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allow the addition of other kernel density functions defined on R + , and arbitrary kernels to describe physical phenomena involved in the evolution of the number density function. The implementation is verified with a set of zerodimensional cases involving aggregation and breakage problems. Comparison to the rigorous solution of the PBE provides validation for these cases. The

Introduction

The spatial and temporal evolution of a discrete population of particles can be described by a population balance equation (PBE) [START_REF] Ramkrishna | Population Balances: Theory and Applications to Particulate Systems in Engineering[END_REF], which is an evolution equation for the number density function (NDF) associated to the particle population. The NDF can evolve due to discontinuous phenomena such as nucleation, aggregation, breakage and evaporation, and due to continuous phenomena such as convection and diffusion. Examples of industrial processes, involving the evolution of a particle population include, but certainly are not limited to, precipitation, polymerization and combustion [START_REF] Becker | Coupled population balance-CFD simulation of droplet breakup in a high pressure homogenizer[END_REF], sprays [START_REF] Laurent | Multi-fluid Modeling of Laminar Polydispersed Spray Flames: Origin, Assumptions and Comparison of the Sectional and Sampling Methods[END_REF] and aerosols [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF][START_REF] Mcgraw | Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments[END_REF].

In this work, we concentrate on the case of a NDF with only one internal coordinate, representing the particle size. Approximate solutions of the corresponding PBE can be determined using several approaches, including Monte-Carlo methods [START_REF] Lin | Solution of the population balance 29 equation using constant-number Monte Carlo[END_REF][START_REF] Meimaroglou | Monte Carlo simulation for the solution of the bi-variate dynamic population balance equation in batch particulate systems[END_REF][START_REF] Rosner | MC simulation of aerosol aggregation and simultaneous spheroidization[END_REF][START_REF] Smith | Constant-number Monte Carlo simulation of population balances[END_REF][START_REF] Zhao | Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems[END_REF][START_REF] Zhao | A population balance-Monte Carlo method for particle coagulation in spatially inhomogeneous systems[END_REF], which, however, present challenges in practical applications due to their computational cost. Some authors introduce a discretization along the size variable, leading to the sectional method or the method of classes [START_REF] Alopaeus | Solution of population balances with breakage and agglomeration by high-order momentconserving method of classes[END_REF][START_REF] Balakin | Coupling STAR-CD with a population-balance technique based on the classes method[END_REF][START_REF] Bannari | Threedimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns[END_REF][START_REF] Becker | Investigation of discrete population balance models and breakage kernels for dilute emulsification systems[END_REF][START_REF] Hounslow | Discretized population balance for nucleation, growth, and aggregation[END_REF][START_REF] Hounslow | A discretized population balance for continuous systems at steady state[END_REF]Kumar and Ramkrishna, 1996a,b;[START_REF] Muhr | Crystallization and precipitation engineering-VI. Solving population balance in the case of the precipitation of silver bromide crystals with high primary nucleation rates by using the first order upwind differentiation[END_REF][START_REF] Puel | Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. part 1: a resolution algorithm based on the method of classes[END_REF][START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF]. Similarly to Monte Carlo methods, this approach is often computationally too demanding when applied to large-scale problems of industrial interest, as observed by Marchisio et al. (2003b). To overcome this issue, hybrid methods between sectional and moment methods are developed (see Nguyen et al. (2016) and references therein), but they are not the subject of this paper.

A widely adopted and sufficiently accurate approach to find approximate solutions of the PBE for engineering applications is the quadrature method of moments (QMOM), originally introduced by [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF], and extensively applied to several problems in chemical engineering (see [START_REF] Gavi | CFD modelling of nano-particle precipitation in confined impinging jet reactors[END_REF]; [START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF]; [START_REF] Petitti | Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm[END_REF] for examples). The QMOM approach considers a discrete set of moments of the NDF, constituted by an even number of moments. The NDF is then approximated with a discrete weighted sum of Dirac delta functions, uniquely determined by means of a moment inversion algorithm [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF][START_REF] Gordon | Error bounds in equilibrium statistical mechanics[END_REF][START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF]. The extended QMOM (EQMOM) [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] introduced the capability of using a basis of non-negative kernel density functions (KDF) to approximate the NDF in place of Dirac delta functions. This development allows some of the limitations of QMOM, that appear when dealing with problems that require the evaluation of the NDF at a particular value of the internal coordinate (i.e. problems involving evaporation term or any other continuous size decreasing term [START_REF] Massot | A robust moment method for evaluation of the disappearance rate of evaporating sprays[END_REF], to be addressed. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] proposed the EQMOM procedure for β and Γ KDF, while Madadi-Kandjani and Passalacqua (2015) considered log-normal KDF. The EQMOM reconstruction can be done for every realizable moment set (i.e. moments of a positive NDF), just not reproducing eventually the last moment. In particular, it can deal with the degenerate cases, encountered when the moments are not strictly realizable: the only possible representation of the NDF is then a sum of weighted Dirac delta functions, thus describing a population of particles of only one or a few sizes, as in the case of nucleation. Numerically, this possibility was achieved with the moment inversion algorithm of Nguyen et al. (2016).

