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Dynamic Walking over Rough Terrains by Nonlinear Predictive Control of the Floating-base Inverted Pendulum

We present a real-time pattern generator for dynamic walking over rough terrains. Our method automatically finds step durations, a critical issue over rough terrains where they depend on terrain topology. To achieve this level of generality, we consider a Floating-base Inverted Pendulum (FIP) model where the center of mass can translate freely and the zero-tilting moment point is allowed to leave the contact surface. This model is equivalent to a linear inverted pendulum with variable center-of-mass height, but its equations of motion remain linear. Our solution then follows three steps: (i) we characterize the FIP contact-stability condition; (ii) we compute feedforward controls by solving a nonlinear optimization over receding-horizon FIP trajectories. Despite running at 30 Hz in a model-predictive fashion, simulations show that the latter is too slow to stabilize dynamic motions. To remedy this, we (iii) linearize FIP feedback control into a constrained linear-quadratic regulator that runs at 300 Hz. We finally demonstrate our solution in simulations with a model of the HRP-4 humanoid robot, including noise and delays over state estimation and foot force control.

I. INTRODUCTION

A walking pattern is dynamic when it contains singlesupport phases that are not statically stable, i.e. where the center of mass (COM) of the robot leaves the area above contact and undergoes divergent dynamics. These dynamic phases are used to increase walking speed as well as to control balance, as illustrated by reactive stepping strategies [START_REF] Morisawa | Reactive stepping to prevent falling for humanoids[END_REF], [START_REF] Santacruz | Reactive stepping strategies for bipedal walking based on neutral point and boundary condition optimization[END_REF]. To estimate the dynamic capabilities of a rough-terrain walking pattern generator 1 (RT-WPG), we can measure the duration of double-support phases, or the amount of time spent in statically-stable configurations. For instance, our previous RT-WPG [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] spends roughly 40% of its gait in double-support, and about 90% of the time in statically-stable configurations. In contrast, our present RT-WPG, in the same scenario, spends less than 5% of its gait in double-support, and about 40% of the time in statically-stable configurations.

A major concern while walking is to enforce contact stability, i.e. making sure that contacts neither slip nor tilt while the robot pushes on them to move. To generate contact-stable trajectories, one needs to guarantee that all contact wrenches throughout the motion lie inside their respective wrench cones [START_REF] Caron | Stability of surface contacts for humanoid robots: Closed-form formulae of the contact wrench cone for rectangular support areas[END_REF]. So far, the full problem has only been solved in whole-body motion generation [START_REF] Lengagne | Generation of whole-body optimal dynamic multi-contact motions[END_REF], or more recently in centroidal motion generation [START_REF] Carpentier | A versatile and efficient pattern generator for generalized legged locomotion[END_REF], [START_REF] Dai | Planning robust walking motion on uneven terrain via convex optimization[END_REF], [START_REF] Ponton | A convex model of humanoid momentum dynamics for multi-contact motion generation[END_REF], where computation time is provided until a solution is found. For real-time control, it is common to reduce the number of variables by regulating the centroidal angular momentum to LG = 0. Doing so simplifies the Newton-Euler equations of motion to: pG = λ(p G -p Z ) + g, with p G the COM position, λ a positive quantity, p Z the whole-body zero-tilting moment point (ZMP) and g the gravity vector. When the COM motion is constrained to a plane, λ is constant and we obtain the Linear Inverted Pendulum Mode (LIPM). Predictive control of the COM in the LIPM can be formulated as a quadratic program, where the cost function encodes a number of desired behaviors while inequalities enforce the contact-stability condition: the ZMP lies within the convex hull of contact points. (This condition is actually incomplete; we will derive the complete condition below.) This formulation successfully solved the problem of walking over flat surfaces [START_REF] Kajita | Biped walking pattern generation by using preview control of zero-moment point[END_REF], [START_REF] Wieber | Trajectory free linear model predictive control for stable walking in the presence of strong perturbations[END_REF], [START_REF] Herdt | Online walking motion generation with automatic footstep placement[END_REF]. However, it did not extend to rough terrains where the shape of the ZMP support area varies during motion [START_REF] Caron | Zmp support areas for multi-contact mobility under frictional constraints[END_REF]. Solutions for rough terrains have been proposed that track pre-defined COM trajectories across contact switches [START_REF] Hirukawa | A pattern generator of humanoid robots walking on a rough terrain[END_REF], [START_REF] Audren | Model preview control in multi-contact motionapplication to a humanoid robot[END_REF], yet they were not designed to compute their own feedforward controls. In pattern generation, three main directions have been explored so far. In one line of work, 3D extensions of the LIPM [START_REF] Zhao | A three dimensional foot placement planner for locomotion in very rough terrains[END_REF], [START_REF] Englsberger | Three-dimensional bipedal walking control based on divergent component of motion[END_REF] provided the basis for the first RT-WPGs, combining fast footstep replanning with force-tracking control. So far, these solutions use partial contact-stability conditions (friction is not modeled) and do not generalize the constraint saturation behavior of their 2D counterparts [START_REF] Wieber | Trajectory free linear model predictive control for stable walking in the presence of strong perturbations[END_REF]. Other works went for harder nonlinear optimization problems [START_REF] Naveau | A reactive walking pattern generator based on nonlinear model predictive control[END_REF], [START_REF] Serra | A newton method with always feasible iterates for nonlinear model predictive control of walking in a multi-contact situation[END_REF], [START_REF] Van Heerden | Real-time variable center of mass height trajectory planning for humanoids robots[END_REF], but again they did not model friction and were only applied to walking on parallel horizontal surfaces. Finally, we recently proposed in [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] an RT-WPG that enforces full contact stability and walks across arbitrary terrains, but at the cost of a conservative problem linearization (a similar idea appeared simultaneously in the motion generator from [START_REF] Dai | Planning robust walking motion on uneven terrain via convex optimization[END_REF]).

