges uniformly to L = limy→+∞ ϕ for any ρ ∈ (0, 1),
ii) the functions vR(z) = uR(z − (0, R)) converges to ϕ locally in compact sets of H ,

where ϕ is a solution of (15).

We are now able to prove our main result.

Proof of Theorem 1.1. Let R large enough and consider the solution uR. Since the
parallel solution u∞ is obtained as limit of a sequence un of translations of the function
u in Ω, we get that there exists a point p ∈ Ω such that the ball BR(p) is contained in Ω
and the graph of the function uR defined in BR(p) stays under the graph of the function
u. Moreover, p can be chosen so that |p − qn| < 2R with qn an element of the sequence
described above.

Now, we claim that we can move the ball BR(p) inside Ω till it reaches the position
of the ball BR(q) with q = (0, R). Observe that the graph of the function uR, during the
motion, cannot touch the graph of the function u by the maximum principle.

N(qn)
Ω

p

O

q

BR(p)
qn

FIGURE 7.

SinceR is arbitrary, we get that u∞(x, y) := ϕ(y) ≤ u(x, y) for all (x, y) ∈ H . Moreover,
the normal derivative of the functions u and u∞ is the same at the origin, and by the
maximum principle we get

u = u∞ .

This shows that Ω = H . Therefore we just need to show the claim.

Proof of the claim: Fix R > 0 and fix B a ball of radius 2R tangent to a certain point
qn, with sufficiently large n. By Lemma 2.4, inward normal half-line N(qn) starting at qn
does not intersect ∂Ω. Moreover, at a certain point it reaches the half-plane H .

We move the center of B along N(qn) till it reaches H . We first show that during that
motion, B cannot intersect ∂Ω at both sides of N(qn). Indeed, denote by p1 and p2 such
intersection points. Then, the ballB|p1−p2|+1(p1) would give a contradiction with Lemma
2.5.
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Therefore, when we move the center of B along N(qn), it eventually intersects ∂Ω just
from one side. Therefore we can move a ball of radius R up to the half-plane H through
the other side. From there, we can easily translate it to reach the position of BR(q). ✷
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