In this work we discuss the implementation of the EQMOM approach into the open-source toolbox for computational fluid dynamic (CFD) OpenFOAM R (OpenFOAM, 2015), as part of the OpenQBMM (2016a) project. We limit our attention to a univariate PBE, where the internal coordinate of the NDF is the particle size. We describe the implementation of EQMOM with lognormal KDF as an example, but without loss of generality in the presentation of the computational framework, which was designed to accommodate any KDF defined on the set of positive real numbers R + . We then discuss the implementation of realizable kinetic fluxes for advection, which guarantee the transported moments are realizable if the step used for time integration satisfies a realizability condition similar to the Courant-Friedrichs-Lewy condition. Particular attention is put in detailing the implementation of the procedure used to determine the approximate NDF, which always ensures that the maximum possible number of moments is conserved (Nguyen et al., 2016). The PBE solver is then verified considering aggregation and breakage problems studied by [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF], comparing the predicted results with both the rigorous solution from [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] and the numerical solution obtained with EQMOM by [START_REF] Madadi-Kandjani | An extended quadraturebased moment method with log-normal kernel density functions[END_REF]. Finally, a case involving spatial transport is considered for validation purposes, which consists of an aggregation and breakage problem in a Taylor-Couette reactor.

The system was experimentally studied by Serra and Casamitjana (1998a,b); [START_REF] Serra | Aggregation and breakup of particles in a shear flow[END_REF], considering the same test case discussed in Marchisio et al. (2003a). Numerical results obtained with the CFD-PBE solver developed as part of the present work are compared to experiments, showing satisfactory results.

The population balance equation

The PBE (Marchisio et al., 2003a;[START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF][START_REF] Ramkrishna | Population Balances: Theory and Applications to Particulate Systems in Engineering[END_REF] accounting for the evolution of a univariate NDF with internal coordinate ξ, representing the particle size, is

∂n (ξ, x, t) ∂t + ∇ x • [n (ξ, x, t) U] -∇ x • [Γ∇ x n (ξ, x, t)] + ∇ ξ • [G(ξ)n (ξ, x, t)] = Ba (ξ, x, t) -Da (ξ, x, t) + Bb (ξ, x, t) -Db (ξ, x, t) + N (ξ, x, t) (1)
where n(ξ, x, t) is the NDF, U is the velocity of the carrier fluid, Γ is the diffusivity, G(ξ) is the growth rate, B (ξ, x, t) and D (ξ, x, t) are, respectively, the rate of change of n due to birth and death, in the aggregation process when the a exponent is present and in the breakage process when a b exponent is present, and N (ξ, x, t) the rate of change due to nucleation. Let us notice that we assumed the particle size is sufficiently small to have negligible influence on the carrier fluid. This allows the velocity U to be assumed equal to the local fluid velocity, and independent of the particle size.

The diffusivity Γ, assumed to be independent from the particle size ξ, is defined as the sum of a laminar and a turbulent contribution: Γ = Γ l + Γ t .

The turbulent diffusivity is calculated as the ratio of the turbulent viscosity µ t and the turbulent Schmidt number σ t : Γ t = µ t /σ t .

Following [START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF]; Marchisio et al. (2003b); [START_REF] Randolph | Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization[END_REF], the terms describing aggregation and breakage phenomena are written in continuous form as:

Ba (ξ, x, t) = ξ 2 2 ξ 0 β (ξ 3 -ξ 3 ) 1/3 , ξ (ξ 3 -ξ 3 ) 2/3 n ξ 3 -ξ 3 1/3 , x, t n (ξ , x, t) dξ , (2) Da (ξ, x, t) = n (ξ, x, t) ∞ 0 β (ξ, ξ ) n (ξ , x, t) dξ , (3) 
Bb (ξ, x, t) = ∞ ξ a (ξ ) b (ξ|ξ ) n (ξ , x, t) dξ , (4) 
Db (ξ, x, t) = a (ξ) n (ξ, x, t) .

(5)

Growth and nucleation terms were not considered in the example applications presented in this work to verify and validate the implementation of the EQMOM procedure, however they have been implemented in the PBE solver, and their testing is left to future work. These terms and their numerical treatment are kept in the description of the theory presented in this work for completeness and as documentation of the code implementation for the interested reader.