We now bridge the gap between these three directions with an RT-WPG that is (1) based on a 3D extension of the LIPM, for which we (2) derive the full contact stability condition and consequently (3) formulate and solve as a nonlinear optimal-control problem. The latter being experimentally too slow for predictive control, we further derive a constrained linear-quadratic regulator based on the same model for highfrequency stabilization.

II. THE FLOATING-BASE INVERTED PENDULUM

Let us consider a biped in single support. We define the surface patch S as the convex hull of contact points, and denote by C the contact friction cone. In the pendulum mode, the center of pressure (COP) C is located at the intersection between S and the central axis of the contact wrench, which is then also a zero-moment axis. Contact breaks when this intersection becomes empty, or switches to another mode when C reaches the boundaries of S. The Newton equation of motion of the COM in the pendulum mode is:

pG = λ(p G -p C ) + g (1) 
In general, this equation is bilinear as the stiffness value λ and COP location p C are two different components of the time-varying contact wrench. Making time explicit, the differential equation of the COM position is:

pG (t) -λ(t)p G (t) = -λ(t)p C (t) + g
The additional constraint of the LIPM is that p G and p C lie in parallel planes separated by a fixed distance h = n • (p G -p C ), so that λ = (n • g)/h becomes a constant by Equation [START_REF] Morisawa | Reactive stepping to prevent falling for humanoids[END_REF]. Interestingly, in the context of balance control for a 2D inverted pendulum, Koolen et al. [START_REF] Koolen | Balance control using center of mass height variation: limitations imposed by unilateral contact[END_REF] recently studied the symmetric problem where p C is fixed and polynomial COM interpolation yields a variable λ(t).

A. Contact stability in single support

Proposition 1: A motion of the system (1) in single contact (S, C) is contact-stable if and only if :

λ ∈ R + (2) p C ∈ S (3) p G ∈ p C + C (4) 
where S and C respectively denote the surface patch and friction cone of the contact.

Proof: This result follows from injecting Equation (1) into the analytical formula of the single-support wrench cone [START_REF] Caron | Stability of surface contacts for humanoid robots: Closed-form formulae of the contact wrench cone for rectangular support areas[END_REF]. See Appendix A for calculations.

The constraints (2)-( 4) are expressed via set membership for a geometric intuition. Denoting by S and C the halfspacerepresentation matrices of the polygon S and cone C, respectively, we can formulate these constraints equivalently as:

-λ ≤ 0 (2H) Sp C ≤ 1 (3H) C(p G -p C ) ≤ 0 (4H)
Equation ( 4) ⇔ (4H) provides the condition that is missing in previous works [START_REF] Zhao | A three dimensional foot placement planner for locomotion in very rough terrains[END_REF], [START_REF] Englsberger | Three-dimensional bipedal walking control based on divergent component of motion[END_REF], [START_REF] Naveau | A reactive walking pattern generator based on nonlinear model predictive control[END_REF], [START_REF] Serra | A newton method with always feasible iterates for nonlinear model predictive control of walking in a multi-contact situation[END_REF], [START_REF] Van Heerden | Real-time variable center of mass height trajectory planning for humanoids robots[END_REF] to model friction.

