
HAL Id: hal-01481686
https://hal.science/hal-01481686v1

Submitted on 2 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive Lagrange multiplier determination method
for dynamic texture in HEVC

Chengyue Ma, Karam Naser, Vincent Ricordel, Patrick Le Callet, Chunmei
Qing

To cite this version:
Chengyue Ma, Karam Naser, Vincent Ricordel, Patrick Le Callet, Chunmei Qing. An adaptive La-
grange multiplier determination method for dynamic texture in HEVC. IEEE International Con-
ference on Consumer Electronics-China (ICCE-China), Dec 2016, Guangzhou, China. pp.1 - 4,
�10.1109/ICCE-China.2016.7849749�. �hal-01481686�

https://hal.science/hal-01481686v1
https://hal.archives-ouvertes.fr


An Adaptive Lagrange Multiplier Determination 

Method for Dynamic Texture in HEVC 
 

Chengyue Ma
1,2

, Karam Naser
2
, Vincent Ricordel

2
, Patrick Le Callet

2
 and Chunmei Qing

1
 

1
 South China University of Technology, Guangzhou, 510640, China 

2
 LUNAM University, University of Nantes, IRCCyN UMR CNRS 6597 

Polytech Nantes, Rue Christian Pauc BP 50609 44306 Nantes Cedex 3, France 

 

 
Abstract—This research proposed a method for adaptive 

Lagrange multiplier determination for rate-distortion 

optimization with dynamic texture in High Efficiency Video 

Coding (HEVC). Inspired by the experimental results of the 

Lagrange multiplier selection test, the presented approach 

adaptively predicts the optimum Lagrange multiplier for 

different dynamic texture sequences, based on the features of the 

dynamic texture sequences such as normal flow and spatial-

temporal information. The Lagrange multiplier among the given 

values will be chosen based on the Bjontegaard delta 

measurements. After that, the data of training dynamic texture 

will be used for Support Vector Machine (SVM) in machine 

learning for getting the predicting results. The proposed 

algorithm has been fully integrated into HEVC reference codec. 

The result shows that the proposed method can improve 0.5 in 

Structural Similarity Metric (SSIM) and 2 in Peak Signal-to-

Noise Ratio (PSNR).  

Keywords—Lagrange multiplier, rate-distortion optimization, 

Dynamic textures 

I. INTRODUCTION 

In recent year, since people does not satisfy with the normal 
fidelity in the traditional forms of videos, high definition (HD) 
and ultra HD (UHD) videos have been increasingly popular 
with the rapid development of cameras. However, it is a great 
challenge to transmit and store the huge amount of the videos 
data for the practical applications. The ITU-T Visual Coding 
Experts Group (VCEG) and the ISO-IEC Moving Picture 
Experts Group (MPEG)  have developed a new video standard, 
namely, high efficiency video coding (HEVC). Compared with 
the previous video coding standards, HEVC achieves 
compression more efficiency by using variable size for coding 
units and prediction units, advanced motion vector prediction 
and adaptive loop filtering. With the improvement, HEVC is 
expected to be widely used in various applications, such as 
digital satellite broadcasting, entertainment, online education, 
and so on.  

Following the classical coding framework, rate distortion 
optimization (RDO) techniques have been exploited in HEVC 
to identify the optimal encoding setting for achieving the 
optimal rate distortion (RD) performance. However, the 
Lagrange RDO technique can not accurately reflect the 
perceptual visual quality due to two reasons. Firstly, the 
Lagrange multiplier only relates to the quantization parameter 
but ignores the characteristic of the input video. Secondly, the 

coding efficiency in RDO is measured by the objective 
criterion( i.e., Sum of square error, SSE), which can not 
accurately reflect the perceptual visual quality. In other words, 
HEVC does not fully consider the perceptual characteristics of 
the input video during the encoding process. Therefore, for 
improving the efficiency of video coding while keeping the 
high quality, it is required to use the characteristics of the 
Human Visual System (HVS).  

For developing an adaptive Lagrange multiplier, some 
methods have already been proposed in the published 
literatures. [1] presented a Laplace-based Lagrange multiplier 
according to the Laplace distribution of transformed residuals. 
[2] proposed an adaptively adjusting Lagrange multiplier in the 
RDO process based on the perceptual sensitivity of the input 
CTU. [3] obtained an adaptive Lagrange multiplier based on 
the free-energy principle which represents the disorderly 
concealment effect in human eyes. [4] introduced an adjusting 
Lagrange multiplier based on the gradient magnitude of the 
input CTU.  