The extended quadrature method of moments

The approximate solution of the PBE of Eq. ( 1) is obtained in this work by solving transport equations for a finite set of the moments of the NDF. In the case of a univariate NDF, the moments are defined as:

M k (t) = +∞ 0 n (ξ, x, t) ξ k dξ. ( 6 
)
The transport equation for the moment of order k is obtained by multiplying the PBE (Eq. ( 1)) by ξ k and integrating over [0, +∞[. Under the previously discussed assumptions on the velocity and the diffusivity, such transport equation is

∂M k (x, t) ∂t + ∇ x • [M k (x, t) U] -∇ x • [Γ∇M k (x, t)] + Ḡk (x, t) = Ba k (x, t) -Da k (x, t) + Bb k (x, t) -Db k (x, t) + Nk (x, t) . (7)
The evaluation of the growth, aggregation and breakup terms in Eq. ( 7)

requires the NDF to be known, in addition to the kernel functions a and β. However, because the NDF evolves in space and time, it is not known a priori, and it has to be approximated from the transported moments.

This can be achieved by writing an approximant of the NDF as a weighted sum of non-negative KDF δ σ (ξ, ξ α ) [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF])

n (ξ) ≈ p N (ξ) = N α=1 w α δ σ (ξ, ξ α ) ( 8 
)
where N is the number of KDF used to approximate the NDF, the KDF δ σ (ξ, ξ α ) is chosen to formally tend to the Dirac delta function δ (ξ -ξ α )

when σ tends to zero, w α are the non-negative weights of each KDF (primary quadrature weights), and ξ α are the corresponding quadrature abscissae (primary abscissae). These parameters (w α , ξ α ) α=1,...,N and σ have to be computed from (M k ) 2N k=0 in such a way that this moment set represents the moments of the reconstructed NDF. We use log-normal KDF [START_REF] Madadi-Kandjani | An extended quadraturebased moment method with log-normal kernel density functions[END_REF] in all the problems considered in this work because the support of the NDF in these problems is R + :

δ σ (ξ, µ) = 1 ξσ √ 2π e -(ln ξ-ξα) 2 2σ 2 , ξ, ξ α , σ ∈ R + , (9) 
however also the Γ KDF discussed in [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] is implemented in the OpenQBMM PBE solver. The primary quadrature is determined with the algorithm described in Nguyen et al. (2016), whose implementation is detailed in Sec. 4.4. Once the NDF in Eq. ( 8) is reconstructed, it is used to calculate integrals that appear in source terms for the moment transport equations, as described in [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF]. To this purpose, a secondary quadrature, with weights w αβ and abscissae ξ αβ , is determined by considering the recurrence relation that defines the family of orthogonal polynomials with respect to the measure defined from the KDF, and solving the eigenvalue problem associated to the Jacobi matrix defined by this relationship [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF]. In performing this calculation, the Stieltjes-Wigert quadrature is considered for log-normal KDF [START_REF] Weisstein | CRC Concise Encyclopedia of Mathematics[END_REF][START_REF] Wilck | A general approximation method for solving integrals containing a lognormal weighting function[END_REF], while Laguerre quadrature is used for gamma KDF [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF]. While, in principle, the case of a log-normal KDF could be addressed with a change of variable, allowing Hermite quadrature to be adopted (Madadi-Kandjani and Passalacqua, 2015), it is worth noticing that only the Stieltjes-Wigert quadrature guarantees the correct preservation of the moments of the NDF, and as such it is used in this work.

The term describing molecular growth is given by

Ḡk (x, t) = -k ∞ 0 ξ k-1 G(ξ)n (ξ, x, t) dξ ≈ -k N α=1 w α Nα β=1 w αβ ξ k-1 αβ G(ξ αβ , x, t). ( 10 
)
The source terms due to birth and death of particles because of aggregation and breakage are

Ba k (x, t) = 1 2 ∞ 0 n (ξ , x, t) ∞ 0 β (ξ, ξ ) ξ 3 + ξ 3 k/3 n (ξ, x, t) dξdξ ≈ 1 2 N α 1 =1 w α 1 Nα β 1 =1 w α 1 β 1 N α 2 =1 w α 2 Nα β 2 =1 w α 2 β 2 ξ 3 α 1 β 1 + ξ 3 α 2 β 2 k/3 β α 1 β 1 α 2 β 2 (11) Da k (x, t) = ∞ 0 ξ k n (ξ, x, t) ∞ 0 β (ξ, ξ ) n (ξ , x, t) dξ dξ ≈ N α 1 =1 w α 1 Nα β 1 =1 w α 1 β 1 ξ k α 1 β 1 N α 2 =1 w α 2 Nα β 2 =1 w α 2 β 2 β α 1 β 1 α 2 β 2 (12) Bb k (x, t) = ∞ 0 ξ k ∞ 0 a (ξ ) b (ξ|ξ ) n (ξ , x, t) dξ dξ ≈ N α=1 w α Nα β=1 w αβ a αβ bk αβ (13) Db k (x, t) = ∞ 0 ξ k a (ξ) n (ξ, x, t) dξ ≈ N α=1 w α Nα β=1 w αβ ξ k αβ a αβ . ( 14 
)

The numerical solution procedure

The transport equations for the moments (Eq. ( 7)) are discretized using a finite-volume procedure [START_REF] Ferziger | Computational Methods for Fluid Dynamics[END_REF][START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF], with kinetic-based spatial fluxes [START_REF] Desjardins | A quadrature-based moment method for dilute fluid-particle flows[END_REF][START_REF] Perthame | Boltzmann type schemes for compressible Euler equations in one and two space dimensions[END_REF] to ensure moment realizability.