It also completes the observation we made in Figure 6 of [START_REF] Caron | Zmp support areas for multi-contact mobility under frictional constraints[END_REF] by showing that, on horizontal floors, the points p C where p G ∈ p C + C are exactly those that need to be removed from the convex hull of ground contact points to obtain the ZMP support area. The area thus admits a direct geometric construction:

Corollary 1: When contacts are coplanar, the ZMP support area Z is the intersection between the surface patch and the backward friction cone rooted at the COM:

Z = S ∩ (p G -C)
(5) Proposition 1 also gives us a geometric construction of the COM static-equilibrium polygon in single support:

Corollary 2: The COM static-equilibrium polygon in single support is either:

• empty when the friction cone C does not contain the vertical g, or • equal to the vertical projection of the surface patch S onto a horizontal plane.

Proof: This result immediately follows from Proposition 1 by recalling that, in static equilibrium, the COP is located at the vertical below the COM.

Proposition 1 shows how contact-stability inequalities, which are bilinear in general, linearize without loss of generality when the contact wrench is written in terms of λ and p C . It is the main result we use in this paper. Note that this linearization is not specific to single support: in multicontact as welll, bilinear inequalities become linear when the contact wrench results from a fixed attractive or repellent point, as we show in Appendix B for the interested reader. The difference between multi-contact and single-support is that the former requires numerical polytope projections in general [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF], [START_REF] Caron | Zmp support areas for multi-contact mobility under frictional constraints[END_REF], while we have now derived an analytical formula for the latter.

B. Transferring nonlinearity

Equations ( 1)-( 4) characterize the pendulum mode under full contact stability:

pG (t) = λ(t)(p G (t) -p C (t)) + g s.t.    -λ(t) ≤ 0 Sp C (t) ≤ 1 C(p G (t) -p C (t)) ≤ 0 COP-based Inverted Pendulum
This system is linearly constrained, but its forward equation of motion contains a product between the two time-varying terms λ and p C . We transform it by replacing C with the ZMP2 Z defined by:

p Z = p C + 1 - λ ω 2 (p G -p C ) (6) 
where ω 2 is a positive constant, for instance chosen as g/ with the leg length of the robot, or resulting from a COM plane constraint [START_REF] Caron | Zmp support areas for multi-contact mobility under frictional constraints[END_REF], [START_REF] Zhao | A three dimensional foot placement planner for locomotion in very rough terrains[END_REF]. In the pendulum mode, this definition coincides with the Enhanced Centroidal Moment Pivot [START_REF] Englsberger | Three-dimensional bipedal walking control based on divergent component of motion[END_REF]. This transformation has the benefit of making the forward equation of motion linear:

pG (t) = ω 2 (p G (t) -p Z (t)) + g (7) 
It does not eliminate nonlinearity, however, but merely transfers it to the system's inequality constraints. Proposition 2: A motion of the system (7) in single contact (S, C) is contact-stable if and only if :

p Z ∈ p G + cone(S -p G ) (8) p G ∈ p Z + C (9)
where S and C respectively denote the surface patch and friction cone of the contact, and cone(X) is the conical hull of a set X.

Proof: We proceed by double-implication between the systems ( 1)-( 4) and ( 7)-( 9). (⇒) Rewrite Equation ( 6) as:

p Z -p G = λ ω 2 (p C -p G ) (10) 
In this form, it is clear that ( 2 

λ = ω 2 n • (p G -p Z ) n • (p G -p C ) = ω 2 n • (p G -p Z ) n • p G -a (11) 
where n•p = a is the equation of the supporting plane of the surface patch S. Note that n is both the plane normal and the inner axis-vector of the friction cone C. Given that the COM cannot be located below contact, n • p G > a and ( 9) imply that λ ≥ 0. Then, Equation [START_REF] Wieber | Trajectory free linear model predictive control for stable walking in the presence of strong perturbations[END_REF] shows once again that C(p G -p Z ) and C(p G -p C ) have the same sign, so that (9) ⇒ (4). Finally, the COP being located at the intersection between (GZ) and the supporting plane of S, (8) implies (3) by construction.

Denoting by {V i } the vertices of the surface patch S, the two conditions ( 8)-( 9) can be written equivalently in halfspace representation as:

∀i, ----→ V i V i+1 • ( --→ GV i × --→ V i Z) ≤ 0 (8H) C(p G -p Z ) ≤ 0 (9H)
Using the transform (6), we have therefore reformulated the COP-based inverted pendulum into an equivalent ZMP-based model where the ZMP is allowed to leave the surface patch. We coin it the Floating-based Inverted Pendulum (FIP):

pG (t) = ω 2 (p G (t) -p Z (t)) + g s.t. ∀i, ----→ V i V i+1 • ( ----→ G(t)V i × ----→ V i Z(t)) ≤ 0 C(p G (t) -p Z (t)) ≤ 0 Floating-base Inverted Pendulum
The forward equation of motion of the FIP is linear, as well as its friction constraint, which will prove useful to compute feedback controls by constrained linear-quadratic regulation. The main difficulty in computing feedforward trajectories for this system lies in its bilinear ZMP constraint. 

