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HEISENBERG ALGEBRA, WEDGES AND CRYSTALS

We explain how the action of the Heisenberg algebra on the space of q-deformed wedges yields the Heisenberg crystal structure on charged multipartitions, by using the boson-fermion correspondence and looking at the action of the Schur functions at q = 0. In addition, we give the explicit formula for computing this crystal in full generality.

Introduction

Categorification of representations of affine quantum groups has proved to be an important tool for understanding many classic objects arising from modular group representation theory, among which Hecke algebras and rational Cherednik algebras of cyclotomic type, and finite classical groups. More precisely, the study of crystals and canonical bases of the level ℓ Fock space representations F s of U ′ q ( sl e ) gives answers to several classical problems in combinatorial terms. In particular, we know that the U ′ q ( sl e )-crystal graph of F s can be categorified in the following ways: -by the parabolic branching rule for modular cyclotomic Hecke algebras [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF], when restricting to the connected component containing the empty ℓ-partition, -by Bezrukavnikov and Etingof's parabolic branching rule for cyclotomic rational Cherednik algebras [START_REF] Shan | Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras[END_REF], -by the weak Harish-Chandra modular branching rule on unipotent representations for finite unitary groups [START_REF] Gerber | Harish-Chandra series in finite unitary groups and crystal graphs[END_REF], [START_REF] Dudas | Categorical actions on unipotent representations I[END_REF], for ℓ = 2 and s varying. In each case, the branching rule depends on some parameters that are explicitly determined by the parameters e and s of the Fock space. Recently, there has been some important developments when Shan and Vasserot [START_REF] Shan | Heisenberg algebras and rational double affine Hecke algebras[END_REF] categorified the action of the Heisenberg algebra on a certain direct sum of Fock spaces, in order to prove a conjecture by Etingof [START_REF] Etingof | Supports of irreducible spherical representations of rational Cherednik algebras of finite Coxeter groups[END_REF]. Losev gave in [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] a formulation of Shan and Vasserot's results in terms of crystals, as well as an explicit formula for computing it in a particular case. Independently and using different methods, the author defined a notion of Heisenberg crystal for higher level Fock spaces [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF], that turns out to coincide with Losev's crystal. An explicit formula was also given in another particular case, using level-rank duality. Like the U ′ q ( sl e )-crystal, the Heisenberg crystal gives some information at the categorical level. In particular, it yields a characterisation of -the finite dimensional irreducible modules in the cyclotomic Cherednik category O by [START_REF] Shan | Heisenberg algebras and rational double affine Hecke algebras[END_REF] and [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF], -the usual cuspidal irreducible unipotent modular representations of finite unitary groups [START_REF] Dudas | Categorical actions on unipotent representations of finite classical groups[END_REF]. This paper solves two remaining problems about the Heisenberg crystal. Firstly, even though it originally arises from the study of cyclotomic rational Cherednik algebras (it is determined by combinatorial versions of certain adjoint functors defined on the bounded derived category O), the Heisenberg crystal has an intrinsic existence as shown in [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. Therefore, it is natural to ask for an algebraic construction of the Heisenberg crystal which would be independent of any categorical interpretation. This is achieved via the boson-fermion correspondence and the use of the Schur functions, acting on Uglov's canonical basis of F s . This gives a new realisation of the Heisenberg crystal, analogous to Kashiwara's crystals for quantum group. Secondly, we give an explicit formula for computing the Heisenberg crystal in full generality. This generalises and completes the particular results of [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] and [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. This is done in the spirit of [START_REF] Foda | Branching functions of A (1) n-1 and Jantzen-Seitz problem for Ariki-Koike algebras[END_REF] where formulas for the U ′ q ( sl e )crystal were explicited.

The present paper has the following structure. In Section 2, we start by introducing in detail several combinatorial objects indexing the basis of the wedge space (namely charged multipartitions, abaci and wedges) and the different ways to identify them. Then, we quickly recall some essential facts about the U ′ q ( sl e )-structure of the Fock spaces F s . Section 3 focuses on the Heisenberg action on the wedge space F s , seen as a certain direct sum of level ℓ Fock spaces F s . In particular, we recall the definition of the Heisenberg crystal given in [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. Then, we give in Section 4 a solution to the first problem mentioned above. More precisely, we recall the quantum boson-fermion correspondence and fundamental facts about symmetric functions. Inspired by Shan and Vasserot [START_REF] Shan | Heisenberg algebras and rational double affine Hecke algebras[END_REF] and Leclerc and Thibon [START_REF] Leclerc | Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials[END_REF], we study the action of the Schur functions on the wedge space and use a result of Iijima [START_REF] Iijima | On a higher level extension of Leclerc-Thibon product theorem in q-deformed Fock spaces[END_REF] to construct the Heisenberg crystal as a version of this action at q = 0 (Theorem 4.4), resembling Kashiwara's philosophy of crystal and canonical bases. Most importantly, by doing so, we bypass entirely Shan and Vasserot's original categorical construction. Section 5 is devoted to the explicit computation of the Heisenberg crystal. We introduce level ℓ vertical estrips, as well as the notion of good vertical e-strips by defining an appropriate order. The action of the Heisenberg crystal operators is then given in terms of adding good level ℓ vertical e-strips (Theorem 5.11), which is reminiscent of the explicit formula for the Kashiwara crystal operators first given in [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF] (see also [START_REF] Foda | Branching functions of A (1) n-1 and Jantzen-Seitz problem for Ariki-Koike algebras[END_REF]). We relate this result to other combinatorial procedures in the literature answering in particular a question of Tingley [START_REF] Tingley | Three combinatorial models for sl n crystals, with applications to cylindric plane partitions[END_REF]. In addition, we give several examples of explicit computations. Finally, we recall some useful facts about level-rank duality in appendix, enabling the definition of the Heisenberg crystal.

2. Higher level Fock spaces 2.1. Charged multipartitions and wedges.

2.1.1. Charged multipartitions. Fix once and for all elements e, ℓ ∈ Z ≥2 and s ∈ Z. An ℓ-partition (or simply multipartition) is an ℓ-tuple of partitions λ = (λ 1 , . . . , λ ℓ ). These will be represented using Young diagrams. Denote Π ℓ the set of ℓ-partitions and Π = Π 1 the set of partitions. Partitions will sometimes be denoted multiplicatively for convenience, e.g. (2, 1, 1) = (2.1 2 ) = . An ℓ-charge (or simply (multi)charge) is an ℓ-tuple of integers s = (s 1 , . . . , s ℓ ). We write |s| = ℓ j=1 s j . We call charged ℓ-partition the data consisting of an ℓ-partition λ and an ℓ-charge s, and denote it by |λ, s . For a box γ = (a, b, j) in the Young diagram of λ (where a ∈ Z is the row index of the box, b ∈ Z the column index and j ∈ {1, . . . , ℓ} the coordinate), let c(γ) = ba + s j , the content of γ. We will represent |λ, s by filling the boxes of the Young diagram of λ with their contents.