Spatial fluxes

The discretization of the moment advection term is key to ensure moment realizability, and achieve a robust solution procedure. The problem of moment realizability caused by convection schemes is well known in the literature [START_REF] Desjardins | A quadrature-based moment method for dilute fluid-particle flows[END_REF][START_REF] Wright | Numerical advection of moments of the particle size distribution in eulerian models[END_REF], and it appears when using conventional numerical schemes of order higher than one, since the application of limiters to the individual transported moments is not a sufficient condition to ensure the realizability of the transported moment set. [START_REF] Vikas | Realizable high-order finite-volume schemes for quadrature-based moment methods[END_REF][START_REF] Vikas | Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations[END_REF] proposed to implement kinetic schemes [START_REF] Perthame | Boltzmann type schemes for compressible Euler equations in one and two space dimensions[END_REF] where the convection flux for each moment is computed from the quadrature approximation of the transported moment set. In these schemes, the high-order reconstruction is applied only to the quadrature weights, while the reconstructed quadrature abscissae are constant in the cell, hence the name of quasi high-order schemes. This approach allows the realizability of the moment set to be preserved if a constraint on the time-step size is satisfied. This realizability constraint becomes the Courant-Friedrichs-Lewy (CFL) condition, if weights and abscissae are reconstructed on cell faces with a first-order scheme, which, therefore, always ensures moment realizability if the CFL condition is satisfied.

The numerical scheme used to compute face values of a variable in Open-FOAM can be selected independently for any variable, or specifying the scheme as argument of the fvc::interpolate function provided by the OpenFOAM framework. As a consequence, the details of the implementation of high-order reconstruction schemes are not discussed here, and our description is limited to the general structure of kinetic-based schemes for quadrature-based moment methods.

We assume the flow velocity vector U is known at cell centers. We indicate with U own and U nei the interpolated face values of such velocity on the owner and neighbour side of the cell face, respectively. Similarly, we indicate with M k,own and M k,nei the moments computed on the owner and neighbour side of the cell face (see Fig. 1), defined as

M k,own = N f α=1 w α,own ξ k α,own , M k,nei = N f α=1 w α,own ξ k α,nei , (15) 
where N f is the number of quadrature nodes used to define the quadrature approximation of the NDF used to compute the spatial fluxes, w α,own and w α,nei are the face, and ξ α,own , ξ α,nei the face values of the quadrature abscissae. Following [START_REF] Laurent | Realizable high-order finite-volume schemes for the advection of moment sets of the particle size distribution[END_REF], the spatial fluxes are calculated as a function of a different quadrature approximation with respect to the one determined with the EQMOM procedure. If an odd number of moments is realizable, this quadrature approximation is obtained using a N + 1 point Gauss-Radau quadrature formula, which allows the 2N + 1 moments to be preserved, with one quadrature abscissa set to zero. However, if the number of realizable moments is even, the regular Gauss quadrature is used to define the face flux. This approach is independent from the reconstruction of the NDF, and allows the fluxes to be defined without relying on the secondary quadrature approximation, leading to a more robust formulation of the numerical scheme, with the additional benefit of a slightly lower computational cost due to the reduced number of terms involved in the summations in Eq. 16 compared to EQMOM. Details on the rationale of the definition of the advection schemes for moment methods are provided in [START_REF] Laurent | Realizable high-order finite-volume schemes for the advection of moment sets of the particle size distribution[END_REF], where high-order schemes for moment methods are also developed.

The convective flux of the moment M k is then found computing

ϕ M k = M k,nei min(U nei • n, 0) + M k,own max(U own • n, 0), (16) 
and finding the rate of change of the moment M k by integrating ϕ M k over the cell faces.