III. NONLINEAR PREDICTIVE CONTROL OF THE FIP

We now formulate FIP predictive control as a nonlinear program (NLP). Our main motivation in switching from convex [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] to non-convex optimization is twofold: on the one hand, solving the bilinear COP constraint (8H) without approximation, and on the other hand, deriving step timings as output variables rather than user-defined parameters. This second feature is crucial over rough terrains, where proper timings depend on terrain topology. Adapting step timings has been recently realized for walking on horizontal floors using quadratic programming [START_REF] Khadiv | Step timing adjustment: A step toward generating robust gaits[END_REF], but it had not been demonstrated yet on uneven terrains.

A. Multiple shooting formulation

As in [START_REF] Carpentier | A versatile and efficient pattern generator for generalized legged locomotion[END_REF], we formulate the nonlinear predictive control (NMPC) problem by direct multiple shooting. A receding horizon over future system states is divided into N time intervals of durations ∆t[k], so that each interval k ∈ {0, . . . , N -1} starts at time t

[k] = j<k ∆t[j]
. The variables of our NLP are:

• p G [k]: COM position at time t[k], • ṗG [k]: COM velocity at time t[k], • p Z [k]: ZMP position at time t[k], • ∆t[k]: step duration, bounded by [∆t min , ∆t max ].
The differential equation of the FIP ( 7) is solved over each interval with constant ZMP located at p Z [k] to obtain the matching conditions:

p G [k + 1] = p G [k] + ṗG [k] sh[k] ω + u[k] ch[k] -1 ω 2 (12) ṗG [k + 1] = ṗG [k]ch[k] + u[k] sh[k] ω (13) 
where the following shorthands have been used:

u[k] = ω 2 (p G [k] -p Z [k]) + g (14) ch[k] = cosh(ω∆t[k]) (15) sh[k] = sinh(ω∆t[k]) (16) 
The next constraints to be enforced over at collocation points are friction and COP inequalities ( 8)- [START_REF] Kajita | Biped walking pattern generation by using preview control of zero-moment point[END_REF]. It is important to note here that contact-stability is only checked at collocation times t[k], as done in the vast majority of present works that solve constrained optimal control problems [START_REF] Carpentier | A versatile and efficient pattern generator for generalized legged locomotion[END_REF], [START_REF] Dai | Planning robust walking motion on uneven terrain via convex optimization[END_REF], [START_REF] Ponton | A convex model of humanoid momentum dynamics for multi-contact motion generation[END_REF], [START_REF] Wieber | Trajectory free linear model predictive control for stable walking in the presence of strong perturbations[END_REF], [START_REF] Herdt | Online walking motion generation with automatic footstep placement[END_REF], [START_REF] Caron | Zmp support areas for multi-contact mobility under frictional constraints[END_REF], [START_REF] Audren | Model preview control in multi-contact motionapplication to a humanoid robot[END_REF], [START_REF] Naveau | A reactive walking pattern generator based on nonlinear model predictive control[END_REF], [START_REF] Van Heerden | Real-time variable center of mass height trajectory planning for humanoids robots[END_REF]. This does not guarantee that the constraints will not be violated between t[k] and t[k + 1].

Given that NLP solvers can handle both linear and nonlinear constraints, we tried two variants of the friction cone constraint (9):

• FC1: the linear constraints (9H) corresponding to the polyhedral approximation of the friction cone C; • FC2: the second-order isotropic friction cone, i.e. without approximation, which can be written as:

-→ ZG 2 2 -(1 + µ 2 )( -→ ZG • n) ≤ 0 (17) 
Second-order inequalities reduce the constraint dimension but increase its complexity. We compared the performance of both approaches in simulations, and observed that computations were roughly 10% faster with FC2. This does not mean that second-order constraints always perform better, though, as we observed degraded performances with secondorder COM-ZMP cones (obtained by replacing the contact polygon with a contact ellipsoid).

B. Boundary conditions

We include both initial and terminal conditions in our predictive problem:

• p G [0] is equal to the estimated COM position at the beginning of the control cycle, • ṗG [0] is equal to the estimated COM velocity at the beginning of the control cycle,

• p Z [N -1] = ξ d
end the desired capture point at the end of the predictive horizon. The ability to define capture points [START_REF] Pratt | Capture point: A step toward humanoid push recovery[END_REF] is another advantage of the FIP compared to models with nonlinear forward equations of motion. From Equation [START_REF] Dai | Planning robust walking motion on uneven terrain via convex optimization[END_REF], and following the derivation from e.g. [START_REF] Englsberger | Three-dimensional bipedal walking control based on divergent component of motion[END_REF], the instantaneous capture point in the FIP is:

ξ(t) = p G (t) + ṗG (t) ω + g ω 2 (18) 
The boundary value ξ d end is derived from the next contact location and a reference walking velocity v d provided by the user. Specifically, if F is the last contact location of the receding horizon and (t F , b F , n F ) the corresponding contact frame, then:

ξ d end = p F + v d t F ω + g ω 2 (19) 
It matches a desired COM position p d G located at the vertical above F , along with a forward COM velocity equal to v d .