Example 2.1. Take ℓ = 2, s = (-1, 2) and λ = (2.1, 1 2 ). We have s = -1 + 2 = 1 and

|λ, s = -1 0 -2 , 2 1 .
In the following, we will only consider multicharges s verifying |s|

:= s 1 + • • • + s ℓ = s.
For a partition λ, let λ ′ denote its conjugate, that is the partition obtained by swapping rows and columns in the Young diagram of λ. We extend this to charged multipartitions by setting |λ, s ′ = |λ ′ , s ′ where λ ′ = ((λ ℓ ) ′ , . . . , (λ 1 ) ′ ) and s ′ = (-s ℓ , . . . , -s 1 ).

Abaci representation.

A charged ℓ-partition |λ, s can also be represented by the Z-graded ℓ-abacus A(λ, s) = ( j, λ j k + s j -k + 1) ; j ∈ {1, . . . , ℓ}, k ∈ Z >1 where λ j k denotes the k-th part of λ j . In the rest of this paper, we will sometimes identify |λ, s with A(λ, s). which we picture as follows, by putting a (black) bead at position ( j,

λ j k + s j -k + 1)
where k ∈ Z >1 and j ∈ {1, . . . , ℓ} is the row index (numbered from bottom to top):

Note that the conjugate a multipartition can be easily described on the abacus: it suffices to rotate it by 180 degrees around the point of coordinates ( 12 , ℓ 2 ) and swap the roles of the white and black beads.

Using the abaci realisation of charged multipartitions, we define below a bijection

τ : {|λ, s ; λ ∈ Π 1 } ∼ -→ {|λ, s ; λ ∈ Π ℓ , |s| = s} A(λ, s)
-→ A(λ, s), which can be seen as a twisted version of taking the ℓ-quotient and the ℓ-core of a partition, see [START_REF] Xavier | Bases canoniques d'espaces de Fock de niveau supérieur[END_REF]Chapter 1]. However, unlike the usual ℓ-quotient and ℓ-core, τ and τ -1 will depend not only on ℓ, but also on e.

Writing down the Euclidean division first by eℓ and then by e, one can decompose any n ∈ Z as n = -z(n)eℓ + (y(n) -1)e + (x(n) -1) with z(n) ∈ Z, 1 ≤ y(n) ≤ ℓ and 1 ≤ x(n) ≤ e. We can then associate to each pair (1, c) ∈ {1} × Z the pair τ(1, d) = ( j, d) ∈ {1, . . . , ℓ} × Z where j = y(-c ) andd = -(x(-c) -1) + ez(-c).

In particular, τ sends the bead in position (1, c) into the rectangle z(-c), on the row y(-c) and column x(-c) (numbered from right to left within each rectangle). The map τ is bijective and we can see τ -1 as the following procedure:

(1) Divide the ℓ-abacus into rectangles of size e × ℓ, where the z-th rectangle (z ∈ Z) contains the positions ( j, d) for all 1 ≤ j ≤ ℓ and -e + 1 + ze ≤ d ≤ ze. (2) Relabel each ( j, d) by the second coordinate of τ -1 ( j, d), see Figure 1 for an example.

(3) Replace the newly indexed beads on a 1-abacus according to this new labeling. Let |λ, s be a charged ℓ-partition with |s| = s, and let λ = (λ 1 , λ 2 , . . . ) be the partition such that τ(|λ, s ) = |λ, s . Set β = (β 1 , β 2 , . . . ) where β k = λ k + sk + 1 for all k ∈ Z >1 . In other terms, β is the sequence of integers indexing the beads of A(λ, s).

We clearly have β ∈ P > (s), so we can consider the elementary wedge u β . In fact, we will also identify |λ, s with u β .

To sum up, we will allow the following identifications:

|λ, s ←→ A(λ, s) τ ←→ A(λ, s) ←→ u β ←→ |λ, s . We will denote B s = {|λ, s ; λ ∈ Π ℓ } for an ℓ-charge s and B s = {|λ, s ; λ ∈ Π} = |s|=s B s .
2.2. Fock space as U ′ q ( sl e )-module. Let q be an indeterminate. 2.2.1. The JMMO Fock space. Fix an ℓ-charge s. The Fock space associated to s is the Q(q)-vector space F s with basis B s .

Theorem 2.5 (Jimbo-Misra-Miwa-Okado [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF]). The space F s is an integrable U ′ q ( sl e )-module of level ℓ.

The action of the generators of U ′ q ( sl e ) depends on s and e, and is given explicitly in terms of addable/removable boxes, see e.g. [START_REF] Geck | Representations of Hecke Algebras at Roots of Unity[END_REF]Section 6.2]. In turn, this induces a U ′ q ( sl e )-crystal structure (also called Kashiwara crystal) [START_REF] Kashiwara | Global crystal bases of quantum groups[END_REF], usually encoded in a graph B s , whose vertices are the elements of B s , and with colored arrows representing the action of the Kashiwara operators. An explicit (recursive) formula for computing this graph was first given in [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF]: two vertices are joined by an arrow if and only if one is obtained from the other by adding/removing a good box, see [7, Section 6.2] for details.

--

0 - -1 0 1 - 0 -1 - -1 2 0 1 - 1 0 0 1 1 0 1 2 - 0 1 -1 - -1 2 3 0 1 0 0 1 2 - 1 2 0 0 -1 -2 - - 1 0 -1 Figure 2.
The beginning of the Kashiwara crystal graph B s of F s for ℓ = 2, e = 3 and s = (0, 1) .

It has several connected components, each of which parametrised by its only source vertex, or highest weight vertex. The decomposition of this graph in connected components reflects the decomposition of F s into irreducible representations (which exists because F s is integrable according to Theorem 2.5).

2.2.2. Uglov's wedge space. Denote F s the Q(q)-vector space spanned by the elementary wedges, and subject to the straightening relations defined in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Proposition 3.16]. This is called the space of semi-infinite q-wedges, or simply the wedge space, and the elements of F s will be called wedges.

Using the straightening relations, a q-wedge can be expressed as a Q(q)-linear combination of ordered wedges. In fact, one can show (see [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Proposition 4.1]) that the set of ordered wedges B s forms a basis of F s .

Remark 2.6.

(1) The terminology "wedge space" is justified by the original construction of this vector space in the level one case by Kashiwara, Miwa and Stern [START_REF] Kashiwara | Decomposition of q-deformed Fock spaces[END_REF]. In this context, one can first construct a quantum version of the usual k-fold wedge product (or exterior power) Λ k V, where V is the natural U ′ q ( sl e )-representation (an affinisation of C e ⊗ C ℓ ). The space F s is then defined as the projective limit (taking k → ∞) of Λ k V. In the higher level case, the analogous construction was achieved by Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF].

(2) Using the bijection between ordered wedges and partitions charged by s, one can see F s as a level 1 Fock space, whence the notation. In fact, it is sometimes called the fermionic Fock space.