Diffusion term

The discretization of diffusion term in the moment transport equations does not present particular problems when a traditional second-order scheme [START_REF] Ferziger | Computational Methods for Fluid Dynamics[END_REF] is used, as explained in [START_REF] Vikas | Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations[END_REF]. As a consequence, no special treatment is adopted to ensure moment realizability when the diffusion term is discretized, because second-order accuracy is considered sufficient for most practical applications. The diffusion term in the moment transport equations is therefore discretized with the fvm::laplacian(gamma, Mk) operator provided by OpenFOAM, where gamma is the diffusivity and Mk is the moment of order k. It is worth observing that this approach suffices for size-independent diffusion, however, if size-dependent diffusion needs to be considered, the diffusion term will have to be computed as a function of the quadrature approximation, and treated as an explicit source term in the transport equations for the moments, as discussed in [START_REF] Vikas | Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations[END_REF].

Source terms

The source terms for aggregation, breakage and nucleation are introduced as explicit source terms in the moment transport equations, using the standard mechanism available in OpenFOAM. Moreover, to ensure realizability, explicit Euler methods with small enough time steps can be used, as well as any convex combination of Euler explicit time steps (Nguyen et al., 2016), such as the strong-stability-preserving (SSP) explicit Runge-Kutta methods [START_REF] Gottlieb | Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations[END_REF], which are high-order ODE solvers. An example of multi-step adaptive scheme that takes advantage of this property is described and demonstrated in Nguyen et al. (2016).

Moment inversion

A key aspect of the numerical solution procedure is the moment inversion to find the primary quadrature weights w α , abscissae ξ α and the parameter σ of the KDF, in such a way that the moments of the reconstruction defined by Eq. ( 8 

M K = A K (σ)M * K .
For a log-normal KDF, it is given by

M * k = M k e -k 2 σ 2 /2 , ( 17 
)
in such a way that the matrix A K (σ) is diagonal. Then, from the transported moment vector M 2N = (M 0 , . . . , M 2N ), one can define the function M2N (σ)

in the following way: if

M * 2N-1 (σ) = A 2N-1 (σ) -1 M 2N-1
is strictly realizable, which corresponds to σ < σ max,2N , then one computes the corresponding quadrature weights and abscissae (w α (σ), ξ α (σ)) α=1,...,N and M 2N (σ) is the moment of order 2N of the reconstructed NDF defined by Eq. ( 8) with the parameters σ and (w α (σ), ξ α (σ)) α=1,...,N . When σ ≥ σ max,2N , the function M2N (σ) is set to a large value2 L. For a log-normal KDF, this function is given by

M2N (σ) =      N α=1 w α (σ)ξ α (σ) 2N z (2N) 2 σ < σ max,2N L σ ≥ σ max,2N , (18) 
where z = e σ 2 /2 . This helper function is used to define the target function J 2N , whose roots are the values of the parameter σ we seek, with

J 2N (σ) = M 2N -M2N (σ) M 2N . (19) 
If Eq. 19 has no root, then the last moment will not be reproduced by the reconstructed NDF. One then will have to minimize the error on it, by an optimal choice of σ. In any case, at least all moments of orders 0 to 2N -1 will be well reproduced by the reconstruction.

It can happen that the transported moment vector M 2N is not strictly realizable (degenerate case), when it corresponds to a NDF that is necessarily a sum of a few weighted Dirac delta functions. This is the case for example, 

H 2k = M 0 . . . M k . . . . . . M k . . . M 2k , H 2k+1 = M 1 . . . M k+1 . . . . . . M k+1 . . . M 2k+1 , (20) 
as follows3 

ζ k = H k+1 H k-2 H k H k-1 , k = 0, 1 . . . , (21) 
with H -2 = H -1 = H 0 = 1. They are also related to the coefficients of the recurrence relation that defines the family of orthogonal polynomials (P k ) k≥0

with respect to a measure associated to the moments: in [START_REF] Dette | The Theory of Canonical Moments with Applications in Statistics, Probability and Analysis[END_REF], or, more effectively, with a modified version of the Chebyshev algorithm [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] to include the calculation of ζ k (Nguyen et al., 2016). Following [START_REF] Dette | The Theory of Canonical Moments with Applications in Statistics, Probability and Analysis[END_REF], the positivity of ζ k ensures the strict realizability of the moment set. Based on the largest value of k for which ζ k > 0, it is then possible to identify the subset of strictly realizable moments in the transported moment set.

P k+1 (X) = (X -a k )P k (X) -b k P k-1 (X), (22) 
Depending on the value of strictly realizable moments N r , the following cases are possible:

1. If N r < 2, the procedure terminates because the number of strictly realizable moments is insufficient to define a quadrature formula.

2. If N r is an even integer, the [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] algorithm is applied to M Nr , and N r /2 primary quadrature weights and abscissae are calculated. In this case, the parameter σ is set to zero, and no attempt is made to reconstruct a continuum distribution because the direct application of the standard QMOM procedure, relying on Dirac delta functions, ensures the conservation of the N r strictly realizable moments.