Besides, another solution for the perceptual video coding is 
to incorporate the existing visual quality assessment (VQA) 
metrics which can more suitable describe the human perception 
into the video codec. For example, [5] proposed a 
normalization factor based on DCT domain-SSIM index to 
transform the DCT residual into the perceptually uniform space 
together with a new distortion model of improving the 
perceptual coding efficiency. [6] introduced the SSIM to 
replace the SSE as the quality metric and developed a SSIM-
based RDO using the coding information of the key frame. 

Although there are already some proposed methods for 
improving the Lagrange multiplier and the quality 
measurement in RDO, most of these methods only consider 
one perceptual characteristic while improving the rate 
distortion optimization techniques. It is not enough since 
human visual system would be affected by many factors. 
Therefore, it is necessary to incorporate many factors that 
would affect human visual and give each factor a suitable 
weight according to the experiment for improving the RDO 
more likely considering the characteristics of the HVS. 

Moreover, dynamic texture is also a major research topic in 
the field of video coding. Dynamic textures are sequences of 
frames of moving scenes that exhibit temporal regularity, 
intended in a statistical sense, like sea-waves, smoke, foliage, 
whirlwind but also talking faces, traffic scenes etc. Since 



dynamic texture usually cost much but not important in human 
visual system. Therefore, many algorithm for dynamic texture 
synthesis is presented as it is easy to implement and fast in 
computation. However, we can still improve these algorithm 
for making dynamic texture performed better in video coding. 

The organization of the rest of the paper is given as 

follows : Section Ⅱ briefly describes a brief background 

covering the encoding part in HEVC. Section Ⅲ gives the 

proposed methods for adaptive Lagrange multiplier in HEVC. 

Section Ⅳ presents global view of my method for the 

predicting adaptive Lagrange multiplier factor and show the 

result of the experiment. Finally, Section Ⅴ concludes the 

paper and give some thoughts for the future work. 

II. LAGRANGIAN RATE DISTORTION OPTIMIZATION 

IN HEVC 

In the HEVC, rate distortion optimization (RDO) plays an 
important role in the mode decision process, which is to find a 
good trade-off between the reconstructed video quality and the 
required bits. To adapt to various video content, there are 
various prediction modes in HEVC that can be roughly 
classified into Intra, SKIP, and Inter Modes. For example, the 
mode with larger size consumes less bits for head information 
and is efficient to code the picture block with homogeneous 
textures. In contrast, the mode with smaller size provides more 
accurate prediction and thus yields less residual, at the expense 
of higher head information. The mode decision process is to 
exhaustively compute the RD cost of all the prediction modes 
and find the one with the minimum RD cost as the optimal 
mode. In fact, this process is an optimization problem that 
minimizes the overall reconstructed video distortion D at a 
given rate R. The Lagrange RDO is defined as : 

                min J    where J = D + 𝜆𝐻𝐸𝑉𝐶 ∗ 𝑅               (1) 

where J is the Lagrange cost function, R denotes the total 
number bits for coding the headers, quantized coefficients, etc, 
measured in terms of bits per pixel and D means the distortion 
between the original block and its reconstructed block. The  is 
the Lagrange multiplier in HEVC, which is defined as : 

                          𝜆𝐻𝐸𝑉𝐶 = 𝛼 ∗ 2(
𝑄𝑃−12

3
)
                               (2) 

where QP is the quantization parameter, and  is a constant 
that is empirically-determined from extensive experiments[2]. 

It is easily observed from equation (1) that HEVC 
optimizes the RD performance for a given CTU based on a 
empirically-determined Lagrange multiplier . Therefore,  is 
very important, as it controls HEVC encoder to find the 
optimal trade-off between the distortion and the bit rate.  

However,  has one drawback that it is a only function of QP 
and does not consider the characteristic of the input video and 
the HVS perception. It means that  cannot well adapt to various 
video contents and is not efficient for perceptual video coding. 
Therefore, it is very essential to develop a perceptual adaptive 
Lagrange multiplier for HEVC by incorporating HVS 
perception to improve the perceptual coding efficiency. 

III. PROPOSED LAGRANGE MULTIPLIER DETERMINATION 

METHOD FOR HEVC 

A. Lagrange multiplier factor 

As it is well known, texture represented homogeneous area 
of video scenes with coherent statistics and appear in large 
areas of video streams while structures represented rather the 
semantics of the scene [7]. Therefore, human visual system 
usually focus on the structural area rather than textured area. 
However, textured area would be coded bit by bit as the 
structural area in the previous methods and the only difference 
of dealing with them is to give a different weight in Lagrange 
multiplier. But human visual system only focus on the 
semantic meaning of the textured area rather than the exact 
details of each pixel. Therefore, replacing them by an 
equivalent stochastic signal results in significant bitrate saving 
[8][9]. 