Theorem 2.7. The wedge space F s is an integrable U ′ q ( sl e )-module of level ℓ.

Proof. The identification

B s = u β ∈ F s | β ∈ P > (s) = {|λ, s ∈ F s ; |s| = s} = |s|=s B s of Section 2.1.3 yields the Q(q)-vector space decomposition F s = |s|=s F s .
By Theorem 2.2.1, this decomposition still holds as integrable U ′ q ( sl e )-module.

The Heisenberg action

It turns out that the wedge space has some additional structure, namely that of a H-module, where H is the (quantum) Heisenberg algebra. This has been first observed by Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF], generalising some results of Lascoux, Leclerc and Thibon [START_REF] Lascoux | Ribbon Tableaux, Hall-Littlewood Functions, Quantum Affine Algebras and Unipotent Varieties[END_REF]. Let us recall the definition of this algebra. Definition 3.1. The (quantum) Heisenberg algebra is the unital Q(q)-algebra H with generators p m , m ∈ Z × and defining relations

[p m , p m ′ ] = δ m,-m ′ m 1 -q -2me 1 -q -2m × 1 -q 2mℓ 1 -q 2m for m, m ′ ∈ Z × .
The elements p m are called bosons.

Note that this is a q-deformation of the usual Heisenberg algebra with relations

[p m , p m ′ ] = δ m,-m ′ m. Theorem 3.2. The formula p m (u β ) = k≥1 u β 1 ∧ . . . ∧ u β k-1 ∧ u β k-eℓm ∧ u β k+1 ∧ . . . for u β ∈ F s and m ∈ Z ×
endows F s with the structure of H-module.

For a proof, we refer to [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Proposition 4.4 and 4.5]. This is quite technical and is done in two distinct steps, the second of which requires the notion of asymptotic wedge. This will be crucial in Section 4.

Corollary 3.3. The action of the bosons preserves the level ℓ Fock spaces F s for |s| = s.

One can use the explicit action of p m on F s to show that it preserves the ℓ-charges s, or rely on Uglov's argument [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Section 4.3]. As a consequence of this corollary, F s = |s|=s F s also holds as H-module decomposition.

3.2. Some notations and definitions. For two partitions λ and µ, denote λ + µ the reordering of (λ 1 , µ 1 , λ 2 , µ 2 , . . . ) and kλ the partition (λ k 1 .λ k 2 . . . . ). Extend these notations to ℓ-partitions by doing these operations coordinatewise.

Remark 3.4. This is not the usual notation for adding partitions or multiplying by an integer. One recovers the usual one by conjugating Example 3.5. We have

+ 2 = + = .
We also define the notion of asymptotic charges, which will mostly be useful in Section 4.

Definition 3.6. A wedge u β ∈ F s is called j 0 -asymptotic if there exists j 0 ∈ {1, . . . , ℓ} such that the corresponding charged multipartition |λ, s verifies |s j -s j 0 | ≥ |λ| for all j j 0 .

The Heisenberg crystal.

A notion of crystal for the Heisenberg algebra, or H-crystal, has been indepedently introduced by Losev [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] and the author [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. Explicit formulas for computing this crystal have been given in some particular cases: asymptotic in [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] and doubly highest weight in [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF].

Recall the definition of the H-crystal according to [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. This requires the crystal level-rank duality exposed in Appendix.

Definition 3.7. Let |λ, s ∈ B(s), which we identify with its level-rank dual charged e-partition. We call |λ, s a doubly highest weight vertex if it is a highest weight vertex simultaneously in the U ′ q ( sl e )-crystal and in the U ′ p ( sl ℓ )-crystal. Some important properties of doubly highest weight vertices are exposed in [9, Section 5.2]. In particular, an element |λ, s is a doubly highest weight vertex if and only if it has a totally e-periodic ℓ-abacus and a totally ℓ-periodic e-abacus, according to a result by Jacon and Lecouvey [START_REF] Jacon | A combinatorial decomposition of higher level Fock spaces[END_REF], see the definition therein. Moreover, every bead of a given period encodes a same part size in λ, and one can define the partition κ = κ|λ, s as (κ 1 , κ 2 . . . ) where κ k is the part encoded by the k-th period. q ( sl e ) and of U ′ p ( sl ℓ ).

Definition 3.9. We say that |λ, s ∈ B s is a highest weight vertex for H if b-σ |λ, s = 0 for all σ ∈ Π.

Note that each b±σ is well defined since (2) allows to define b±σ |λ, s even when |λ, s is not a doubly highest weight vertex. Moreover, [9, Theorem 7.6] claims that in the asymptotic case, the Heisenberg crystal operators coincide with the combinatorial maps introduced by Losev [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF]. Note also that the definition of κ for doubly highest weight vertices induces (by (2) of Definition 3.8) a surjective map κ : B s → Π such that b-κ|λ,s |λ, s is a highest weight vertex for H for all λ ∈ Π ℓ .

In order to have a description of the H-crystal similar to the U ′ q ( sl e )-crystal, see Remark 3.11. By definition, each b±1,c is a composition of maps b±σ . Conversely, each bσ is a composition of maps b1,c , see [9, Formula (6.17)]. We will also call the maps b1,c Heisenberg crystal operators.

Proposition 3.12.

(1) The H-module decomposition Proof. We know from Definition 3.8 that the action of the crystal Heisenberg operators preserves the multicharge, proving (1). In particular, there is a notion of H-crystal for F s , which we denote C s . Moreover, the H-crystal is characterised by being the preimage of a U q (sl ∞ )-crystal on the set of partitions under a certain bijection, depending on κ, see [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Remark 6.16]. The U q (sl ∞ )-crystal is exactly the Young graph on partitions, see Figure 3, where the arrows are colored by the contents of the added boxes, which proves (2). In fact, the bijection from the Young graph to a given connected component, parametrised by its source vertex |λ, s is given by σ → bσ |λ, s , and its inverse is |λ, s → κ|λ, s . Point (3) is clear by definition, and (4) follows from the definition of κ.

