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We propose a concept of chiral photonic limiters utilizing topologically protected localized midgap
defect states in a photonic waveguide. The chiral symmetry alleviates the effects of structural im-
perfections and guarantees a high level of resonant transmission for low intensity radiation. At
high intensity, the light-induced absorption can suppress the localized modes, along with the res-
onant transmission. In this case the entire photonic structure becomes highly reflective within a
broad frequency range, thus increasing dramatically the damage threshold of the limiter. Here we
demonstrate experimentally the loss-induced reflection principle of operation which is at the heart of
reflective photonic limiters using a waveguide consisting of coupled dielectric microwave resonators.

The emerging field of topological photonics aims to re-
alize photonic structures which are resilient to fabrication
imperfections by utilizing ideas developed in topology [1–
10]. In photonics, the topological phases are defined on
the reciprocal space and usually are associated with the
formation of topologically protected (TP) defect states
within photonic band-gaps. In this endeavor the manip-
ulation of various symmetries has been proven extremely
useful. An example case are resonator arrays with chiral
symmetry [11] where a topological defect state appears
to be insensitive to positional imperfections of the res-
onators [11, 12]. In this paper we connected the chiral
symmetric array to leads, thus turning the TP defect
mode to a quasi-localized resonant mode. We investi-
gated its transport properties and estabished conditions
for its robustness in the presence of losses and imperfec-
tions. Finally we utilized the TP resonant mode for the
proposal of a new class of waveguide photonic limiters.

Limiters are protecting filters transmitting low power
(or energy) input signals while blocking the signals of
excessively high power (or energy) [13–18]. Usually, a
passive limiter absorbs the high-level radiation, which
can cause its overheating. The input level above which
the transmitted signal intensity doesn’t grow with the
input is the limiting threshold (LT). Another critically
important characteristic is the limiter damage thresh-
old (LDT), above which the limiter sustains irreversible
damage. The domain between LT and LDT is the dy-
namic range (DR) of the limiter - the larger it is, the
better. Unfortunately, material limitations impose severe
restrictions on both thresholds. It is, therefore, impera-
tive to utilize appropriate photonic platforms which are
both flexible enough to provide simultaneously tunable
and low LT and high enough LDT. Importantly, these
structures should be tolerant to deviation of the material
and geometrical parameters from their ideal values.

Along these lines, the defect modes hosted by pho-
tonic band-gap [19–21] (or other resonant [22]) structures
have been exploited as an alternative to achieve flexible,
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FIG. 1. (a) The experimental set-up: The resonators are sep-
arated by distances d1 or d2 with d1 < d2. A central defect
is introduced by repeating the spacing d2; Various propos-
als for the implementation of non-linear losses in the defect
resonator: (b) A circuit with various module (sensing an-
tenna, diode, threshold DC voltage); (c) An epitaxial growth
of a material that experiences a thermally induced insulator-
to-metal phase transition; (d) Our measurements involve a
defect resonator, which includes a manually modulated ab-
sorbing patch; (e) Measured transmittance T , reflectance R
and absorption A for two different patches. The linewidth γ
(1.4 and 7.8 MHz) of the reflected signal mainly characterizes
the losses due to the absorbing patches.

