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The emerging field of topological photonics aims to realize photonic structures which are resilient to fabrication imperfections by utilizing ideas developed in topology [1][2][3][4][5][6][7][8][9][10]. In photonics, the topological phases are defined on the reciprocal space and usually are associated with the formation of topologically protected (TP) defect states within photonic band-gaps. In this endeavor the manipulation of various symmetries has been proven extremely useful. An example case are resonator arrays with chiral symmetry [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF] where a topological defect state appears to be insensitive to positional imperfections of the resonators [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF]12]. In this paper we connected the chiral symmetric array to leads, thus turning the TP defect mode to a quasi-localized resonant mode. We investigated its transport properties and estabished conditions for its robustness in the presence of losses and imperfections. Finally we utilized the TP resonant mode for the proposal of a new class of waveguide photonic limiters.

Limiters are protecting filters transmitting low power (or energy) input signals while blocking the signals of excessively high power (or energy) [13][14][15][16][17][18]. Usually, a passive limiter absorbs the high-level radiation, which can cause its overheating. The input level above which the transmitted signal intensity doesn't grow with the input is the limiting threshold (LT). Another critically important characteristic is the limiter damage threshold (LDT), above which the limiter sustains irreversible damage. The domain between LT and LDT is the dynamic range (DR) of the limiter -the larger it is, the better. Unfortunately, material limitations impose severe restrictions on both thresholds. It is, therefore, imperative to utilize appropriate photonic platforms which are both flexible enough to provide simultaneously tunable and low LT and high enough LDT. Importantly, these structures should be tolerant to deviation of the material and geometrical parameters from their ideal values.

Along these lines, the defect modes hosted by photonic band-gap [19][20][21] (or other resonant [22]) structures have been exploited as an alternative to achieve flexible, high efficiency photonic limiters. In most occasions, however, limiting action is achieved by a non-linear frequency shift of the transparency window of the photonic structure. Such a shift is inherently small and, therefore, cannot provide broadband protection from high-power input. Other schemes, specifically in the microwave domain, exploit PIN diodes (having spike leakage problems) [START_REF] Garver | Microwave Diode Control Devices[END_REF], TR tubes or self-attenuating superconducting transmission lines that require high power consumption [START_REF] Booth | [END_REF]. To address these issues we have recently proposed the concept of reflective photonic limiters [25,26]. Such limiters reflect the high radiation, thereby, protecting themselfnot just the receiving device-while they provide a strong resonant transmission for low incident radiation.

Here we propose the use of chiral coupled resonator waveguides (C-CROW) with alternating short and long distances from one another (see Fig. 1), as a fertile platform to implement structurally robust reflective waveguide limiters with a wide DR. In the presence of a phase slip defect [27,28], chiral symmetry provides topological protection to a midgap defect localized mode [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF]12]. For low incident power (or energy) it can provide high transmittance shielded from (positional) fabrication imperfections. When (non-linear) losses at the defect resonator (triggered from high power -or energy-incident radiation) exceed a critical value, the resonant defect mode and the associated resonant transmission are dramatically suppressed turning the C-CROW highly reflective (not absorptive!) for a broad frequency range. As a result, the LDT increases with a consequent increase of the DR of the limiter. Using a microwave C-CROW arrangement we have tested experimentally the operational principle of this new class of TP reflective photonic limiter by investigating the sensitivity and transport characteristics of the TP resonant defect mode in the presence of losses.

The set-up (see Fig. 1a) consists of N = 21 high index cylindrical resonators (radius r = 4mm, height h = 5mm, made of ceramics with refraction index n ≈ 6) with eigenfrequency around ν 0 = 6.655 GHz and linewidth γ = 1.4 MHz [29]. The resonators are placed at alternating distances d 1 = 12 mm and d 2 = 14 mm corresponding to strong (t 1 = 38 MHz) and weak (t 2 = 21 MHz) evanescent couplings, respectively. A topological defect at the 11th resonator is introduced by repeating the spacing d 2 [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF]12]. On the left hand side of the array, close to the first resonator, we have placed a kink antenna that emits a signal exciting the first TE 1 resonant mode of the resonators. The structure is shielded from above with a metallic plate (not shown) where a movable loop antenna (receiving antenna) is mounted and is coupled to the 13th resonator. The kink antenna couples to the electric field that is in the xy-plane, whereas the loop antenna couples to the magnetic field, which is in the z-direction.