F s = |s|=s F s induces a decomposition of C s . (2) Each connected component of C s is isomorphic to the Young graph. (3) A vertex |λ, s is source in C s if

Canonical bases and Schur functions

4.1. The boson-fermion correspondence. Denote Λ the algebra of symmetric functions, that is, the projective limit of the Q(q)-algebras of symmetric polynomials in finitely many indeterminates [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]Chapter 1]:

Λ = Q(q)[X 1 , X 2 , . . . ] S ∞ .
The space Λ has several natural linear bases, among which:

-the monomial functions {M σ ; σ ∈ Π} where M σ = π X π 1 1 X π 2 2 . . . where the sum runs over all permutations π of σ, -the complete functions {H σ ; σ ∈ Π} where

H σ = H σ 1 H σ 2 . . . and H m = k 1 ≤•••≤k m X k 1 . . . X k m
for r ∈ N, -the power sums {P σ ; σ ∈ Π} where P σ = P σ 1 P σ 2 . . . and P m = k≥1 X r k for r ∈ N, -the Schur functions {S σ ; σ ∈ Π} where S σ = π∈Π K σ,π M π where K σ,π are the Kostka numbers, see [START_REF] Stanley | Enumerative Combinatorics[END_REF]Chapter 7]. The expansion of H m in the basis of the power sums is given by

H m = π∈Π |π|=m 1 z π P π ,
where

z π = Π k>0 k α k α k with α k = π ′ k -π ′ k+1
, for all π ∈ Π. Moreover, by duality, the Kostka numbers also appear as the coefficients of the complete functions in the basis of the Schur functions:

H σ = π∈Π K π,σ S π .
By a result of Miwa, Jimbo and Date [START_REF] Miwa | Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras[END_REF], there is a vector space isomorphism

F s ∼ -→ Λ |λ, s -→ S λ ,
called the boson-fermion correspondence. In fact, when refering to the symmetric realisation Λ, one sometimes uses the term bosonic Fock space, as opposed to the fermionic, antisymmetric definition of F s . The following result is [24, Section 4.2 and Proposition 4.6].

Proposition 4.1.

There is a H-module isomorphism F s ≃ Λ, where, at q = 1, the action of p m on F s is mapped to the multiplication by P m on Λ.

In general, the action of p m is mapped to a q-deformation of the multiplication by P m , and p -m to a q-deformation of the derivation with respect to P m , see [START_REF] Lascoux | Ribbon Tableaux, Hall-Littlewood Functions, Quantum Affine Algebras and Unipotent Varieties[END_REF]Section 5] and [27, Section 5.1].

4.2.

Action of the Schur functions. In [START_REF] Leclerc | Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials[END_REF], Leclerc and Thibon studied the action of the Heisenberg algebra on level 1 Fock spaces in order to give an analogue of Lusztig's version [START_REF] Lusztig | Modular representations and quantum groups[END_REF] of the Steinberg tensor product theorem. Their idea was to use a different basis of Λ to compute the Heisenberg action in a simpler way, namely that of Schur functions. This result has been generalised to the level ℓ case by Iijima in a particular case [START_REF] Iijima | On a higher level extension of Leclerc-Thibon product theorem in q-deformed Fock spaces[END_REF]. Independently, the Schur functions have been used by Shan and Vasserot to categorify the Heisenberg action in the context of Cherednik algebras. More precisely, they constructed a functor on the category O for cyclotomic rational Cherednik algebras corresponding to the multiplication by a Schur function on the bosonic Fock space Λ [24, Proposition 5.13]. The aim of this section is to use Iijima's result to recover in a direct, simple way the results of [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] and [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF] and, by doing so, bypassing Shan and Vasserot's categorical constructions. 4.2.1. Canonical bases of the Fock space. In the early nineties, Kashiwara and Lusztig have independently introduced the notion of canonical bases for irreducible highest weight representations of quantum groups, see e.g. [START_REF] Kashiwara | Global crystal bases of quantum groups[END_REF]. They are characterised by their invariance under a certain involution. Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] has proved an analogous result for the Fock spaces F s , even though it is no longer irreducible. We recall the definition of the involution on F s and Uglov's theorem. For any r ∈ N and t 1 , . . . ,

t r ∈ Z r , let ι(t 1 , . . . , t r ) = ♯ { (k, k ′ ) | k < k ′ and t k = t k ′ } that is, the number of repetitions in (t 1 , . . . , t r ).
Definition 4.2. The bar involution is the Q(q)-vector space automorphism

F s -→ F s q -→ q = q -1 u β -→ u β with u β = u β 1 ∧ . . . ∧ u β r ∧ u β r+1 ∧ • • • = (-q) ι(y 1 ,...,y r ) q ι(x 1 ,...,x r ) (u β r ∧ . . . ∧ u β 1 ) ∧ u β r+1 ∧ . . .
where x k = x(β k ) and y k = y(β k ) for all k = 1, . . . , r according to the notations of Section 2.1.2.

The bar involution behaves nicely on the wedge space, in particular it preserves the level ℓ Fock spaces F s for |s| = s, and commutes with the bosons p m , this is [27, Section 4.4]. We can now state Uglov's result, that is derived from the fact that the matrix of the bar involution is unitriangular. 

G -= {G -(λ, s) ; λ ∈ Π ℓ } of F s such that, for ♭ ∈ {+, -}, (1) G ♭ (λ, s) = G ♭ (λ, s) (2) G ♭ (λ, s) = |λ, s mod q ♭1 L ♭ where L ♭ = λ∈Π ℓ Q[q ♭1 ]
|λ, s . This result is compatible with Kashiwara's crystal theory. More precisely, each integrable irreducible highest weight U ′ q ( sl e )-representation is contained in F s for some s, by taking the span of the vectors |∅, s for |s| = s, and it is proved in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Section 4.4] that the bases G ♭ restricted to U ′ q ( sl e )|∅, s coincide with Kashiwara's lower and upper canonical bases. Therefore, we also call G ♭ the (lower or upper if ♭ = -or + respectively) canonical basis of F s .

Schur functions in the asymptotic case. Define the following operators on

F s h m = |π|=m 1 z π p π , h σ = h σ 1 h σ 2 . . . and s σ = π∈Π K -1 π,σ h π .
where K -1 π,σ are the inverse Kostka numbers, that is, the entries of the inverse of the matrix of Kostka numbers. By Proposition 4.1, at q = 1, the action of h σ (respectively s σ ) corresponds to the multiplication by a complete function (respectively Schur function) on Λ through the bosonfermion correspondence.

Theorem 4.4.

(1) The operators s σ induce maps sσ on B s , preserving B s for |s| = s.

(2) Let |λ, s ∈ F s be j 0 -asymptotic. We have sσ |λ, s = |µ, s with µ = λ + eσ where σ j = ∅ if j j 0 and σ j 0 = σ, provided |µ, s is still j 0 -asymptotic. In particular, sσ coincides with the Heisenberg crystal operator bσ in this case. Remark 4.5. When λ = ∅, this says that sσ shifts the e rightmost beads in the j 0 -th runner of A(λ, s), and one recovers Losev's result, see for instance [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Example 7.3].