high efficiency photonic limiters. In most occasions, how-
ever, limiting action is achieved by a non-linear frequency
shift of the transparency window of the photonic struc-
ture. Such a shift is inherently small and, therefore, can-
not provide broadband protection from high-power input.
Other schemes, specifically in the microwave domain, ex-
ploit PIN diodes (having spike leakage problems) [23],
TR tubes or self-attenuating superconducting transmis-
sion lines that require high power consumption [24]. To
address these issues we have recently proposed the con-
cept of reflective photonic limiters [25, 26]. Such limiters
reflect the high radiation, thereby, protecting themself -
not just the receiving device– while they provide a strong
resonant transmission for low incident radiation.
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Here we propose the use of chiral coupled resonator
waveguides (C-CROW) with alternating short and long
distances from one another (see Fig. 1), as a fertile plat-
form to implement structurally robust reflective waveg-
uide limiters with a wide DR. In the presence of a phase
slip defect [27, 28], chiral symmetry provides topological
protection to a midgap defect localized mode [11, 12]. For
low incident power (or energy) it can provide high trans-
mittance shielded from (positional) fabrication imperfec-
tions. When (non-linear) losses at the defect resonator
(triggered from high power - or energy- incident radia-
tion) exceed a critical value, the resonant defect mode
and the associated resonant transmission are dramati-
cally suppressed turning the C-CROW highly reflective
(not absorptive!) for a broad frequency range. As a result,
the LDT increases with a consequent increase of the DR
of the limiter. Using a microwave C-CROW arrangement
we have tested experimentally the operational principle
of this new class of TP reflective photonic limiter by in-
vestigating the sensitivity and transport characteristics
of the TP resonant defect mode in the presence of losses.

The set-up (see Fig. 1a) consists of N = 21 high index
cylindrical resonators (radius r = 4mm, height h = 5mm,
made of ceramics with refraction index n ≈ 6) with
eigenfrequency around ν0 = 6.655 GHz and linewidth
γ = 1.4 MHz [29]. The resonators are placed at alternat-
ing distances d1 = 12 mm and d2 = 14 mm corresponding
to strong (t1 = 38 MHz) and weak (t2 = 21 MHz) evanes-
cent couplings, respectively. A topological defect at the
11th resonator is introduced by repeating the spacing d2
[11, 12]. On the left hand side of the array, close to
the first resonator, we have placed a kink antenna that
emits a signal exciting the first TE1 resonant mode of the
resonators. The structure is shielded from above with a
metallic plate (not shown) where a movable loop antenna
(receiving antenna) is mounted and is coupled to the 13th
resonator. The kink antenna couples to the electric field
that is in the xy-plane, whereas the loop antenna couples
to the magnetic field, which is in the z-direction.

We assume that the defect resonator incorporates a
nonlinear absorption mechanism, i.e. we assume that its
losses are self-regulated depending on the strength of the
incident radiation. One option to incorporate nonlin-
ear losses is via an external element (fast diodes), see
Fig. 1(b). This option provides on-the-fly reconfigurabil-
ity of the LT via an externally tuned DC voltage UDC.
An alternative mechanism is associated with temperature
driven insulator-to-metal phase transition materials, like
V O2 [30–33], which can be deposited on top of the defect
resonator (see Fig. 1c).

In our experiment we are not concerned with the phys-
ical origin of the nonlinear losses at the defect resonator.
Rather we focus on demonstrating their effects on the
transport properties of the photonic structure and thus
establishing the operational principle of (structurally)
robust reflective photonic limiters with wide dynami-

cal range. Therefore, we have included losses γD by
placing an absorbing patch on top of the resonator [see
Fig. 1(d)]. This process results in a slight shift of the real
part of the permittivity of the defect resonator, which we
corrected by using resonators with slightly higher eigen-
frequency. The linewidth γ has been used in order to
quantify the losses of the resonators.

In Fig. 1(e) we show the transmittance T , reflectance
R, and absorption A = 1−T −R for two resonators with
different losses. The transmittance is measured from the
kink antenna to the loop antenna, which was positioned
above the resonator. The reflectance is measured from
the kink antenna. We observe that the transmittance
of the stand-alone lossy resonator reduces as the losses
increase, thus acting as a limiter. However this reduction
comes to the expense of increasing absorption, i.e. the
stand-alone lossy resonator acts as a sacrificial limiter.