We assume that the defect resonator incorporates a nonlinear absorption mechanism, i.e. we assume that its losses are self-regulated depending on the strength of the incident radiation. One option to incorporate nonlinear losses is via an external element (fast diodes), see Fig. 1(b). This option provides on-the-fly reconfigurability of the LT via an externally tuned DC voltage U DC . An alternative mechanism is associated with temperature driven insulator-to-metal phase transition materials, like V O 2 [30][START_REF] Crunteanu | Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems[END_REF][START_REF] Phoempoon | The Scientific World Journal 2014[END_REF][START_REF] Pergament | ICMP 2013[END_REF], which can be deposited on top of the defect resonator (see Fig. 1c).

In our experiment we are not concerned with the physical origin of the nonlinear losses at the defect resonator. Rather we focus on demonstrating their effects on the transport properties of the photonic structure and thus establishing the operational principle of (structurally) robust reflective photonic limiters with wide dynami-cal range. Therefore, we have included losses γ D by placing an absorbing patch on top of the resonator [see Fig. 1(d)]. This process results in a slight shift of the real part of the permittivity of the defect resonator, which we corrected by using resonators with slightly higher eigenfrequency. The linewidth γ has been used in order to quantify the losses of the resonators.

In Fig. 1(e) we show the transmittance T , reflectance R, and absorption A = 1 -T -R for two resonators with different losses. The transmittance is measured from the kink antenna to the loop antenna, which was positioned above the resonator. The reflectance is measured from the kink antenna. We observe that the transmittance of the stand-alone lossy resonator reduces as the losses increase, thus acting as a limiter. However this reduction comes to the expense of increasing absorption, i.e. the stand-alone lossy resonator acts as a sacrificial limiter.

The photonic structure is described by a onedimensional (1D) tight-binding Hamiltonian

H P = n ν n |n n| + n t n (|n n + 1| + |n + 1 n|, (1) 
where n = 1, 2, . . . , 21 enumerates the resonators, ν n = ν = ν 0 -iγ is the resonance frequency of the nth individual resonator and t n (= t 1 or t 2 ) is the coupling between nearest resonators. The band-structure consists of two mini-bands

ν 0 -t 1 -t 2 < ν < ν 0 -|t 1 -t 2 | and ν 0 + |t 1 -t 2 | < ν < ν 0 + t 1 + t 2 separated by a finite gap of width 2|t 1 -t 2 |.
In the presence of the defect resonator at n 0 = 11 a TP defect mode at ν D = ν 0 [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF], [12] is created. This mode is exponentially localized around the defect resonator. Its shape, in the limit of infinite many resonators, is [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF] 

ψ D n ∼ 1 √ ξ e -|n-n0|/ξ ; n odd 0; n even (2) 
where ψ D n is the amplitude of the defect mode at the nth resonator and ξ = 1/ ln(t 1 /t 2 ) is the so-called localization length of the mode [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF]. Hamiltonian Eq. ( 1) is invariant under a chiral symmetry i.e. {H P , C} = 0 where {• • •} indicates an anti-commutation and C = P even -P odd satisfies the relations C 2 = 1 (P even/odd is the projection operator in the even/odd sites). The staggering form of ψ D is a consequence of the chiral symmetry which also provides topological protection to ψ D and ν D against reasonable variations of t 1 and t 2 [START_REF] Asbóth | A Short Course on Topological Insulators[END_REF]12].

We are modeling the transmitted (reflected) antenna, coupled to n T = 1 (n R = 13) resonator, by a 1D semiinfinite tight-binding lattice with coupling constant t L = (t 1 + t 2 )/2 and on-site energies ν L = ν 0 . The associated scattering matrix takes the form [START_REF] Datta | Electronic Transport in Mesoscopic Systems[END_REF] where 1 is the 2 × 2 identity matrix,

Ŝ = -1+ 2i sin k t L W T 1 H ef f -ν W ; H ef f = H P + e ik t L W W T , (3) 
W nm = w T δ n,n T δ m,1 + w R δ n,n R δ m,2
is a N × 2 matrix that describes the coupling between the array and the antennas, ν = ν L + 2t L cos k is the frequency of propagating waves at the antennas and k is their associated wavevector.