It is also noted that Lagrange multiplier in HEVC mainly 
depend on QP values as function (2), and are not directly 
related to the characteristics of the input video signal. 
Moreover, this model is based on the experiment in [10] that 
used an H.263 codec (without B frames) and four QCIF test 
sequences. With recent advances in video compression, 
especially with bi-directional prediction and intra coding in 
inter frames, the RD characteristic of codec with B frames is 
likely to be quite different. 

In order to investigate the optimum Lagrange multiplier 
factor for encoding, an Lagrange multiplier selection 
experiment was applied to HEVC reference codec. The test 
values  used are given in function (3). 

                             𝜆𝑡𝑒𝑠𝑡 = 𝑘𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝜆𝑜𝑟𝑖𝑔                            (3) 

Where the value of  is chosen as, and this parameter was 
constant during encoding. 

Primary coding settings used in this experiment include : 
HM16.2 for HEVC ; uniform QP used for all frames: QP 22, 
27, 32, 37, 42 and 47 tested for HEVC ; Structural Similarity 
Index (SSIM)  and Peak Signal-to-Noise Rate (PSNR) is used 
as distortion metric for RDO in the codec.  

B. Determination of the best factor 

For choosing the best value of Lagrange multiplier factor, 
we use the bjontegaard metric for deciding which value of 
Lagrange multiplier factor have the best performance in R-D 
curve. In figure 9, the figure has shown all of the different 
value of  perform in rate distortion map with  PSNR. The way 
to measure the compression quality with the bjontegaard metric, 
Bjøntegaard delta bit rate(BDBR) and Bjøntegaard delta peak 
signal-to-noise rate (BD-PSNR).  

In BDBR, the basic idea is to measure the bit-rate saving 
with the same video quality. In our experiment as shown in Fig. 
1. We take the  and the  for all the Lagrange multiplier factor. It 
is easily to find out that the bit-rate is smallest while   in these 
two figures. Therefore, we could prove that   is the best 
Lagrange multiplier factor in this video. 

In BD-PSNR or Bjøntegaard delta structural similarity 
index (BD-SSIM), the basic idea is to measure the video 



quality with the same bit-rate. In our experiment, we consider 
the video quality while bit-rate equal to 20. It can be seen that  
has the highest SSIM or PSNR value among them. Thus, we 
can make sure that it is the best Lagrange multiplier factor in 
this video once again.  

Fig. 1. Different 𝑘𝑓𝑎𝑐𝑡𝑜𝑟  performed in R-D curve with PSNR 

C. Extracting the features 

In this paper, we extract several features of the dynamic 
texture sequences: Normal flow, the standard Spatial 
Information (SI) and Temporal Information (TI), Gray Level 
Cooccurrence Matrix (GLCM).  

The normal flow field is easy to compute and can be 
directly estimated without any iterative scheme used by 
regularization methods [11]. Moreover, it included both 
structural and temporal information on dynamic texture : 
spatial information is linked to edge gradient vectors, while 
temporal information is related to the moving edges. The 
drawback of its is the sensitivity to the noise, which can be 
reduced by smoothing or applying a threshold on the spatial 
gradients. 

The Spatial perceptual Information, SI, is based on the 
Sobel filter. Each frame of the dynamic texture (luminance 
plane) at time n 𝐹𝑛  is firstly filtered with the Sobel filter 
[Sobel 𝐹𝑛 ]. The standard deviation over the pixels (𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 ) 

in each Sobel-filtered frame is therefore computed. This 
operation is repeated for each frame in the dynamic texture 
sequence and results in a time series of spatial information of 
the scene. The maximum value in the time series (𝑚𝑎𝑥𝑡𝑖𝑚𝑒 ) is 
chosen to represent the spatial information content of the scene. 

The GLCM descriptor combines 4 features, that are 
contrast, correlation, energy and homogeneity. Similarly, the 
following descriptors are defined for normal flow vectors : 
Divergence, Curl, Peakness and Orientations.  

Therefore, we have a list of the best Lagrange multiplier 
factor for each dynamic texture sequences and each 
corresponded features. Support Vector Machine (SVM) was 
used as a classification tool with the previous defined features 
as the attributes and the Lagrange multiplier factor as the result. 
To test the learning performance of SVM, we performed leave-

one-out, cross-validation and random sampling to test and 
measured the classification accuracy. 

IV. EXPERIMENTAL RESULTS 

The proposed predicting the best adaptive Lagrange 
multiplier factor method has been integrated into the HEVC 
reference models, and compared with the original codec. 
Identical test conditions are used here as in the experiment in 
Section 4.4, uniform test quantization parameters (QP) are used 
for all I, P and B frames from QP 22 to QP 47 with an interval 
of 5 for both codec. 