Proof. In a general manner, we can identify a crystal map B s → B s with an operator on the wedge space F s mapping an element of G ♭ to an element of G ♭ , for ♭ ∈ {+, -}. Indeed, an element |λ, s ∈ B s can be identified with G ♭ (λ, s). Another way to see this is to look at the action on G ♭ (λ, s) and put q = 0 or q = ∞ respectively in the resulting vector. This provides the identification because of Condition (2) of Theorem 4.3. As a matter of fact, the action of s σ on a canonical basis element turns out to have the desired form. Indeed, by [START_REF] Iijima | On a higher level extension of Leclerc-Thibon product theorem in q-deformed Fock spaces[END_REF]Theorem 4.12], we know that s σ : F s → F s verifies s σ G + (λ, s) = G + (µ, s) where µ = λ + eσ (with σ as in the statement of Theorem 4.4) provided:

λ j is e-regular for all j = 1 . . . , ℓ -|λ, s and |µ, s are j 0 -asymptotic. Here, Iijima's original statement has been twisted by conjugation, because the level-rank duality used in his result is the reverse of that of the present paper. Thus, the notion of e-restricted multipartition is replaced by e-regular. Accordingly, we use the upper canonical basis instead of the lower one. This statement can be extended to an arbitrary j 0 -asymptotic element G + (λ, s) ∈ F s , that is, without the restriction that each λ j is e-regular. To do this, for all λ ∈ Π ℓ , let λ = λ + eπ where λj is e-regular for all j = 1, . . . , ℓ and π j = ∅ if j j 0 and π j 0 = π. Then, for all σ ∈ Π,

s σ G + (λ, s) = s τ G + ( λ, s)
where τ = (σ ′ + π ′ ) ′ , which we can compute by the preceding formula. Note that τ is the common addition of σ and π, see Remark 3.4. For a general j 0 -asymptotic vector |λ, s , we write again G + (µ, s) = s σ G + (λ, s). As explained in the beginning of the proof, this induces a crystal map sσ : B s → B s , by additionnaly requiring that sσ commutes with the Kashiwara crystal operators. In fact, when |λ, s is j 0 -asymptotic, the formula for sσ is precisely the formula for the Heisenberg crystal operator given in [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] (provided again that one twists by conjugating), which coincides with bσ by [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Theorem 7.6]. This completes the proof.

As explained in the proof, with this approach, sσ |λ, s is identified with s σ G + (λ, s). The map s σ being an actual operator (on the vector space F s ), this justifies the terminology "operator" for the maps bσ : B s → B s , thereby completing the analogy with the Kashiwara crystal operators.

Explicit description of the Heisenberg crystal

In this section, we give the combinatorial formula for computing the Heisenberg crystal in full generality. This completes the results of [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF], where the asymptotic case is treated, and of [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF] where the case of doubly highest weight vertices (in the level-rank duality) is treated, see Appendix for details. 5.1. Level ℓ vertical strips. In the spirit of [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF] and [START_REF] Foda | Branching functions of A (1) n-1 and Jantzen-Seitz problem for Ariki-Koike algebras[END_REF], we will express the action of the Heisenberg crystal operators in terms of adding/removing certain vertical strips.

For a given charged multipartition |λ, s , we denote

W 1 (λ, s) = {(a, b, j) ∈ Z >0 × Z >1 × {1, . . . , ℓ} | (a, b, j) λ and (a, b -1, j) ∈ λ} W 2 (λ, s) = {(a, 1, j) ∈ Z >0 × {1} × {1, . . . , ℓ} | (a, 1, j) λ} and W (λ, s) = W 1 (λ, s) ⊔ W 2 (
λ, s), so that W (λ, s) is the set of boxes directly to the right of λ (considering that it has infinitely many parts of size zero). [START_REF] Brundan | Graded decomposition numbers for cyclotomic Hecke algebras[END_REF][START_REF] Dudas | Categorical actions on unipotent representations I[END_REF][START_REF] Dudas | Categorical actions on unipotent representations I[END_REF], [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF][START_REF] Dudas | Categorical actions on unipotent representations I[END_REF][START_REF] Brundan | Graded decomposition numbers for cyclotomic Hecke algebras[END_REF], (1, 5, 1)) with respective contents 8, 7, 6, 5 , X 2 = ((3, 2, 3), (4, 2, 3), (2, 1, 2), (2, 3, 1)) with respective contents 5, 4, 3, 2 , X 3 = ((3, 2, 3), (4, 2, 3), (2, 1, 2), (3, 1, 2)) with respective contents 5, 4, 3, 2 , X 4 = ((4, 2, 3), (2, 1, 2), (3, 1, 2), (4, 1, 2)) with respective contents 4, 3, 2, 1 , X 5 = ((2, 1, 2), (3, 1, 2), (4, 1, 2), (5, 1, 2)) with respective contents 3, 2, 1, 0 , X 6 = ((3, 1, 2), (4, 1, 2), (5, 1, 2), (3, 1, 1)) with respective contents 2, 1, 0, -1 , X 7 = ((3, 1, 2), (4, 1, 2), (5, 1, 2), (6, 1, 2)) with respective contents 2, 1, 0, -1 , X 8 = ((5, 1, 3), (4, 1, 2), (5, 1, 2), (3, 1, 1)) with respective contents 2, 1, 0, -1 , X 9 = ((5, 1, 3), (4, 1, 2), (5, 1, 2), (6, 1, 2)) with respective contents 2, 1, 0, -1 , X 10 = ((5, 1, 3), (6, 1, 3), (5, 1, 2), (3, 1, 1)) with respective contents 2, 1, 0, -1 , X 11 = ((5, 1, 3), (6, 1, 3), (5, 1, 2), (6, 1, 2)) with respective contents 2, 1, 0, -1 , X 12 = ((5, 1, 3), (6, 1, 3), (7, 1, 3), (3, 1, 1)) with respective contents 2, 1, 0, -1 , X 13 = ((5, 1, 3), (6, 1, 3), (7, 1, 3), (6, 1, 2)) with respective contents 2, 1, 0, -1 , X 14 = ((5, 1, 3), (6, 1, 3), (7, 1, 3), (8, 1, 3)) with respective contents 2, 1, 0, -1 , and so on. 5.2. Action of the Heisenberg crystal operators bσ . We will define an order on the vertical estrips of a given charged multipartition. First, let γ = (a, b, j) and γ ′ = (a ′ , b ′ , j ′ ) be two boxes of |λ, s . Write γ > γ ′ if c(γ) > c(γ ′ ) or c(γ) = c(γ ′ ) and j < j ′ . Remark 5.4. Note that this is the total order used to define the good boxes in a charged ℓ-partition, which characterises the Kashiwara crystals, see [START_REF] Geck | Representations of Hecke Algebras at Roots of Unity[END_REF]Chapter 6].

|λ, s = |(4.2, 2, 2 2 .1 2 ), (1, 4, 6) =        1 2 3 4 0 1 , 4 5 , 6 7 5 6 4 3        . Then V (λ, s) consists of X 1 = ((1, 3, 3),
By extension, let > denote the lexicographic order induced by > on e-tuples of boxes in a given charged ℓ-partition. This restricts to a total order on V (λ, s). Definition 5.5. Let |λ, s be a charged ℓ-partition. Denote simply V = V (λ, s).

-The first good vertical e-strip of |λ, s is the maximal element X 1 of V with respect to >.

-Let k ≥ 2. The k-th good vertical e-strip of |λ, s is the maximal element X k of

{ X ∈ V | X k-1 > X and X k-1 ∩ X = ∅ } with respect to >.
In other terms, the greatest (with respect to >) vertical strip of |λ, s is good, and another admissible vertical strip is good except if one of its boxes already belongs to a previous good vertical strip.