The photonic structure is described by a one-
dimensional (1D) tight-binding Hamiltonian

HP =
∑
n

νn|n〉〈n|+
∑
n

tn(|n〉〈n+ 1|+ |n+ 1〉〈n|, (1)

where n = 1, 2, . . . , 21 enumerates the resonators, νn =
ν = ν0 − iγ is the resonance frequency of the nth indi-
vidual resonator and tn(= t1 or t2) is the coupling be-
tween nearest resonators. The band-structure consists of
two mini-bands ν0 − t1 − t2 < ν < ν0 − |t1 − t2| and
ν0 + |t1 − t2| < ν < ν0 + t1 + t2 separated by a finite
gap of width 2|t1 − t2|. In the presence of the defect res-
onator at n0 = 11 a TP defect mode at νD = ν0 [11],[12]
is created. This mode is exponentially localized around
the defect resonator. Its shape, in the limit of infinite
many resonators, is [11]

ψDn ∼

{
1√
ξ
e−|n−n0|/ξ; n odd

0; n even
(2)

where ψDn is the amplitude of the defect mode at the nth
resonator and ξ = 1/ ln(t1/t2) is the so-called localization
length of the mode [11]. Hamiltonian Eq. (1) is invariant
under a chiral symmetry i.e. {HP , C} = 0 where {· · ·}
indicates an anti-commutation and C = Peven − Podd

satisfies the relations C2 = 1 (Peven/odd is the projection
operator in the even/odd sites). The staggering form
of ψD is a consequence of the chiral symmetry which
also provides topological protection to ψD and νD against
reasonable variations of t1 and t2 [11, 12].

We are modeling the transmitted (reflected) antenna,
coupled to nT = 1 (nR = 13) resonator, by a 1D semi-
infinite tight-binding lattice with coupling constant tL =
(t1 + t2)/2 and on-site energies νL = ν0. The associated
scattering matrix takes the form [35]

Ŝ = −1̂+
2i sin k

tL
WT 1

Heff − ν
W ; Heff = HP+

eik

tL
WWT ,

(3)
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FIG. 2. Measurements of the (a) transmittance T ; (b) re-
flectance R; and (c) absorption A for the C-CROW of Fig. 1.
We considered two different values of γD = 1.4 MHz and
γD = 7.8 MHz. All other resonators have γ = 1.4 MHz.
Numerical calculations for the (d) transmittance T ; (e) re-
flectance R and (f) absorption A where we assumed that all
resonators are lossless, i.e. γ = 0, apart from the defect res-
onator which has γD = 1.4 MHz (solid lines) and γD = 7.8
MHz (dashed lines).

where 1̂ is the 2 × 2 identity matrix, Wnm =
wT δn,nT

δm,1 + wRδn,nR
δm,2 is a N × 2 matrix that de-

scribes the coupling between the array and the antennas,
ν = νL + 2tL cos k is the frequency of propagating waves
at the antennas and k is their associated wavevector.

When the system is coupled to the antennas, ψD

becomes a quasi-localized resonant mode at frequency
νD ≈ ν0, with a large but finite lifetime τ :

τ−1 ∼
〈
ψD
∣∣∣∣eiktL WWT

∣∣∣∣ψD〉 = |wT |2|ψD1 |2+|wR|2|ψD13|2 ,

(4)
where |ψD1 |2, |ψD13|2 are given by Eq. (2).

The measured transmittance T = |S12|2, reflectance
R = |S11|2 and absorption A = 1−T −R versus frequen-
cies ν of the C-CROW (with global γ = 1.4 MHz = γD)
are shown in Figs. 2(a,b,c) (solid lines). Measurements
of the widths of the mini-bands and of the gap allow us
to extract the couplings t1 = 38 MHz, t2 = 21 MHz. We
find that the presence of the defect resonator results in
a transmission peak at ν = νD inside the band gap. A
fitting of the height of this peak, for various γD values,
gives wT = 10.915 MHz, wR = 3.6875 MHz (see Fig. 3).
The small peak in the absorption (solid line in Fig. 2(c))
is associated with the fact that all our resonators have
a small ohmic component. In Fig. 2(a) we also report
(dashed lines) the measured transmittance for a defect
with additional losses, i.e. γD = 7.8 MHz. We find that
even a small increase in γD strongly suppresses the reso-
nant transmission, see Fig. 2(a).