The group of progressive format test sequences (YUV 
4 :2 :0) are used here including 37 videos at  in 30fps. These 
are all public video sequences from the standard test sequence 
group in the DynTex database.  

Since we have 37 dynamic texture sequences in our dataset, 
we use the different uniform test quantization parameters (QP) 
which have been mentioned above for each dynamic texture 
sequences. Then we sum up all of the sequences in the same 
quantization parameter and compute the average SSIM and 
PSNR value. Finally, we also compute the total average SSIM 
and PSNR value among all the sequences with all test 
quantization parameters. 

The compression performance of the proposed method for 
HEVC is compared with the corresponding anchor codec. The 
results are based on the Bjontegaard delta measurements with 
the two video quality metric SSIM and PSNR are shown in 
Table2. Besides, the proposed method compared with the 
original method with measurement of SSIM and PSNR over all 

frames are shown in Table Ⅰ.  

TABLE I.  SUMMARY OF THE COMPRESSION RESULTS USING SSIM (A) 

AND PSNR (B) 

(A) 

QP Proposed method Anchor 

22 0.8779 0.8123 

27 0.8265 0.7565 

32 0.7701 0.7045 

37 0.7137 0.6542 

42 0.6536 0.6007 

47 0.585 0.5454 

Avg 0.7378 0.6789 

 (B) 

QP Proposed method Anchor 

22 32.8893 30.0344 

27 30.6499 28.3828 

32 28.8581 27.0484 

37 27.3798 25.9072 

42 26.7491 24.813 



47 24.8748 23.7938 

Avg 28.5668 26.6633 

It can be observed that the proposed method always 
performs better than the anchor codec in all test quantization 
parameters with average more than 0.1 better in SSIM. It 
should be noted that the proposed method is based on 

experimental results using uniform QP for all frames – one of 

the most commonly used scenarios. For cases with different 
GOP structure for different frame types, the optimum Lagrange 
multiplier factors may vary. In terms of computational 
complexity, even when including computation for scene cut 
detection, the increased complexity of our method is negligible 
in the overall context of HEVC compression. 

Although the method presented here are inspired from the 
adaptive Lagrange multiplier selection method from [12], we 
want to dispel the misconception that our method is trying to 
predict the better Lagrange multiplier factor based on the 
features of dynamic texture sequences instead of selecting the 
best one among a number of values. In particular, we indeed 
choose the best Lagrange multiplier factor among some values 
in the training step. However, we use machine learning as 
solving the linear regression problem instead of the 
classification. Therefore, the techniques under consideration 
turn out to be simple predictor that show the predicted best 
Lagrange multiplier factor while we put in the features of the 
dynamic texture sequence. 

V. CONCLUSION 

In this paper, a method for predicting the adaptive 
perceptual Lagrange multiplier factor is proposed for HEVC to 
improve its perceptual coding performance. In our approach, it 
has trained by 37 homogeneous spatio-temporal patches, 
referred as dynamic texture. For a given test dynamic texture 
sequence, it was first extracted the features such as spatial 
information, temporal information and normal flow. Once we 
know the feature of the given dynamic texture, we can achieve 
predicting the best Lagrange multiplier factor in HEVC. 
Experimental results show that the proposed method is able to 
predict one Lagrange multiplier factor to obtain significant 
improvement on perceptual RD performance and visual quality 
of the reconstructed dynamic texture sequences, compared with 
the original rate distortion optimization in HEVC. 

We derive a complete framework for predicting the best 
Lagrange multiplier factor in video compression standard 
(HEVC). We provide preliminary results indicating that the 
method can provide a predicted Lagrange multiplier factor that 
can improve the visual quality at equal bit-rate and should be 
further optimized.  

The possible future outcome of this work is to improve the 
computation of the features of dynamic texture sequences. 
Although we extract a great number of features in this 
experiment for trying to using these features to describe the 
whole characteristic of the sequences better, we simply deal 
with these features with computing the average value of all the 
pixels. In this case, the average cannot well represent the 
characteristic of the dynamic texture sequences. Therefore, we 

will try to compute the features of dynamic texture sequences 
in a more reasonable way for representing the sequences better. 

Besides, we only have 37 dynamic texture sequences in our 
experiment. However, it is not enough for machine learning to 
make the precise prediction. Moreover, the 37 dynamic texture 
has the same format and the same size from the same database. 
In another word, the dataset we used is not variety enough. 
Therefore, the prediction cannot be very precise in predicting 
the best Lagrange multiplier factor. In the future work, we need 
to collect the dynamic texture sequences from many database 
as much as possible. Besides, using different length and GOP 
structure of the dynamic texture sequences may improve the 
prediction of the Lagrange multiplier factor. 
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