Example 5.6. We go back to Example 5.3. Then we have X k > A k-1 for all k = 1, . . . , 14. Moreover, there are only four good addable vertical strips among these, namely X 1 , X 2 , X 6 and X 13 .

Definition 5.7. Let σ = (σ 1 , σ 2 . . . ) ∈ Π . Define cσ : B s → B s cσ |λ, s = |µ, s
where µ is obtained from λ by adding recursively σ k times the k-th good vertical e-strip for k ≥ 1 .

Lemma 5.8. The map c(1) is well defined.

Proof. Let |λ, s be a charged multipartition. We need to prove that the first good vertical strip X of |λ, s is addable. Assuming it is not the case, then there exists a box (a, b, j) ∈ X such that (a -1, b, j) X ⊔ λ and (a -1, b -1, j) ∈ λ. But (a -1, b, j) λ and (a -1, b -1, j) ∈ λ implies (a -1, b, j) ∈ X, whence a contradiction.

Corollary 5.9. For all σ ∈ Π, the map cσ is well defined.

Proof. If σ = ∅, then cσ = Id and so is well defined. So we assume σ ∅, say σ = (σ 1 , σ 2 , . . . ). First of all, Lemma 5.8 and the definition of cσ implies that c(n) is well defined for all n ∈ Z ≥1 (so in particular for n = σ 1 ). It remains to prove that for all λ ∈ Π ℓ and for all ℓ-charge s, the second good vertical e-strip X of c(σ 1 ) |λ, s is addable. Since σ 1 ≥ 1, it is clear that for all (a, b, j) ∈ X, (a -1, b, j) is actually a box of λ, since if it was not, X could not be the second good vertical strip of λ exactly as in the proof of Lemma 5.8. Iterating, for all partition τ, the (h + 1)-th vertical strip of cτ |λ, s is addable, where h is the number of non-zero parts in τ.

Example 5.10. Take again the values of Example 5.3. Then, for σ = (2.1 3 ), we have 

cσ |λ, s = c        1 2 3 4 0 1 , 4 5 , 6 7 5 6 4 3 
       =                  
                  .
Each box of σ corresponds to a vertical e-strip, the matching being given by the colors.

We will prove the following theorem.

Theorem 5.11. For all σ ∈ Π, we have cσ = bσ .

5.3.

Proof of Theorem 5.11. The strategy for proving this result consists in starting from the doubly highest weight case, in which we know an explicit formula for bσ . Then, we show that the c±σ commute with the Kashiwara crystal operators for U ′ p ( sl ℓ ), then U ′ q ( sl e ), and use the commutation of the Kashiwara crystals and the H-crystal (see Definition 3.8) to conclude. Proposition 5.12. Let |λ, s be a doubly highest weight vertex. Then, for all σ ∈ Π, we have cσ |λ, s = bσ |λ, s .

Proof. We need to translate the explicit formula for bσ , given in terms of abaci, in terms of ℓpartitions. By the correspondence given in Section 2.1, an e-period in the ℓ-abacus A = A(λ, s) (see [START_REF] Jacon | A combinatorial decomposition of higher level Fock spaces[END_REF]Section 2.3]) corresponds to a good vertical e-strip in |λ, s . Therefore, it yields an addable admissible vertical e-strip if ( j 1 , d 1 + 1) A where ( j 1 , d 1 ) is the first bead of the period. Thus, shifting the k-th e-period of A by σ k steps to the right amounts to adding the k-th good vertical strip of |λ, s . In other terms bσ is the same as cσ when restricted to doubly highest weight vertices.

Proposition 5.13. Let |λ, s be a highest weight vertex for U ′ q ( sl e ). Then, for all σ ∈ Π, we have cσ |λ, s = bσ |λ, s .

Proof. Write |λ, s = Ḟj |λ, s where |λ, s is the highest weight vertex for U ′ p ( sl ℓ ) associated to |λ, s , and where Ḟj = f j r . . . f j 1 is a sequence of Kashiwara crystal operators of U ′ p ( sl ℓ ). Because of Theorem A.4, the two Kashiwara crystals commute, and thus |λ, s is a doubly highest weight vertex. We prove the result by induction on r ∈ N. If r = 0, then |λ, s is a doubly highest weight vertex and this is Proposition 5.12. Suppose that the result holds for a fixed r -1 ≥ 0. Write |ν, t = f j r-1 . . . f j 1 |λ, s , so that |λ, s = f j r |ν, t . Because the crystal level-rank duality is realised in terms of abaci, we need to investigate one last time the action of f j r in the abacus. We know that f j r acts on an e-partition by adding its good addable j r -box (i.e. of content j r modulo ℓ). This corresponds to shifting a particular (white) bead one step up in the e-abacus of |ν, s , see Example A.3 for an illustration. Now, if j r 0, then this corresponds to moving down a (black) bead in the ℓ-abacus. Since the resulting abacus A(λ, s) is again totally e-periodic (the two Kashiwara crystals commute), this preserves the e-period containing this bead. If j r = 0, then moving this white bead up corresponds to moving a black bead in position (ℓ, d) in the ℓ-abacus (which is the first element of its e-period) down to position (1, de). Again, this preserves the e-period. In both cases, the reduced j r -word in the e-abacus (see [9, = cσ |λ, s .

We are now ready to prove Theorem 5.11. It remains to investigate the action of the Kashiwara crystal operators of U ′ q ( sl e ). Proof of Theorem 5.11. Write |λ, s = F i |λ, s where |λ, s is the highest weight vertex for U ′ q ( sl e ) associated to |λ, s , and where F i = fi r . . . fi 1 is a sequence of Kashiwara crystal operators of U ′ q ( sl e ). We prove the result by induction on r ∈ N. If r = 0, then |λ, s is a highest weight vertex for U ′ q ( sl e ) and this is Proposition 5.13. Suppose that the result holds for a fixed r -1 ≥ 0. Write |ν, s = fi r-1 . . . fi 1 |λ, s , so that |λ, s = fi r |ν, s . Consider the reduced i r -word for |ν, s . Again, it is preserved by the action of cσ by Property (1) of Definition 5.1, and we have f j r cσ |ν, t = cσ f j r |ν, t .

The commutation of bσ with fi r together with the induction hypothesis completes the proof.

Remark 5.14. Theorem 5.11 also yields an explicit description of the operators b1,c . It acts on any charged ℓ-partition by adding its k-th good vertical e-strip, where c is the content of the k-th addable box of κ (with respect to the order > on boxes).

5.4. Impact of conventions and relations with other results. We end this section by mentioning an alternative realisation of the H-crystal. In fact, some of the combinatorial procedures require some conventional choices, such as the maps τ and τ yielding the level-rank duality, or the order on the boxes or on the vertical strips of multipartition. Like in the case of Kashiwara crystals, see e.g.

[2, Remark 3.17] or [9, Remark 4.9] Choosing a different convention yields to a slightly different version of the Heisenberg crystal.