3. If N r is an odd integer, the complete EQMOM procedure is applied to the N r first N r -1 moments, i.e. from M Nr-1 . This allows to determine the (N r -1)/2 primary quadrature weights and abscissas, the parameter σ, and the secondary quadrature. The objective of the procedure is to determine the value of σ ∈ R + as a root of the non-linear function J Nr-1 thus ensuring the conservation of the entire M Nr-1 , when it exists, or to minimize the error on the last moment of the set, whenever a value of σ that guarantees its exact conservation cannot be found. The procedure is iterative, and operates as follows:

(a) An initial interval where to search for the value of σ is determined considering the value of the σ parameter that ensures that M * 3 (σ) is strictly realizable. We will indicate this value of σ as σ max,4 , and consider I 0 =]0, σ max,4 [ as initial interval. For a log-normal KDF, we have

σ max,4 = min   2 log √ M 0 M 2 M 1 , 2 log √ M 1 M 3 M 2   (23) 
It is important to observe, however, that σ max,4 is not a valid value for the σ parameter, because the condition on the strict realizability of M * k (σ) for k ≥ 4 would further reduce the right bound of the interval of σ. This however does not represent a problem in our procedure, since the interval we determine is only used to initially start the search for σ.

(b) The function described in Eq. ( 19) changes sign in I 0 by construction, as a consequence of the definition of M2N (σ) in Eq. ( 18).

We then apply Ridder's algorithm [START_REF] Ridders | A new algorithm for computing a single root of a real continuous function[END_REF] to the function J Nr-1 (σ) to find a root for the target function. If this root represents an actual solution that allows the moment set to be preserved, then the value of σ found from Ridder's algorithm will be used. If the computed value of σ does not preserve the moment set, a minimization procedure based on the golden search algorithm [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF] is applied to J Nr-1 (σ) 2 , in order to find the value of σ which minimizes the distance of J Nr-1 (σ) from zero.

(c) Once the value of the parameter σ is determined, the secondary quadrature weights and abscissae are computed by means of the standard eigenvalue problem used to calculate the roots of polynomials orthogonal to the chosen KDF [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation[END_REF].

The steps of the EQMOM inversion algorithm are schematically represented in Fig. 2.

Code structure

The solution procedure for univariate PBE was implemented into Open-FOAM creating a general data and implementation structure which allow the extension to multivariate problems, and the straightforward addition of sub-models such as kernels describing new physics. Additionally, the functionality of OpenFOAM was leveraged to couple the implementation of the PBE solver with fluid solvers, re-using the existing thermal and turbulence models. In the following subsections we provide a brief description of the code structures and implementation choices made during the development of OpenQBMM-PBE.

Basic moment inversion

We call basic moment inversion the process of calculating N quadrature weights and abscissae from a moment vector of dimension 2N. This pro-cess is achieved by means of the algorithm proposed by [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF].

A specific C++ object, called univariateMomentSet, was derived for the uni-dimensional array of scalars object scalarDiagonalMatrix provided by the OpenFOAM library. The univariateMomentSet object combines the use of ζ k to verify the strict realizability of the moment set, with the Wheeler (1974) algorithm to perform the moment inversion. The procedure is schematically represented in Fig. 3. For each moment set that has to be inverted, the maximum even number of strictly realizable moments, which we call number of invertible moments4 N I , is determined by checking the positivity of ζ k and taking the largest even integer smaller than the number of strictly realizable moments N r . Once N I is found, the procedure verifies that N I ≥ 2, which is required to perform the inversion. If this condition is satisfied, the Jacobi matrix (see Appendix A) is constructed and the associated eigenvalue problem is solved to determine quadrature weights and abscissae.

Extended moment inversion

The extended moment inversion procedure is implemented in a general form, in order to accommodate different types of KDF with support on R + . The type of KDF can be selected by the user at run-time as conventionally done in OpenFOAM for model selection, by means of a keyword in an input file.

A base class named extendedMomentInversion implements the algorithm to find the value of the parameter σ, and the general parts of the procedure to define the secondary quadrature (Fig. 2). Specialized classes derived from extendedMomentInversion implement the part of the algorithm specific to a KDF such as the expression of the KDF itself, the relationship between M k and M * k , and the upper extremum σ max of the interval I 0 .

Population balance solver

The PBE is solved in a separate class, which also uses the run-time selection mechanism, allowing future extensions to multivariate problems to be implemented. A base class called populationBalanceModel implements the generic structure required for run-time selection of the type of PBE to be solved. The actual implementation of the PBE solver is contained in the derived class univariatePopulationBalance, which provides methods to calculate the convection, diffusion and source terms for the specific PBE.

Verification of the PBE solver

The PBE solver was verified considering a set of zero-dimensional problems involving aggregation and breakage [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF]. The solutions obtained in these cases were compared to the numerical solution obtained with a MATLAB code implementing EQMOM in Madadi-Kandjani and Passalacqua (2015), which relied on the solution approach detailed in Yuan et al.