We chose v d so that ξ d end belongs to the surface patch S. This way, if the NMPC stops providing updated feedforward trajectories for some reason (which may happen as we are solving non-convex problems), at least regulation around the latest successful trajectory will steer the system to a stop.

One could replace this simple post-preview behavior with more general boundedness constraints [START_REF] Lanari | Planning desired center of mass and zero moment point trajectories for bipedal locomotion[END_REF], based e.g. on heuristic post-preview ZMP trajectories derived from terrain topology.

C. Cost function

The cost function of our NLP is a weighted combination of three integral and one terminal terms:

T t=0 (w Z p Z -p F 2 +w G pG 2 +w T )dt+w ξ ξ[N ]-ξ d end 2 • p Z -p F 2 dt
, where F is the center of the supporting foot (note that there may be two different supporting foot in a predictive horizon due to contact switches). This term favors solutions with lower foot contact torques. We give it a weight of w Z = 10 -5 .

• pG 2 dt, a regularization term used to avoid unnecessarily high accelerations. We give it a weight of w G = 10 -3 .

• T = 1dt, the total duration of the trajectory. This term plays a significant role in balancing the acceleration regularization term, which otherwise generates local minima where the system tries to avoid moving altogether. We give it a weight of w T = 10 -2 .

•

ξ[N ]-ξ d end 2
, where ξ[N ] is the capture point defined from p G [N ] and ṗG [N ] at the end of the predictive horizon. This term is the state analog of the ZMP boundary condition. The problem is better conditioned when it is put in the cost function rather than as a hard constraint. We give it a weight of w ξ = 1.

D. Contact switches

Contrary to horizontal-floor solutions that preview several future footsteps [START_REF] Wieber | Trajectory free linear model predictive control for stable walking in the presence of strong perturbations[END_REF], [START_REF] Herdt | Online walking motion generation with automatic footstep placement[END_REF], our controller previews exactly one step ahead during single-support phases (we use our conservative linear MPC [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] during double-support phases). Our nonlinear program does not model the swing foot trajectory. Rather, it relies on an estimate of the time to heel strike, which we construct as in [START_REF] Caron | When to make a step? tackling the timing problem in multi-contact locomotion by topp-mpc[END_REF]:

• Interpolate a polynomial path from the current swingfoot location to its target foothold (spherical linear interpolation is used to interpolation its orientation). • Use Time-Optimal Path Parameterization (TOPP) [START_REF] Pham | A general, fast, and robust implementation of the time-optimal path parameterization algorithm[END_REF] to retime the interpolated path under conservative foot acceleration constraints. • Take the duration T swing of the retimed path as estimate for the time to heel strike. The N time intervals of the receding horizon are then split into two categories. The first half of them is dedicated to the swing interval [0, T swing ] until heel strike, where contact stability is enforced with respect to the current supporting foot, while for the second half it is enforced with respect to the next foothold. This assignment is matched with step durations by the last constraint of our NLP:

N/2 k=0 ∆t[k] ≥ T swing . (20) 

E. Implementation details

We construct NLPs using the CasADi symbolic framework [START_REF] Andersson | A General-Purpose Software Framework for Dynamic Optimization[END_REF] and solve them with the primal-dual interior-point solver IPOPT [START_REF] Wächter | On the implementation of an interiorpoint filter line-search algorithm for large-scale nonlinear programming[END_REF]. Major settings that allowed us to reach fair computation times include:

• Using MX rather than SX CasADi symbols.

• Using the MA27 or MA97 linear solvers within IPOPT.

• Capping the CPU time and number of iterations to 100 ms and 100, respectively. When these budgets are exceeded, the solver has most likely diverged away from any feasible solution. • Using the adaptive rather than monotone update strategy for the barrier parameter, which made computations roughly 40% faster. With this implementation, it takes roughly 10 to 40 ms to solve an NMPC problem (see Section V for details). These computation times are on the same scale as those reported in the warm-started phase of [START_REF] Carpentier | A versatile and efficient pattern generator for generalized legged locomotion[END_REF], but we don't suffer a secondlong cold start to generate an initial feasible solution. This is most likely because the problem we solve is smaller (singlesupport) and we have reformulated its structure concisely.