We have already seen in the proof of Theorem 4.4 that conventions can be adjusted to fit Losev's [START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF] or Iijima's [START_REF] Iijima | On a higher level extension of Leclerc-Thibon product theorem in q-deformed Fock spaces[END_REF] results about the action of a Heisenberg crystal operator or a Schur function respectively. This is done by using the conjugation of multipartitions. More precisely, one can decide to identify a charged ℓ-partition |λ, s with |λ ′ , s instead of |λ, s with the notations of Section 2.1.2. Then, the action of the Heisenberg crystal operators is expressed in terms of addable horizontal e-strips in the ℓ-partition. This is equivalent to changing the order on the vertical strips, applying a Heisenberg crystal operator, and then conjugate.

One could also decide to exchange the role of τ and τ in the level-rank duality, see Appendix. Then, applying a Heisenberg crystal operator on an ℓ-abacus would de decribed in terms of the corresponding e-abacus. More precisely, b1,c would then consists in shifting a ℓ-period in the eabacus in the particular case where it is totally ℓ-periodic (see also the proof of Proposition 5.12). This permits to give an interpretation of Tingley's tightening procedure on descending ℓ-abaci Proof. Recall that for this statement, we have considered the realisation of the Heisenberg crystal with the alternative version of level-rank-duality, swapping the roles of τ and τ, so that the operators b-1,c act on the e-abacus (rather than the ℓ-abacus) by removing a vertical ℓ-strip (Theorem 5.11). Remember that b-1,c = bθ b-κ where θ depends on c. Now, if an ℓ-abacus is descending [START_REF] Tingley | Three combinatorial models for sl n crystals, with applications to cylindric plane partitions[END_REF]Definition 3.6], its corresponding e-abacus is totally ℓ-periodic. In particular, the corresponding e-partition is a highest weight vertex in the U ′ p ( sl ℓ )-crystal, and we can use Proposition 5.13. In particular, b-κ and bθ act by shifting ℓ-periods in the e-abacus, and b-1,c shifts one ℓ-period, say the k-th one, one step to the left in the e-abacus. This precisely what T k does.

Finally, we mention that in another particular case, the Heisenberg crystal operator b-κ coincide with the canonical U ′ q ( sl e )-isomorphism ϕ (up to cyclage) of [START_REF] Gerber | Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A[END_REF]Theorem 5.26] used to construct an affine Robinson-Schensted correspondence. Proof. We use the notations of [START_REF] Gerber | Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A[END_REF]. First of all, because of [9, Proposition 5.7], doubly highest weight vertices are cylindric in the sense of [8, Definition 2.3], and ϕ|λ, s is therefore well defined, and simply verifies ϕ = ψ t where t is the number of pseudoperiods in |λ, s and ψ is the reduction isomorphism. In fact, by definition of κ, we have t = h, the number of (non-zero) parts of κ, and it suffices to apply the cyclage h times to |λ, s to match the formulas for b-κ and ψ t . 5.5. Examples of computations. By Remark 5.14, the Heisenberg crystal can be computed recursively from its highest weight vertices, each of which yields a unique connected component, isomorphic to the Young graph by Proposition 3.12.

The empty multipartition is obviously a highest weight vertex for H, and so is every multipartition with less than e boxes. For instance, if ℓ = 2, s = (0, 1) and e = 3, we can compute the connected components of the Heisenberg crystal of F s with highest weight vertex (-, -) and ( 0 , -). Up to rank 13, we get the following subgraph of the H-crystal.

-- We also wish to give an example of the asymptotic case. Take ℓ = 3, s = (0, (2) Relabel each ( j, d) by the second coordinate of τ-1 ( j, d), see Figure 4 for an example.

0 -1 1 0 1 -1 0 1 2 0 -1 -2 1 0 -1 0 1 2 -1 0 1 1 2 3 0 1 -1 0 -2 1 2 0 -1 0 -1 -2 -3 -4 1 0 -1 -2 0 1 2 3 -1 0 1 2 1 2 3 4 0 1 2 -1 0 1 -2 1 2 3 0 -1 0 1 -1 0 -2 -1 1 2 0 1 -1 0 0 1 -1 0 -2 -3 -4 1 2 0 -1 -2 0 -1 -2 -3 -4 -5 1 0 -1 -2 -3 -4 0 - 0 -1 1 0 0 1 -1 0 1 2 0 0 -1 -2 -3 1 0 -1 0 1 2 -1 0 1 1 2 3 0 0 1 -1 0 -2 -3 1 2 0 -1 0 -1 -2 -3 -4 1 0 -1 -2 -3 0 
(3) Replace the newly indexed beads on a 1-abacus according to this new labeling. 1, -( j -1) + ed) , and one notices that τ corresponds to taking the usual e-quotient and the e-core of a partition, where the e-core is encoded in the e-charge. More precisely, the renumbering of the beads according to τ is the well-know "folding" procedure used to compute the e-quotient, see [START_REF] James | The Representation theory of the Symmetric Group[END_REF].

Definition A.1. The (twisted) level-rank duality is the bijective map τ • (.) ′ • τ -1

Remark A.2. The map τ•τ -1 already defines a level-rank duality, this was the one studied by Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. However, the twisted version defined above (i.e. where the conjugation is added) is the one that is relevant when it comes to crystals, see Theorem A.4 below.

There is a convenient way to picture the crystal level-rank duality as follows. Starting from an ℓ-abacus, stack copies on top of each other by translating by e to the right. Then, extract a vertical slice of the resulting picture, and read off the corresponding e-partition by looking at the white beads (instead of black beads) in each column, starting from the leftmost one.

Example A.3. The abacus A(λ, s) with ℓ = 4, e = 3, λ = (1, ∅, 1 3 , 5) and s = (-1, -1, 1, 1) looks as follows (the origin is represented with the boldfaced vertical bar).

Stacking copies of A(λ, s) gives

Proof. The first point is essentially due to Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Proposition 4.6], where he uses the nontwisted version of level-rank duality, see [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Theorem 3.9] for the justification in the twisted case. The second point is [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Theorem 4.8].

Example 2 . 2 .

 22 With |λ, s as in Example 2.1, we get the following corresponding abacus A(λ, s) = . . . , (2, -5), (2, -4), (2, -3), (2, -2), (2, -1), (2, 0), (2, 2), (2, 3), . . . , (1, -5), (1, -4), (1, -3), (1, -1), (1, 1)

Figure 1 .

 1 Figure 1. Relabelling bead positions in the ℓ-abacus according to τ -1 , for ℓ = 4 and e = 3.

Example 2 . 3 .

 23 We go back to Example 2.2. The action of τ and τ -1 are represented below. 2.1.3. Wedges. Let P(s) denote the set of sequences of integers α = (α 1 , α 2 , . . . ) such that α k = sk + 1 for k sufficiently large, and set P > (s) = {(α 1 , α 2 , . . . ) ∈ P(s) | α k > α k+1 for all k ∈ Z >1 } . Definition 2.4. An elementary wedge (respectively ordered wedge) is a formal element u α = u α 1 ∧ u α 2 ∧ . . . where α ∈ P(s) (respectively α ∈ P > (s)).