(2012) extended to log-normal KDF, and to the rigorous solution of the same problems reported by [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF].

In this situation, Eq. ( 1) reduces to Eq. ( 24), where only the source terms due to aggregation and breakup remain, while diffusion and advection are not considered:

∂n (ξ, x, t) ∂t = Ba (ξ, x, t) -Da (ξ, x, t) + Bb (ξ, x, t) -Db (ξ, x, t) . (24) 
The cases considered in this validation study are reported in Tab. 1, and correspond to those examined in [START_REF] Madadi-Kandjani | An extended quadraturebased moment method with log-normal kernel density functions[END_REF].

The table also indicates the number of primary and secondary quadrature nodes used in each case. The aggregation and breakage kernels used in the study are reported in Tab. 2 and 3, respectively. The expressions for the daughter distribution that appear in the breakage kernel are summarized in to the rigorous solution of [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] shows good agreement in all the cases under consideration, with the exception of case 3 (Fig. 6), in which some deviation of the numerical solution from the rigorous solution can be observed for t ∈ [1, 4] s.

Validation of CFD-PBE solver

The solution of the full PBE with an inhomogeneous velocity field is tested and validated using the case studied by Marchisio et al. (2003a) in a Taylor-Couette reactor made by two concentrical cylinders with diameter D 1 = 193 mm, and D 2 = 160 mm. The height of the system is H = 360 mm.

Kernels for the PBE

The aggregation kernel used in this case is given by the sum of the kernel for Brownian motion (Eq. ( 25)) [START_REF] Smoluchowski | Versuch einer mathematischen theorie der koagulationskinetik kolloider losunger[END_REF], combined with the kernel proposed by [START_REF] Adachi | Kinetics of turbulent coagulation studied by means of end-over-end rotation[END_REF] for particles whose size is smaller than the local Kolomogorov microscale (Eq. ( 26)):

β(ξ, ξ ) = 2k B 3µ (ξ + ξ ) 2 ξξ (25) β(ξ, ξ ) = 4 3 3πε 10ν (ξ + ξ ) 3 . ( 26 
)
The breakage kernel of [START_REF] Luo | Theoretical model for drop and bubble breakup in turbulent dispersions[END_REF], which depends on the kinematic viscosity ν, the turbulent dissipation rate ε and the particle size ξ, was used:

a(ξ) = c Br ν p ε q ξ r . (27) 
Following Marchisio et al. (2003a), we set p = 3/4, q = -5/4 and r = 1, and we adopt the symmetric fragmentation daughter distribution function (Tab. 4). The coefficient c Br was set equal to 6.0 × 10 -4 (Marchisio et al., 2003a).

Case setup

The Taylor-Couette reactor was modeled assuming symmetry, reducing the computational domain to a rectangular region whose width is (D 1 -D 2 )/2 = 16.5 mm, and its height is H = 180 mm, as schematized in Fig 9 . This domain was discretized using 18 cells in the horizontal direction, and 180 in the vertical direction (Marchisio et al., 2003a), leading to a total of 3240 computational cells. The initial particle size distribution is assumed to be a Dirac delta function (uniform size), with a mean particle volume fraction α p = 2.5 × 10 -5 , and an initial particle size ξ 0 = 2 µm (Marchisio et al., 2003a). The first five moments of the NDF are considered and, as a consequence, N = 2 primary quadrature nodes are used. The number of secondary quadrature nodes was set equal to N α = 10. It is worth observing that the initial condition leads to a quadrature representation with only one quadrature node, and null value of the σ parameter. Therefore, the moment inversion procedure will use the standard [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] algorithm to perform the inversion. However, the EQMOM procedure is used as soon as the particle size distribution is not a Dirac delta anymore, and some variance in the particle size appears. The transition between the two algorithms is managed automatically, based on the realizability of the moment set and of the number of moments required to define the quadrature representation of the NDF. Marchisio et al. (2003a) considered four rotational speeds (75, 125, 165 and 211 RPM), however we limit our study to two rotational speeds for brevity, since the purpose of our investigation is to verify the robustness and accuracy of the computational framework. We consider then ω 1 = 75 RPM, and ω 2 = 165 RPM.