F. Tunings for variable time steps

Each step duration ∆t[k] in the NLP is lower and upper bounded by two parameters ∆t min and ∆t max that affect solver performances. Expectedly, computation time increases with ∆t max , but this parameter cannot be too low as the problem becomes infeasible below a certain threshold ∆t lim max . Figure 2 shows how computation times 3 are influenced by varying ∆t max at the beginning of a feasible single-support phase. A "sweet range" extends from 200 to 500 ms, with the best (also riskiest) performance obtained close to the threshold. Below this range, computation times and failure rate increase beyond usable values. In practice, values of ∆t lim max ranged between 100 ms and 300 ms during the gait cycle, and we chose a uniform setting of ∆t max = 350 ms.

The influence of ∆t min is of a different nature. First, we note that ∆t min cannot be equal to zero in practice: all integral terms in the cost function bias solutions toward ∆t[k] → 0, and we want to preclude local optima where the receding-horizon duration would be zero. Setting ∆t min to the control cycle gives good performance in practice. Larger values further improve computation times at the beginning of single-support phases, but jeopardize convergence in the middle of the step where T swing becomes small. We dealt with this case by reducing ∆t min on the fly when NMPC solutions start to overshoot T swing . The first N/2 steps being devoted to the swing phase, the procedure is: if

N/2 k=0 ∆t[k] > (1 + 1 4 )T swing then ∀k ≤ N/2, ∆t min [k] ← ∆t min [k]/2 end if
In a motion generation scenario where computation time is abundant, one could devise global strategies such as a bisection search to tune ∆t min and ∆t max . The heuristic used 3 All computations reported in this paper were run on a personal laptop computer, CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50 Ghz. Effect of ∆tmax on computation times (yellow) and failure rate (red) of the NLP solver, for a feasible step and N = 10 collocation points. Each bar includes a standard deviation estimate (blue line) computed over 200 runs. Above a minimum value ∆t lim max , the problem becomes feasible and all runs should ideally converge to a solution. In practice, computations become unstable for large values of ∆tmax.

here is rather a local parameter search spread over control cycles. It has the benefit of incurring no additional cost.

G. Failure rate accross the gait cycle

While computation times look promising, another metric suggests that nonlinear optimization is not sufficient in itself to solve the NMPC problem: its failure rate, in our case, is around 40%. This means that, on average one out of two to three control cycles, the solver either does not terminate, or returns a certificate of infeasibility, or converges to an off-track solution. We found that the terminal capture-point error ξ[N ] -ξ d end is a good indicator of this latter case, and chose to discard all solutions where this error is above 10 cm (a liberal value close to the half-length of HRP-4's footprint).

IV. CONSTRAINED LINEAR-QUADRATIC REGULATION

To cope with the 40% of situations where the nonlinear optimization fails to produce a new solution on time, we design a constrained linear-quadratic regulator (LQR) that updates the last available trajectory p d G , ṗd G , p d Z into a new feasible one starting from the current COM state. In order to cast the regulation problem as a quadratic program, this reference trajectory is first resampled into M time steps of equal duration ∆T . Residual states and controls of the FIP are then:

∆x[k] = p G [k] -p d G [k] ṗG [k] -ṗd G [k] (21) 
∆z[k] = p Z [k] -p d Z [k] (22) 
The discretized linear dynamics of these residuals are:

∆x[k + 1] = A∆x[k] + B∆z[k] (23) 
A = cosh(ω∆T )E sinh(ω∆T )/ωE ω sinh(ω∆T )E cosh(ω∆T )E (24) 
B = (1 -cosh(ω∆T ))E -ω sinh(ω∆T )E ( 25 
)
where E is the 3 × 3 identity matrix. Inequality constraints over p G and p Z translate into similar constraints over ∆x and ∆z. The friction constraint (9H) becomes:

[ C 0 ] ∆x[k] -C∆z[k] ≤ C(p d Z [k] -p d G [k]) (26) Next, define σ i [k] def = - ----→ V i V i+1 • ( -----→ G d [k]V i × -----→ V i Z d [k]
) the positive slackness of the COP constraint on the i th vertex in the reference trajectory. Expanding (8H) yields, in geometric form (we omit indexes [k] to alleviate notations and write ∆p the first three coordinates of ∆x):

----→ V i V i+1 •( ---→ G d V i ×∆z+ ---→ V i Z d ×∆p+∆z×∆p) ≤ σ i [k] (27)
And in matrix form:

∆p[k] T Hi∆z[k] + hP [k] T ∆p[k] + hZ [k] T ∆z[k] ≤ σ[k] (28)
with H i the cross-product matrix of ----→ V i V i+1 and

h P [k] def = H i (p d Z [k] -p Vi ), h Z [k] def = H i (p Vi -p d G [k]).
At this point, one could put polyhedral bounds on ∆z or ∆p and solve a (bigger) conservative linearized system. This is e.g. the approach followed in [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF], [START_REF] Dai | Planning robust walking motion on uneven terrain via convex optimization[END_REF] where COM trajectories are boxed into user-defined volumes. However, contrary to these previous works, our problem here applies to residual variables, which we can assume to be small. Intuitively, if ∆p ---→ G d V i and ∆z ---→ V i Z d , then ∆p × ∆z should be orders of magnitude smaller than the linear term