3. 1 .

 1 The action of the bosons. Let us start by recalling the definition of the quantum Heisenberg algebra.

Definition 3 . 8 .

 38 Let σ ∈ Π. The Heisenberg crystal operator bσ (respectively b-σ ) is the uniquely determined map B s → B s |λ, s → |µ, s (respectively B s → B s ⊔ {0}) such that (1) if |λ, s is a doubly highest weight vertex, then |µ, s is obtained from |λ, s by shifting the k-th period of ℓ-abaci of |λ, s by σ k steps to the right (respectively to the left when possible, and b-σ |λ, s = 0 otherwise), (2) it commutes with the Kashiwara crystal operators of U ′

Figure 2 ,

 2 we wish to define the H-crystal as a graph whose arrows have minimal length. Therefore, we define the following maps b1,c = bη b-κ and b-1,d = bθ b-κ where η = κ ⊔{γ} with γ = (a, b) being the addable box of κ verifying b -a = c and where θ = κ\{γ} with γ = (a, b) being the removable box of κ verifying ba = d, Definition 3.10. The H-crystal of the wedge space F s is the graph C s with (1) vertices: all charged ℓ-partitions |λ, s with λ ∈ Π ℓ and |s| = s. (2) arrows : |λ, s c -→ |µ, s if |µ, s = b1,c |λ, s .

-Figure 3 .

 3 Figure 3. The beginning of the Young graph.

Theorem 4 . 3 .

 43 Let s ∈ Z ℓ such that |s| = s. There exist unique bases G + = {G + (λ, s) ; λ ∈ Π ℓ } and

Definition 5 . 1 .

 51 Let |λ, s be a charged ℓ-partition.(1) A (level ℓ) vertical e-strip is a sequence of e boxes γ 1 = (a 1 , b 1 , j 1 ), . . . , γ e = (a e , b e , j e ) such that no horizontal domino appears, i.e. there is no 1 ≤ i ≤ e such that a i+1 = a i and j i+1 = j i . Moreover, a vertical e-strip is called admissible if: (a) The contents of γ 1 , . . . , γ e are consecutive, say c(γ i ) = c(γ i+1 ) + 1 for all 1 ≤ i ≤ e. (b) For all 1 ≤ i < i ′ ≤ e, we have j i ≥ j i ′ . (2) The admissible vertical e-strips contained in W (λ, s) are denoted V (λ, s) . The elements of V (λ, s) are called the (admissible) vertical e-strips of |λ, s . (3) A vertical e-strip X of |λ, s is called addable if X ∩ λ = ∅ and λ ⊔ X is still an ℓ-partition . Remark 5.2. This is a generalisation to multipartitions of the usual notion of vertical strips, see for instance [21, Chapter I]. Example 5.3. Let ℓ = 3, e = 4 and

[ 26 ,

 26 Definition 3.8], thereby answering Question 1 of [26, Section 6]. Proposition 5.15. Let A be a descending ℓ-abacus. For all k ≥ 1, denote T k the k-th tightening operator associated to A. We have T k (A) = b-1,c (A) where c is determined by k.

Proposition 5 . 16 .

 516 Let |λ, s ∈ B s be a doubly highest weight vertex. Write κ = κ|λ, s . We have b-κ ξ h |λ, s = ϕ|λ, s , where h is the number of parts of κ and ξ is the cyclage isomorphism, see [8, Proposition 4.4].

For

  e = 2 and s = (3, 2, 5), the 3-partition (2, 1, 4) is clearly a highest weight vertex for H by Theorem 5.11. The corresponding connected component, up to rank 17 is the following graph.

Figure 4 .

 4 Figure 4. Relabelling bead positions in the e-abacus according to τ-1 , for ℓ = 4 and e = 3.

  

  and only if |λ, s is a highest weight vertex for H. (4) The depth of an element |λ, s in C s is |κ|λ, s |.

  Section 4.2] for details) is unchanged and ( * ) f j r cσ |ν, t = cσ f j r |ν, t .

	Therefore, we have	bσ |λ, s = bσ f j r |ν, t
		= f j r bσ |ν, t by Definition 3.8
		= f j

r cσ |ν, t by induction hypothesis = cσ f j r |ν, t by ( * )

  [START_REF] Geck | Representations of Hecke Algebras at Roots of Unity[END_REF][START_REF] Losev | Supports of simple modules in cyclotomic Cherednik categories O[END_REF], λ = (1, 3.2.1, 3.1) and e = 3, so that |λ, s is a highest weight vertex for H and is 3-asymptotic. We see in the following corresponding H-crystal that the elements bσ , for |σ| < 4, only act on the third component of |λ, s , but that b(14 ) acts already on the second component. This illustrates Theorem 4.4 (2).
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Appendix A. Crystal level-rank duality We recall, using a slightly different presentation, the results of [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Section 4] concerning the crystal version of level-rank duality.

There is a double affine quantum group action on the wedge space. In Section 2.2.1, we have explained how U ′ q ( sl e ) acts on F s . It turns out that U ′ p ( sl ℓ ), where p = -1/q, acts on F s in a similar way. More precisely we will:

(1) index ordered wedges by charged e-partitions, using an alternative bijection τ, (2) make U ′ p ( sl ℓ ) act on F s via this new indexation by swapping the roles of e and ℓ and replacing q by p. To define τ, recall that we have introduced the quantities z(n) ∈ Z, 1 ≤ y(n) ≤ ℓ and 1 ≤ x(n) ≤ e for each n ∈ Z. To each pair (1, c) ∈ {1} × Z, we associate the pair τ(1, d) = ( j, d) ∈ {1, . . . , ℓ} × Z where j = x(-c) and d = -(y(-c) -1) + ℓz(-c). In particular, τ sends the bead in position (1, c) into the rectangle z(-c), on the row x(-c) and column y(-c) (numbered from right to left within each rectangle). The τ is bijective and we can see τ-1 as the following procedure:

(1) Divide the ℓ-abacus into rectangles of size e × ℓ, where the z-th rectangle (z ∈ Z) contains the positions ( j, d) for all 1 ≤ j ≤ ℓ and -e + 1 + ze ≤ d ≤ ze.

and extracting one vertical e-abacus yields which corresponds to |(1, 2.1 2 , 2.1 4 ), (-1, 1, 0) .

We have the following induced maps

Like τ, the bijection τ induces a U ′ p ( sl ℓ )-module isomorphism, and F s has a U ′ p ( sl ℓ )-crystal, given by the same rule as the U ′ q ( sl e )-crystal by swapping the roles of e and ℓ and replacing q by p. Theorem A.4. Via level-rank duality,

(1) the U ′ q ( sl e )-action and the U ′ p ( sl ℓ )-action on F s commute, and (2) the U ′ q ( sl e )-crystal and the U ′ p ( sl ℓ )-crystal of F s commute.