In Fig. 2(b) we show R(ν) of the C-CROW for γD =

FIG. 3. The transmittance T (up) and absorption A
(down) versus γD: (Left) for the C-CROW with resonator
losses γ = 1.4MHz (black lines-numerics/circles-experiment)
and for the stand-alone resonator (blue dashed-dotted lines-
numerics/diamonds-experiment). (Right) Numerics for the
ideal C-CROW (red dashed lines) with γ = 0 at all other
resonators. Symbols (blue dashed-dotted lines) correspond
to measurements (numerics) of T and A for the stand-alone
resonator. Shadowed areas indicate deviations in T,A due to
randomness in the couplings.

1.4 MHz and γD = 7.8 MHz (solid and dashed lines, re-
spectively). We find that the suppression in T (νD) is ac-
companied by an increase in R(νD). Moreover A(νD) is
decreasing as γD increases, see Fig. 2(c). In other words,
our photonic structure becomes reflective (not absorp-
tive) as the losses of the defect resonator increase. This
behavior is in distinct contrast to the case of a single
(sacrificial) lossy resonator [see Fig. 1(e)] where the drop
in transmittance is associated with an increase of absorp-
tion. These features are also observed in the simulations
of an ideal C-CROW where all resonators have zero in-
trinsic losses γ = 0, see Figs. 2(d,e,f).

An overview of the measured (black circles) T (νD),
A(νD) and the corresponding numerical results (black
solid lines) for the C-CROW of Fig. 1 versus γD are re-
ported at the left column of Fig. 3. We find that an
increase of γD leads to a decrease of T (νD) and A(νD)
of the photonic structure. This behavior is contrasted
with the measurements (diamonds) and numerical calcu-
lations (dashed-dotted lines) of a stand-alone lossy res-
onator. In the latter case we observe relatively large T
values T ∼ 10−1 as opposed to T ∼ 10−4 for the photonic
structure, i.e. ultralow LT. For moderate γD-values the
absorption of the stand-alone resonator reaches large val-
ues A(γD = 0.004 GHz) ≈ 0.8 corresponding to low LDT.
In contrast, the C-CROW takes absorption values, which
are at least one order of magnitude smaller (high LDT).
At the right column of Fig. 3, we report the simulations
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FIG. 4. (a) Simulations for an ideal C-CROW consisting of
lossless resonators with γ = 0. Filled black circles correspond
to Eq. 2 for the defect mode profile. Solid lines correspond to
the simulations of the resonant defect mode profile for various
γD. For symmetry reasons we assumed that the antennas
are coupled to the first and last resonator. (b) Experimental
resonant mode profiles for various γD-values. The measured
losses at all resonators are γ = 1.4 MHz.

for T (νD), A(νD) for an ideal (γ = 0) C-CROW (dashed
lines) versus the losses γD of the defect resonator. Again,
we compare these results to the theoretical/experimental
(dash-dotted lines/diamonds) results for the stand-alone
lossy resonator. Both cases show the same qualitative be-
havior. However, the C-CROW shows a two-order lower
LT (i.e. smaller γD-value for which the decay of transmit-
tance occurs) as compared to a stand-alone resonator. At
the same time the LDT of the photonic structure is at
least two orders of magnitude higher than the one associ-
ated with the stand-alone resonator. The latter acquires
a maximum value of absorption A ≈ 0.8 at γD ≈ 0.01
as opposed to A ≈ 0.01 acquired by the C-CROW. The
maximum absorption for the photonic structure occurs
at much lower values of γD ∼ 10−4 which in the case of a
non-linear lossy mechanism correspond to rather small,
and therefore harmless, incident radiation.

The transport features of the TP resonant mode have
been further investigated in case of positional random-
ness corresponding to a box distribution for the coupling
constants t̃1,2 ∈ [t1,2 − 2MHz, t1,2 + 2MHz]. The shad-
owed area in Fig. 3 indicates the variations in T,A. For
γD ≈ 0 (not shown) the resonant frequency ν0 ≈ 6.655
GHz remains protected and the resonant transmission is
unaffected for both a perfect C-CROW γ = 0 and for
resonator with losses γ = 1.4MHz. Moreover the exper-
imental data in Fig. 3 incorporate an intrinsic disorder
associated with the variation of the bare resonance fre-
quencies, within a range of 1MHz, and the precision of
the resonator positioning, of the order of 0.2mm (cou-
pling uncertainty ≈ 500 kHz). Nevertheless, the trans-
port features remain largely unaffected, see Fig. 3.