---→ G d V i ×∆z+ ---→ V i Z d ×∆p .
We therefore neglect this residual cross-product, resulting in a linear COP constraint:

h P [k] T ∆p[k] + h Z [k] T ∆z[k] ≤ σ[k] (29) 
After implementing the complete pipeline described so far, we checked the validity of this assumption down the line. We found that, in the simulation framework described in the next section (which includes noise and delays in both control and state estimation) the ratio

∆p × ∆z ---→ G d V i × ∆z + ---→ V i Z d × ∆p
is equal on average to 0.005 with a standard deviation of 0.005 for 10,000 sampling times corresponding to five minutes of locomotion. That is, the cross-product term is roughly two orders of magnitude smaller than the linear one, which a posteriori legitimates our assumption.

Coming back to problem formulation, our constrained LQR is finally cast as a quadratic program with cost function: 

minimize {∆z[k]} M -1 k=0 w xc ∆x[k] 2 + w z ∆z[k] 2 + w xt ∆x[M ]
We solve this problem using the classical single-shooting formulation described in e.g. [START_REF] Audren | Model preview control in multi-contact motionapplication to a humanoid robot[END_REF] and implemented by the Copra4 library. In experiments, we set the terminal weight to w xt = 1 and the cumulative weights to w xc = w z = 10 -3 . 

V. SIMULATIONS

We validated the proposed method in simulation with a model of the HRP-4 humanoid robot. Our benchmark test is a randomly-generated elliptic staircase that includes all the characteristics that we deem important for roughterrain locomotion: going up, forward and down using tilted contacts (no two contacts are coplanar). Our simulations use 5 , an extension of OpenRAVE for humanoid robotics. Compared to the results reported in [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF], these new simulations model both noise and delay in ZMP control and COM estimation:

• COM state estimation: zero-mean noise with amplitudes of 10 cm s -1 on position and 10 cm s -2 on velocity. Nominal delay is set to 20 ms. • Ankle ZMP control: zero-mean noise with amplitude 10 mm ms -1 . Control delay, i.e. the characteristic duration before a new command is achieved, is set to 20 ms. Pattern generation is supervised by a finite state machine that alternates single and double support phases. In double support, the conservative multi-contact controller from [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] is used with the current step target as terminal condition. When the NMPC (Section III) running in the background finds a trajectory traversing the next step, the state machine switches to the next swing phase (single support).

In single support, the multi-contact controller is replaced by the LQR from Section IV. When the NMPC successfully finds a new solution, usually with a delay between 0 and 3 control cycles, this trajectory is resampled and sent to the LQR as a new reference. The LQR then produces an updated trajectory which is sent to the whole-body inverse kinematics and foot ZMP controllers. The numbers of NMPC and LQR steps are set respectively to N = 10 and M = 30. With this design, our pattern generator is able to locomote the humanoid accross the elliptic staircase depicted in Figure 3. However, when disabling the linear-quadratic regulator, the robot only walks a couple of steps before NMPC numerically unstabilities make it unable to recover from perturbations. Sample outcomes are shown in the accompanying videos. These results can be reproduced using the source code [28].

One important aspect in these simulations is that they perform an independent check of contact-wrench feasibility at every time step. Indeed, as mentioned in Section III, constraints are only enforced at collocation points. Optimal solutions may then violate constraints in between these points, and additional validation is needed to make sure that this does not happen. This point is particularly critical in our NMPC where we use a small number of variable-duration steps, and all the more justifies the addition of an LQR with finer discretization. Table I reports computation times for both the NMPC and LQR controllers over two full cycles on the elliptic staircase. Building NMPC problems only occurs around contact switches, the same nonlinear problem structure being otherwise re-used between control cycles. In this scenario, the robot called the double-support controller roughly once every two steps to handle the extra control cycles needed by the NMPC to complete its computations.

VI. CONCLUSION

We presented a real-time rough-terrain walking pattern generator that is able to adjust its step timings automatically. Our solution rests upon the floating-base inverted pendulum, a model with linear equations of motion and where contact stability can be checked using simple geometric constructions. We developed a nonlinear predictive controller that computes feedforward walking trajectories at roughly 30 Hz, as well as a constrained linear-quadratic regulator computing feedback controls one order of magnitude faster. The source code to reproduce this work is released at [28].