When the system is coupled to the antennas, ψ D becomes a quasi-localized resonant mode at frequency ν D ≈ ν 0 , with a large but finite lifetime τ : 2(a,b,c) (solid lines). Measurements of the widths of the mini-bands and of the gap allow us to extract the couplings t 1 = 38 MHz, t 2 = 21 MHz. We find that the presence of the defect resonator results in a transmission peak at ν = ν D inside the band gap. A fitting of the height of this peak, for various γ D values, gives w T = 10.915 MHz, w R = 3.6875 MHz (see Fig. 3). The small peak in the absorption (solid line in Fig. 2(c)) is associated with the fact that all our resonators have a small ohmic component. In Fig. 2(a) we also report (dashed lines) the measured transmittance for a defect with additional losses, i.e. γ D = 7.8 MHz. We find that even a small increase in γ D strongly suppresses the resonant transmission, see Fig. 2(a).

τ -1 ∼ ψ D e ik t L W W T ψ D = |w T | 2 |ψ D 1 | 2 +|w R | 2 |ψ D 13 | 2 , (4) 
In Fig. 2 1.4 MHz and γ D = 7.8 MHz (solid and dashed lines, respectively). We find that the suppression in T (ν D ) is accompanied by an increase in R(ν D ). Moreover A(ν D ) is decreasing as γ D increases, see Fig. 2(c). In other words, our photonic structure becomes reflective (not absorptive) as the losses of the defect resonator increase. This behavior is in distinct contrast to the case of a single (sacrificial) lossy resonator [see Fig. 1(e)] where the drop in transmittance is associated with an increase of absorption. These features are also observed in the simulations of an ideal C-CROW where all resonators have zero intrinsic losses γ = 0, see Figs. 2(d,e,f).

An overview of the measured (black circles) T (ν D ), A(ν D ) and the corresponding numerical results (black solid lines) for the C-CROW of Fig. 1 versus γ D are reported at the left column of Fig. 3. We find that an increase of γ D leads to a decrease of T (ν D ) and A(ν D ) of the photonic structure. This behavior is contrasted with the measurements (diamonds) and numerical calculations (dashed-dotted lines) of a stand-alone lossy resonator. In the latter case we observe relatively large T values T ∼ 10 -1 as opposed to T ∼ 10 -4 for the photonic structure, i.e. ultralow LT. For moderate γ D -values the absorption of the stand-alone resonator reaches large values A(γ D = 0.004 GHz) ≈ 0.8 corresponding to low LDT. In contrast, the C-CROW takes absorption values, which are at least one order of magnitude smaller (high LDT). At the right column of Fig. 3, we report the simulations for T (ν D ), A(ν D ) for an ideal (γ = 0) C-CROW (dashed lines) versus the losses γ D of the defect resonator. Again, we compare these results to the theoretical/experimental (dash-dotted lines/diamonds) results for the stand-alone lossy resonator. Both cases show the same qualitative behavior. However, the C-CROW shows a two-order lower LT (i.e. smaller γ D -value for which the decay of transmittance occurs) as compared to a stand-alone resonator. At the same time the LDT of the photonic structure is at least two orders of magnitude higher than the one associated with the stand-alone resonator. The latter acquires a maximum value of absorption A ≈ 0.8 at γ D ≈ 0.01 as opposed to A ≈ 0.01 acquired by the C-CROW. The maximum absorption for the photonic structure occurs at much lower values of γ D ∼ 10 -4 which in the case of a non-linear lossy mechanism correspond to rather small, and therefore harmless, incident radiation.

The transport features of the TP resonant mode have been further investigated in case of positional randomness corresponding to a box distribution for the coupling constants t1,2 ∈ [t 1,2 -2M Hz, t 1,2 + 2M Hz]. The shadowed area in Fig. 3 indicates the variations in T, A. For γ D ≈ 0 (not shown) the resonant frequency ν 0 ≈ 6.655 GHz remains protected and the resonant transmission is unaffected for both a perfect C-CROW γ = 0 and for resonator with losses γ = 1.4MHz. Moreover the experimental data in Fig. 3 incorporate an intrinsic disorder associated with the variation of the bare resonance frequencies, within a range of 1MHz, and the precision of the resonator positioning, of the order of 0.2mm (coupling uncertainty ≈ 500 kHz). Nevertheless, the transport features remain largely unaffected, see Fig. 3.

The fragility of the resonant localised mode at moderate γ D -values is further analysed in Fig. 4. In Fig. 4(a) we report the simulated resonant defect fields for an ideal C-CROW (i.e. γ = 0) and for various γ D -values. For γ D = 0, a nice agreement between the numerics and Eq. ( 2) is observed, indicating that the coupling to the antennas does not affect the resonant mode profile. As γ D increases, a gradual deviation from the profile of Eq. ( 2) occurs and eventually a suppression of the defect mode is observed. At γ D = 20 MHz the resonant localized mode is suppressed enough so that the field intensity in the vicinity of the defect lossy resonator is two orders smaller than the corresponding one for γ D = 0. Thus the lossy defect resonator is protected from damages induced by heat or electrical breakdown. For the C-CROW of Fig. 1a it implies a huge increase in its DR. The comparison with the experimental data [see Fig. 4(b)], where γ = 1.4MHz, indicates that the underlying mechanism which is responsible for the destruction of the resonant defect mode remains unaffected.