The fragility of the resonant localised mode at moder-
ate γD-values is further analysed in Fig. 4. In Fig. 4(a)
we report the simulated resonant defect fields for an
ideal C-CROW (i.e. γ = 0) and for various γD-values.
For γD = 0, a nice agreement between the numerics

and Eq. (2) is observed, indicating that the coupling to
the antennas does not affect the resonant mode profile.
As γD increases, a gradual deviation from the profile of
Eq. (2) occurs and eventually a suppression of the defect
mode is observed. At γD = 20 MHz the resonant local-
ized mode is suppressed enough so that the field intensity
in the vicinity of the defect lossy resonator is two orders
smaller than the corresponding one for γD = 0. Thus
the lossy defect resonator is protected from damages in-
duced by heat or electrical breakdown. For the C-CROW
of Fig. 1a it implies a huge increase in its DR. The com-
parison with the experimental data [see Fig. 4(b)], where
γ = 1.4MHz, indicates that the underlying mechanism
which is responsible for the destruction of the resonant
defect mode remains unaffected.

The destruction of the resonant defect mode can be un-
derstood intuitively as a result of a competition between
two mechanisms that control the dwell time of photons
in the resonant state. The first one is associated with the
boundary losses due to the coupling of the photonic struc-
ture to the antennas. It results to a resonant linewidth
Γedge ∼ τ−1, see Eq. 4. The other mechanism is as-
sociated with bulk losses and it leads to an additional
broadening of the resonance linewidth. From first order
perturbation theory Γbulk ≈ γD|ψ11|2 + γ

∑
n 6=11 |ψn|2 =

(γD − γ)/ξ + γ. For small values of γD such that
Γbulk < Γedge, the dwell time is determined by Γedge

and it is essentially constant. Thus the absorption of
the photons that populate the resonant state increases,
as they are trapped for relatively long time in the lossy
C-CROW [see the peak of the black line in Fig. 2(c)].
When Γbulk ≈ Γedge, the dwell time itself begins to di-
minish, and the resonant mode is spoiled. For even larger
values of γD the photons do not dwell at all in the res-
onant state and reflection from the whole structure be-
comes the dominant mechanism. As a result, the absorp-
tion decreases to zero. The above argumentation applies
equally well for the stand-alone defect and for the pho-
tonic structure. However, in the latter case the condition
for the destruction of the resonant mode Γbulk ≈ Γedge

is achieved for exponentially smaller values of γD. It is
exactly this effect that our proposal is harvesting in order
to increase the damaging threshold (and the DR) of the
photonic waveguide limiter.
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on Topological Insulators, Lecture Notes in Physics 919,
Cambridge University Press (2016)

[12] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, H. Schome-
rus, Nat. Comm. 6, 6710 (2015)

[13] L. W. Tutt and T. F. Boggess, Prog. Quant. Electr. 17,
299-338 (1993)

[14] A. E. Siegman, Appl. Opt. 1, 739-744 (1962).
[15] J. E. Geusic, S. Singh and D. W. Tipping and T. C. Rich,

Phys. Rev. Lett. 19, 1126-1128 (1967).
[16] M. Scalora, J. P. Dowling, C. M. Bowden and M. J. Bloe-

mer, Phys. Rev. Lett. 73, 1368-1371 (1994)
[17] T. F. Boggess, S. C. Moss, I. W. Boyd and A. L. Smirl,

Opt. Lett. 9, 291-293 (1984).
[18] M. Heinrich, F. Eilenberger, R. Keil, F. Dreisow, E.

Suran, F. Louradour, A. Tünnermann, T. Pertsch, S.
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