Results and discussion

The velocity field of the fluid phase in the Taylor-Couette reactor is reported in Fig. 10 

Conclusions

The EQMOM was implemented into OpenFOAM to solve univariate population balance equations. The implementation was successfully verified against the numerical results of Madadi-Kandjani and Passalacqua (2015) involving aggregation and breakage problems in a homogoeneous system. The results were validated against the rigorous solutions obtained by [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF]. The Rigorous solution [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] OpenQBMM Rigorous solution [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] OpenQBMM 

  ) are the considered moment set. The approach implemented in the OpenQBMM-PBE solver is based on the work ofNguyen et al. (2016), which represents an improvement of the method proposed in[START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] and also used in[START_REF] Madadi-Kandjani | An extended quadraturebased moment method with log-normal kernel density functions[END_REF]. The key difference between the method in[START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] and the new one proposed inNguyen et al. (2016) consists in an efficient procedure to check the strict realizability of the moment set, and the conservation of the largest possible subset of transported moments, which is not always achieved using the approach of[START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF].The algorithm is based on the possibility to use an efficient quadrature algorithm based, for example, on the[START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] algorithm. Introducing the variables M * k = N α=1 w α ξ k α , the KDF is chosen in such a way that, for a fixed value of σ, there exists a linear relation between the moments M K = (M 0 , . . . , M K ) of the reconstruction and M * K = (M * 0 , . . . , M * K ):

  in problems involving nucleation, and at the beginning of aggregation processes. Only one representation is then possible and the moment inversion has to be adapted in this case. The first step of the moment inversion procedure is then to study the realizability of the moment vector. Differently from what done in Madadi-Kandjani and Passalacqua (2015); Yuan et al. (2012), which directly evaluated the Hankel determinants associated with the set of transported moments, this is achieved computing the values of the ζ k quantities defined as in[START_REF] Dette | The Theory of Canonical Moments with Applications in Statistics, Probability and Analysis[END_REF], which allow the size N r ≤ 2N + 1 of the largest subset of strictly realizable moments M Nr-1 to be found. This approach is more computationally efficient than evaluating the Hankel determinants directly, as briefly discussed later, and explained in detail inNguyen et al. (2016). The quantities ζ k are directly related to the Hankel determinants

with a 0 =

 0 ζ 1 and for k ≥ 1: b k = ζ 2k-1 ζ 2k and a k = ζ 2k +ζ 2k+1 . Thanks to this relation, the values of ζ k are computed using the Q-D algorithm described

Tab. 4 .

 4 The simulation results shown in Figs. 4-8 show the time evolution of the value of M 0 and of the average particle size d 43 = M 4 /M 3 . The agreement between the numerical solution obtained with MATLAB (Madadi-Kandjani and Passalacqua, 2015), and the one obtained with the OpenFOAM implementation of the EQMOM procedure is excellent: in all the cases under examination, the two solutions match. This comparison serves as verification of the EQMOM procedure implemented into OpenFOAM. The comparison

  Fig. 11(a) shows that the numerical simulation provides a good estimate of the steady-state value of d 43 for the case with rotational speed of 75 RPM, which is underpredicted by the results obtained with the standard QMOM procedure inMarchisio et al. (2003a). Both the EQMOM and the QMOM approach predict the particle diameter reaches its steady-state value significantly earlier (t ≈ 2000 s) than what observed in the experiments (t ≈ 12000 s).The EQMOM simulation slightly over-predicts the steady-state value of the mean normalized particle diameter (≈ 11) compared to the experimental results (≈ 10) in the case with rotational speed of 165 RPM. The steady state value of the particle size is reached after about 1000 s from the beginning of the simulation, however experimental data show that a slower evolution of the value of d 43 , with a time required to reach steady state of about 2000 s.
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 123 Figure1: Schematic representation of a computational cell and its neighbour cells, to illustrate the concept of owner and neighbour used in the calculation of moment spatial fluxes.
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 5 Figure 5: Time evolution of M 0 and of d 43 in case 2.
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 91011 Figure 9: Schematic representation of the Taylor-Couette reactor and of the computational domain used in the simulations.

  

  

  

  

A value of 1.0 × 10 16 was used in the implementation, which corresponds to the definition of the GREAT constant in OpenFOAM.

Note that ζ k is here re-defined to start the numbering from zero rather than from one, for consistency with the implementation.

The number of invertible moments coincides with the number of strictly realizable moments, if this is even, and it is equal to N r -1, if the N r is odd.
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Appendix A. Inversion algorithm

We briefly summarize here the moment inversion algorithm, based on the work of [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF], to perform the moment inversion using the same notation adopted in the implementation. We assume the number of invertible moments is N I . Let us denote with a i and b i , i ∈ {0, 1, . . . , N I /2} the coefficients of the recurrence relation that define the family of orthogonal polynomials with respect to a measure associated to the moments. We also introduce the matrix S ∈ R 2N I +1,2N I +1 , which is defined as follows in the code:

The matrix z ∈ R N I /2,N I /2 is then defined as

Quadrature weights and abscissae are then found as Rigorous solution [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] OpenQBMM Rigorous solution [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] OpenQBMM Rigorous solution [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] OpenQBMM Rigorous solution [START_REF] Vanni | Approximate population balance equations for aggregationbreakage processes[END_REF] OpenQBMM Case N N α

Table 1: Cases examined for the aggregation and breakage process.

Kernel