The destruction of the resonant defect mode can be understood intuitively as a result of a competition between two mechanisms that control the dwell time of photons in the resonant state. The first one is associated with the boundary losses due to the coupling of the photonic structure to the antennas. It results to a resonant linewidth Γ edge ∼ τ -1 , see Eq. 4. The other mechanism is associated with bulk losses and it leads to an additional broadening of the resonance linewidth. From first order perturbation theory Γ bulk ≈ γ D |ψ 11 | 2 + γ n =11 |ψ n | 2 = (γ D -γ)/ξ + γ. For small values of γ D such that Γ bulk < Γ edge , the dwell time is determined by Γ edge and it is essentially constant. Thus the absorption of the photons that populate the resonant state increases, as they are trapped for relatively long time in the lossy C-CROW [see the peak of the black line in Fig. 2(c)]. When Γ bulk ≈ Γ edge , the dwell time itself begins to diminish, and the resonant mode is spoiled. For even larger values of γ D the photons do not dwell at all in the resonant state and reflection from the whole structure becomes the dominant mechanism. As a result, the absorption decreases to zero. The above argumentation applies equally well for the stand-alone defect and for the photonic structure. However, in the latter case the condition for the destruction of the resonant mode Γ bulk ≈ Γ edge is achieved for exponentially smaller values of γ D . It is exactly this effect that our proposal is harvesting in order to increase the damaging threshold (and the DR) of the photonic waveguide limiter.
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 1 FIG. 1. (a) The experimental set-up: The resonators are separated by distances d1 or d2 with d1 < d2. A central defect is introduced by repeating the spacing d2; Various proposals for the implementation of non-linear losses in the defect resonator: (b) A circuit with various module (sensing antenna, diode, threshold DC voltage); (c) An epitaxial growth of a material that experiences a thermally induced insulatorto-metal phase transition; (d) Our measurements involve a defect resonator, which includes a manually modulated absorbing patch; (e) Measured transmittance T , reflectance R and absorption A for two different patches. The linewidth γ (1.4 and 7.8 MHz) of the reflected signal mainly characterizes the losses due to the absorbing patches.

FIG. 2 .

 2 FIG. 2. Measurements of the (a) transmittance T ; (b) reflectance R; and (c) absorption A for the C-CROW of Fig. 1. We considered two different values of γD = 1.4 MHz and γD = 7.8 MHz. All other resonators have γ = 1.4 MHz. Numerical calculations for the (d) transmittance T ; (e) reflectance R and (f) absorption A where we assumed that all resonators are lossless, i.e. γ = 0, apart from the defect resonator which has γD = 1.4 MHz (solid lines) and γD = 7.8 MHz (dashed lines).

where |ψ D 1 | 2

 12 , |ψ D 13 | 2 are given by Eq. (2). The measured transmittance T = |S 12 | 2 , reflectance R = |S 11 | 2 and absorption A = 1 -T -R versus frequencies ν of the C-CROW (with global γ = 1.4 MHz = γ D ) are shown in Figs.

FIG. 3 .

 3 FIG. 3. The transmittance T (up) and absorption A (down) versus γD: (Left) for the C-CROW with resonator losses γ = 1.4MHz (black lines-numerics/circles-experiment) and for the stand-alone resonator (blue dashed-dotted linesnumerics/diamonds-experiment). (Right) Numerics for the ideal C-CROW (red dashed lines) with γ = 0 at all other resonators. Symbols (blue dashed-dotted lines) correspond to measurements (numerics) of T and A for the stand-alone resonator. Shadowed areas indicate deviations in T, A due to randomness in the couplings.

FIG. 4 .

 4 FIG. 4. (a) Simulations for an ideal C-CROW consisting of lossless resonators with γ = 0. Filled black circles correspond to Eq. 2 for the defect mode profile. Solid lines correspond to the simulations of the resonant defect mode profile for various γD. For symmetry reasons we assumed that the antennas are coupled to the first and last resonator. (b) Experimental resonant mode profiles for various γD-values. The measured losses at all resonators are γ = 1.4 MHz.
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