  ) ∧ (3) ⇒ (8). Left-multiplying by C, this equation further shows that C(p G -p Z ) and C(p G -p C ) have the same sign, so that (2) ∧ (4) ⇒ (9). (⇐) For the reciprocal implication, consider the inverse transform on the stiffness coefficient:

Fig. 1 .

 1 Fig. 1. The two necessary and sufficient conditions for contact stability of the Floating-base Inverted Pendulum. Friction (left): the COM belongs to the contact friction cone C projected from the ZMP z. Center of pressure (right): the ZMP z belongs to the cone projected from the COM and containing the vertices of the contact surface S.

Fig. 2 .

 2 Fig. 2.Effect of ∆tmax on computation times (yellow) and failure rate (red) of the NLP solver, for a feasible step and N = 10 collocation points. Each bar includes a standard deviation estimate (blue line) computed over 200 runs. Above a minimum value ∆t lim max , the problem becomes feasible and all runs should ideally converge to a solution. In practice, computations become unstable for large values of ∆tmax.
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  ∀k, (23) ∧ (26) ∧ (29)

Fig. 3 .

 3 Fig. 3. Walking pattern generation over an elliptic staircase with tilted steps. At each control cycle, a new trajectory (dotted line) is computed via nonlinear optimization for the Floating-base Inverted Pendulum (red: current state, blue: desired state at the end of the receding horizon). In this model, the ZMP Z can leave the surface patch S and the COM can move freely in 3D while keeping linear equations of motion.

Fig. 4 .

 4 Fig.[START_REF] Caron | Stability of surface contacts for humanoid robots: Closed-form formulae of the contact wrench cone for rectangular support areas[END_REF]. Difference in COM trajectories between this work (blue line) and our previous multi-contact walking pattern generator[START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] (black dotted line). Note that the perspective is isometric, not linear. Footholds correspond to the downward part of the elliptic staircase depicted in Figure3. Numbers next to them indicate their altitude in cm. The new trajectory is dynamic as the COM goes only marginally over the edges of the footholds, as opposed to the quasi-static one where it nears the vertical of foothold centers.

TABLE I PERFORMANCE

 I OF THE NMPC AND LQR CONTROLLERS OVER TWO FULL CYCLES ON THE ELLIPTIC STAIRCASE.

	Function # Calls # Successes Time (ms)
	Build NMPC	115	115	25 ± 8.5
	Solve NMPC	2000	1452	21 ± 11
	Build LQR	1975	1975	1.9 ± 0.2
	Solve LQR	1975	1975	1.0 ± 0.4

Recall that all points of the zero-moment axis (GC) can be called "zeromoment points"[START_REF] Caron | Zmp support areas for multi-contact mobility under frictional constraints[END_REF].

https://github.com/vsamy/Copra
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APPENDIX

A. Proof of Proposition 1

In this Appendix, all coordinates are taken with respect to the local contact frame. The analytical formula of the contact wrench cone at the origin O of this frame is given by [START_REF] Caron | Stability of surface contacts for humanoid robots: Closed-form formulae of the contact wrench cone for rectangular support areas[END_REF]:

where the lower and upper bounds on yaw torque are:

In the pendulum mode, the contact wrench is equal to:

Injecting these equations into (32)-(34) yields two sets of equations (we used a symbolic calculator to avoid painstaking hand calculations here). First,

And second, after rearranging all terms suitably:

All right-hand side terms in this second set can be writen as ab + cd, where a, b, c, d are positive slackness variables from the first set of inequalities ( 35)-(36). Therefore, all constraints in the second set are redundant, and the contact wrench cone in irreducible form is given by ( 35)-(36). We conclude by noting how (35) corresponds to p C ∈ S while (36) represents p G ∈ p C + C.

B. Support Volumes for Virtual Repulsors and Attractors

Let A O denote the inequality matrix of the contact wrench cone taken with respect to a fixed point O. In the pendulum mode, contact stability can be written [START_REF] Caron | Multi-contact walking pattern generation based on model preview control of 3d com accelerations[END_REF] in terms of the position and acceleration of the COM as

over all rows (a, a O ) of the inequality matrix A O . These expressions are bilinear and not positive-semidefinite in general, which precludes their direct use with e.g. convex optimization. There is however one interesting setting where these inequalities linearize without loss of generality: Proposition 3: If the COM control law follows a proportional attractor or repulsor H with stiffness k ∈ R, that is

then the set of contact-stable positions p G is a polyhedral cone rooted at the apex ν := p H -g/k.

Proof: Injecting the control law (38) into (37) yields:

Defining ν := p H -g/k, this expression expands to:

using the fact that (a × b) • b = 0 (the scalar triple product is a Gram determinant). We recognize the expression of a linear polyhedral cone in p G with apex ν. This property applies to the following two cases: