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Dynamic Walking over Rough Terrains by Nonlinear
Predictive Control of the Floating-base Inverted Pendulum

Stéphane Caron' and Abderrahmane Kheddar'?

Abstract— We present a real-time pattern generator for dy-
namic walking over rough terrains. Our method automatically
finds step durations, a critical issue over rough terrains where
they depend on terrain topology. To achieve this level of
generality, we consider a Floating-base Inverted Pendulum
(FIP) model where the center of mass can translate freely and
the zero-tilting moment point is allowed to leave the contact
surface. This model is equivalent to a linear inverted pendulum
with variable center-of-mass height, but its equations of motion
remain linear. Our solution then follows three steps: (i) we
characterize the FIP contact-stability condition; (ii) we compute
feedforward controls by solving a nonlinear optimization over
receding-horizon FIP trajectories. Despite running at 30 Hz in
a model-predictive fashion, simulations show that the latter
is too slow to stabilize dynamic motions. To remedy this,
we (iii) linearize FIP feedback control into a constrained
linear-quadratic regulator that runs at 300 Hz. We finally
demonstrate our solution in simulations with a model of the
HRP-4 humanoid robot, including noise and delays over state
estimation and foot force control.

I. INTRODUCTION

A walking pattern is dynamic when it contains single-
support phases that are not statically stable, i.e. where the
center of mass (COM) of the robot leaves the area above
contact and undergoes divergent dynamics. These dynamic
phases are used to increase walking speed as well as to con-
trol balance, as illustrated by reactive stepping strategies [1],
[2]. To estimate the dynamic capabilities of a rough-terrain
walking pattern generato (RT-WPG), we can measure the
duration of double-support phases, or the amount of time
spent in statically-stable configurations. For instance, our
previous RT-WPG [3] spends roughly 40% of its gait in
double-support, and about 90% of the time in statically-stable
configurations. In contrast, our present RT-WPG, in the same
scenario, spends less than 5% of its gait in double-support,
and about 40% of the time in statically-stable configurations.

A major concern while walking is to enforce contact
stability, i.e. making sure that contacts neither slip nor
tilt while the robot pushes on them to move. To generate
contact-stable trajectories, one needs to guarantee that all
contact wrenches throughout the motion lie inside their
respective wrench cones [4]. So far, the full problem has
only been solved in whole-body motion generation [5], or
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IPattern generators compute both feedforward and feedback walking
controls under real-time constraints, as opposed to motion generators, which
only compute feedforward controls without time constraints.

more recently in centroidal motion generation [6], [7], [8],
where computation time is provided until a solution is found.
For real-time control, it is common to reduce the number of
variables by regulating the centroidal angular momentum to
Lg = 0. Doing so simplifies the Newton-Euler equations of
motion to:

pc = Mpa —pz)+9,

with pg the COM position, A a positive quantity, pz the
whole-body zero-tilting moment point (ZMP) and g the
gravity vector. When the COM motion is constrained to a
plane, X is constant and we obtain the Linear Inverted Pen-
dulum Mode (LIPM). Predictive control of the COM in the
LIPM can be formulated as a quadratic program, where the
cost function encodes a number of desired behaviors while
inequalities enforce the contact-stability condition: the ZMP
lies within the convex hull of contact points. (This condition
is actually incomplete; we will derive the complete condition
below.) This formulation successfully solved the problem of
walking over flat surfaces [9], [10], [11]. However, it did not
extend to rough terrains where the shape of the ZMP support
area varies during motion [12].

Solutions for rough terrains have been proposed that track
pre-defined COM trajectories across contact switches [13],
[14], yet they were not designed to compute their own
feedforward controls. In pattern generation, three main di-
rections have been explored so far. In one line of work,
3D extensions of the LIPM [15], [16] provided the basis
for the first RT-WPGs, combining fast footstep replanning
with force-tracking control. So far, these solutions use partial
contact-stability conditions (friction is not modeled) and do
not generalize the constraint saturation behavior of their 2D
counterparts [10]. Other works went for harder nonlinear
optimization problems [17], [18], [19], but again they did not
model friction and were only applied to walking on parallel
horizontal surfaces. Finally, we recently proposed in [3] an
RT-WPG that enforces full contact stability and walks across
arbitrary terrains, but at the cost of a conservative problem
linearization (a similar idea appeared simultaneously in the
motion generator from [7]).

We now bridge the gap between these three directions with
an RT-WPG that is (1) based on a 3D extension of the LIPM,
for which we (2) derive the full contact stability condition
and consequently (3) formulate and solve as a nonlinear
optimal-control problem. The latter being experimentally too
slow for predictive control, we further derive a constrained
linear-quadratic regulator based on the same model for high-
frequency stabilization.
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II. THE FLOATING-BASE INVERTED PENDULUM

Let us consider a biped in single support. We define the
surface patch S as the convex hull of contact points, and
denote by C the contact friction cone. In the pendulum mode,
the center of pressure (COP) C' is located at the intersection
between S and the central axis of the contact wrench, which
is then also a zero-moment axis. Contact breaks when this
intersection becomes empty, or switches to another mode
when C reaches the boundaries of S. The Newton equation
of motion of the COM in the pendulum mode is:

pc = Mpa—pc)+g )]

In general, this equation is bilinear as the stiffness value
A and COP location pc are two different components of
the time-varying contact wrench. Making time explicit, the
differential equation of the COM position is:

pc(t) — At)pc(t) = —At)pc(t) +g

The additional constraint of the LIPM is that po and pc
lie in parallel planes separated by a fixed distance h =
n - (pe — pc), so that A = (n - g)/h becomes a constant
by Equation (I). Interestingly, in the context of balance
control for a 2D inverted pendulum, Koolen et al. [20]
recently studied the symmetric problem where pc is fixed
and polynomial COM interpolation yields a variable A(t).

A. Contact stability in single support

Proposition 1: A motion of the system (I) in single
contact (S,C) is contact-stable if and only if:

A € RT 2
pc € S 3)
pc € pc+C €]

where & and C respectively denote the surface patch and
friction cone of the contact.

Proof: This result follows from injecting Equation (I))
into the analytical formula of the single-support wrench
cone [4]. See Appendix [A] for calculations. [ ]

The constraints (2)—(@) are expressed via set membership
for a geometric intuition. Denoting by S and C the halfspace-
representation matrices of the polygon S and cone C, respec-
tively, we can formulate these constraints equivalently as:

A <0 (2H)
Spc <1 (3H)
C(pg—pc) <0 (4H)

Equation (@) < provides the condition that is missing in
previous works [15], [16], [17], [18], [19] to model friction.
It also completes the observation we made in Figure 6 of [12]
by showing that, on horizontal floors, the points p- where
pc € pc + C are exactly those that need to be removed
from the convex hull of ground contact points to obtain the
ZMP support area. The area thus admits a direct geometric
construction:

Corollary 1: When contacts are coplanar, the ZMP sup-
port area Z is the intersection between the surface patch and
the backward friction cone rooted at the COM:

Z = 8Nn(pe—C) )
Proposition [T]also gives us a geometric construction of the
COM static-equilibrium polygon in single support:
Corollary 2: The COM static-equilibrium polygon in sin-
gle support is either:

o empty when the friction cone C does not contain the
vertical g, or

o equal to the vertical projection of the surface patch S
onto a horizontal plane.

Proof: This result immediately follows from Proposi-
tion [I] by recalling that, in static equilibrium, the COP is
located at the vertical below the COM. [ ]

Proposition [I| shows how contact-stability inequalities,
which are bilinear in general, linearize without loss of
generality when the contact wrench is written in terms of A
and pc. It is the main result we use in this paper. Note that
this linearization is not specific to single support: in multi-
contact as welll, bilinear inequalities become linear when the
contact wrench results from a fixed attractive or repellent
point, as we show in Appendix [B] for the interested reader.
The difference between multi-contact and single-support is
that the former requires numerical polytope projections in
general [3], [12], while we have now derived an analytical
formula for the latter.

B. Transferring nonlinearity

Equations (I)-(@) characterize the pendulum mode under
full contact stability:

4{ COP-based Inverted Pendulum ’—
Pc(t) = At)(pc(t) —pc(t) + g
—A(t) <0
s.t. Spc(t) 1
C(pc(t) —pc(t)) 0

This system is linearly constrained, but its forward equation
of motion contains a product between the two time-varying
terms A and pc. We transform it by replacing C' with the
ZM Z defined by:

<
<

Pz = pc+ [1 - CL:\Q} (pc — pc) (6)
where w? is a positive constant, for instance chosen as
g/l with ¢ the leg length of the robot, or resulting from a
COM plane constraint [12], [15]. In the pendulum mode, this
definition coincides with the Enhanced Centroidal Moment
Pivot [16]. This transformation has the benefit of making the
forward equation of motion linear:

pe(t) = W (pc(t) —pz(t) +g (7)

ZRecall that all points of the zero-moment axis (GC') can be called “zero-
moment points” [12].



It does not eliminate nonlinearity, however, but merely
transfers it to the system’s inequality constraints.

Proposition 2: A motion of the system (7) in single
contact (S, C) is contact-stable if and only if:

Pz € pc+cone(S—pg) ¥
pc € pz+C )

where S and C respectively denote the surface patch and
friction cone of the contact, and cone(X) is the conical hull
of a set X.

Proof: We proceed by double-implication between the

systems (I)-(@) and (7)-(). (=) Rewrite Equation (6) as:

A

Pz —pc = —5(Pc—pc) (10)
In this form, it is clear that @) A B) = (8). Left-multiplying
by C, this equation further shows that C(pg — pz) and
C(pc—pc) have the same sign, so that @) A @) = ). (<)
For the reciprocal implication, consider the inverse transform
on the stiffness coefficient:

P w2n(pG7pZ) = w

n - (pc — pc)

zn'(PG*pZ)
n-pg—a

(1)

where n.-p = a is the equation of the supporting plane of the
surface patch S. Note that n is both the plane normal and
the inner axis-vector of the friction cone C. Given that the
COM cannot be located below contact, n - pg > a and @)
imply that A > 0. Then, Equation (I0) shows once again that
C(pe — pz) and C(pg — pc) have the same sign, so that
©) = @). Finally, the COP being located at the intersection
between (GZ) and the supporting plane of S, (8) implies
(3) by construction. [

Denoting by {V;} the vertices of the surface patch S,
the two conditions (8)-() can be written equivalently in
halfspace representation as:

(GV; x V,2)

C(pc —pz)

0 (SH)
0 (9H)

VVz+1 <
<

Using the transform (6)), we have therefore reformulated the
COP-based inverted pendulum into an equivalent ZMP-based
model where the ZMP is allowed to leave the surface patch.
We coin it the Floating-based Inverted Pendulum (FIP):

4’ Floating-base Inverted Pendulum ’;

pa(t) = w?(pa(t) — pz(t) + g
st d Vi, ViV - (GO)V; x ViZ(t)) < 0
h C(pg(t) —pz(t)) < 0

The forward equation of motion of the FIP is linear, as well
as its friction constraint, which will prove useful to compute
feedback controls by constrained linear-quadratic regulation.
The main difficulty in computing feedforward trajectories for
this system lies in its bilinear ZMP constraint.

Fig. 1. The two necessary and sufficient conditions for contact stability of
the Floating-base Inverted Pendulum. Friction (left): the COM belongs to
the contact friction cone C projected from the ZMP z. Center of pressure
(right): the ZMP =z belongs to the cone projected from the COM and
containing the vertices of the contact surface S.

III. NONLINEAR PREDICTIVE CONTROL OF THE FIP

We now formulate FIP predictive control as a nonlinear
program (NLP). Our main motivation in switching from
convex [3] to non-convex optimization is twofold: on the
one hand, solving the bilinear COP constraint (8H) without
approximation, and on the other hand, deriving step timings
as output variables rather than user-defined parameters. This
second feature is crucial over rough terrains, where proper
timings depend on terrain topology. Adapting step timings
has been recently realized for walking on horizontal floors
using quadratic programming [21], but it had not been
demonstrated yet on uneven terrains.

A. Multiple shooting formulation

As in [6], we formulate the nonlinear predictive control
(NMPC) problem by direct multiple shooting. A receding
horizon over future system states is divided into N time
intervals of durations At[k], so that each interval k €
{0,...,N — 1} starts at time t[k] = >, , At[j]. The
variables of our NLP are:

e pglk]: COM position at time ¢[k],

e Pclk]: COM velocity at time t[k],

e pz[k]: ZMP position at time t[k],

o At[k]: step duration, bounded by [Atmin, Atmax]-

The differential equation of the FIP is solved over each
interval with constant ZMP located at pz[k] to obtain the
matching conditions:

sh[k] ch[k] — 1

pglk +1] = palk] + pclk] + ulk]

shik]

12)

pclk +1] = pglk|chl[k] + ulk] (13)

where the following shorthands have been used:

ulk] = w*(pclk] - pz[K) +g (14)
ch[k] = cosh(wAt[k]) (15)
sh[k] = sinh(wAt[k]) (16)



The next constraints to be enforced over at collocation points
are friction and COP inequalities (8)—(9). It is important to
note here that contact-stability is only checked at collocation
times t[k], as done in the vast majority of present works that
solve constrained optimal control problems [6], [7], [8], [10],
[11], [12], [14], [17], [19]. This does not guarantee that the
constraints will not be violated between ¢[k] and ¢[k + 1].
Given that NLP solvers can handle both linear and non-
linear constraints, we tried two variants of the friction cone
constraint (9):
o FC1: the linear constraints corresponding to the
polyhedral approximation of the friction cone C;
o FC2: the second-order isotropic friction cone, i.e. with-
out approximation, which can be written as:

1ZGI3— (1 +43)(ZCn) <0 (A7)

Second-order inequalities reduce the constraint dimension
but increase its complexity. We compared the performance
of both approaches in simulations, and observed that com-
putations were roughly 10% faster with FC2. This does not
mean that second-order constraints always perform better,
though, as we observed degraded performances with second-
order COM-ZMP cones (obtained by replacing the contact
polygon with a contact ellipsoid).

B. Boundary conditions

We include both initial and terminal conditions in our
predictive problem:
e pcl0] is equal to the estimated COM position at the
beginning of the control cycle,
e Pcl0] is equal to the estimated COM velocity at the
beginning of the control cycle,
e pz[N — 1] = ¢4 , the desired capture point at the end
of the predictive horizon.
The ability to define capture points [22] is another advantage
of the FIP compared to models with nonlinear forward
equations of motion. From Equation (7), and following the
derivation from e.g. [16], the instantaneous capture point in
the FIP is:

pa(t)

g
+ =
w2

£(t) = palt)+ (18)

The boundary value fgnd is derived from the next contact
location and a reference walking velocity v provided by
the user. Specifically, if F' is the last contact location of the
receding horizon and (tp, br, nr) the corresponding contact
frame, then:

g

t
= pr+vit + =
w w

Eena (19)
It matches a desired COM position p& located at the vertical
above F, along with a forward COM velocity equal to v
We chose v¢ so that £2 , belongs to the surface patch S.
This way, if the NMPC stops providing updated feedforward
trajectories for some reason (which may happen as we are
solving non-convex problems), at least regulation around the
latest successful trajectory will steer the system to a stop.

One could replace this simple post-preview behavior with
more general boundedness constraints [23], based e.g. on
heuristic post-preview ZMP trajectories derived from terrain

topology.
C. Cost function

The cost function of our NLP is a weighted combination
of three integral and one terminal terms:

T

/t (wzlpz—prl*+welpal*Hr) -t [E1N] -l

e [ |lpz—pr||*dt, where F is the center of the supporting
foot (note that there may be two different supporting
foot in a predictive horizon due to contact switches).
This term favors solutions with lower foot contact
torques. We give it a weight of wy = 1075,

o [|IPc||*dt, a regularization term used to avoid un-
necessarily high accelerations. We give it a weight of
wg = 1073,

o T = [1dt, the total duration of the trajectory. This
term plays a significant role in balancing the accel-
eration regularization term, which otherwise generates
local minima where the system tries to avoid moving
altogether. We give it a weight of wp = 1072,

o [|E[N]—&2 ,||%, where £[N] is the capture point defined
from pg[N] and pg[N] at the end of the predictive
horizon. This term is the state analog of the ZMP
boundary condition. The problem is better conditioned
when it is put in the cost function rather than as a hard
constraint. We give it a weight of w¢ = 1.

D. Contact switches

Contrary to horizontal-floor solutions that preview several
future footsteps [10], [11], our controller previews exactly
one step ahead during single-support phases (we use our
conservative linear MPC [3] during double-support phases).
Our nonlinear program does not model the swing foot
trajectory. Rather, it relies on an estimate of the time to heel
strike, which we construct as in [24]:

« Interpolate a polynomial path from the current swing-
foot location to its target foothold (spherical linear
interpolation is used to interpolation its orientation).

o Use Time-Optimal Path Parameterization (TOPP) [25]
to retime the interpolated path under conservative foot
acceleration constraints.

o Take the duration Tyying of the retimed path as estimate
for the time to heel strike.

The N time intervals of the receding horizon are then split
into two categories. The first half of them is dedicated to
the swing interval [0, Towing] until heel strike, where contact
stability is enforced with respect to the current supporting
foot, while for the second half it is enforced with respect
to the next foothold. This assignment is matched with step
durations by the last constraint of our NLP:

N/2

> ALK > Taing- (20)
k=0



E. Implementation details

We construct NLPs using the CasADi symbolic frame-
work [26] and solve them with the primal-dual interior-point
solver IPOPT [27]. Major settings that allowed us to reach
fair computation times include:

o Using MX rather than SX CasADi symbols.

o Using the MA27 or MA97 linear solvers within IPOPT.

o Capping the CPU time and number of iterations to

100 ms and 100, respectively. When these budgets are
exceeded, the solver has most likely diverged away from
any feasible solution.

« Using the adaptive rather than monotone update strategy

for the barrier parameter, which made computations
roughly 40% faster.

With this implementation, it takes roughly 10 to 40 ms to
solve an NMPC problem (see Section [V| for details). These
computation times are on the same scale as those reported in
the warm-started phase of [6], but we don’t suffer a second-
long cold start to generate an initial feasible solution. This is
most likely because the problem we solve is smaller (single-
support) and we have reformulated its structure concisely.

F. Tunings for variable time steps

Each step duration At[k] in the NLP is lower and upper
bounded by two parameters Atnyi, and Atna that affect
solver performances. Expectedly, computation time increases
with At but this parameter cannot be too low as the
problem becomes infeasible below a certain threshold Atm .
Figure [2| shows how computation timef] are influenced by
varying Atmax at the beginning of a feasible single-support
phase. A “sweet range” extends from 200 to 500 ms, with
the best (also riskiest) performance obtained close to the
threshold. Below this range, computation times and failure
rate increase beyond usable values. In practice, values of
Atlm ranged between 100 ms and 300 ms during the gait
cycle, and we chose a uniform setting of Aty = 350 ms.

The influence of Atn;, is of a different nature. First,
we note that Atn, cannot be equal to zero in practice:
all integral terms in the cost function bias solutions toward
At[k] — 0, and we want to preclude local optima where the
receding-horizon duration would be zero. Setting At to
the control cycle gives good performance in practice. Larger
values further improve computation times at the beginning
of single-support phases, but jeopardize convergence in the
middle of the step where Tyying becomes small. We dealt
with this case by reducing At,;, on the fly when NMPC
solutions start to overshoot Tgying. The first IV, /2 steps being
devoted to the swing phase, the procedure is:

if S0/2 At[k] > (1+ $)Tiving then

Yk < N/2, Atminlk] < Atminlk]/2

end if

In a motion generation scenario where computation time
is abundant, one could devise global strategies such as a
bisection search to tune Atmi, and Atqax. The heuristic used

3 All computations reported in this paper were run on a personal laptop
computer, CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50 Ghz.
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Fig. 2. Effect of Atmax on computation times (yellow) and failure rate

(red) of the NLP solver, for a feasible step and N = 10 collocation points.
Each bar includes a standard deviation estimate (blue line) computed over

200 runs. Above a minimum value Ati™  the problem becomes feasible

and all runs should ideally converge to a solution. In practice, computations
become unstable for large values of Atmax.

here is rather a local parameter search spread over control
cycles. It has the benefit of incurring no additional cost.

G. Failure rate accross the gait cycle

While computation times look promising, another metric
suggests that nonlinear optimization is not sufficient in itself
to solve the NMPC problem: its failure rate, in our case, is
around 40%. This means that, on average one out of two
to three control cycles, the solver either does not terminate,
or returns a certificate of infeasibility, or converges to an
off-track solution. We found that the terminal capture-point
error ||€[N] — &2 || is a good indicator of this latter case,
and chose to discard all solutions where this error is above
10 cm (a liberal value close to the half-length of HRP-4’s

footprint).

IV. CONSTRAINED LINEAR-QUADRATIC REGULATION

To cope with the 40% of situations where the nonlinear
optimization fails to produce a new solution on time, we
design a constrained linear-quadratic regulator (LQR) that
updates the last available trajectory pd,p, pl into a new
feasible one starting from the current COM state. In order
to cast the regulation problem as a quadratic program, this
reference trajectory is first resampled into M time steps of
equal duration AT. Residual states and controls of the FIP
are then:

pclk] — p&[k] ]
Axlk] = . i 21
o = | o B b
Az[k] = pz[k] - p%[K] (22)
The discretized linear dynamics of these residuals are:
Azlk + 1] = AAx[k] + BAz[K] (23)

B cosh(wAT)E  sinh(wAT)/wE 24
| wsinh(wWAT)E cosh(wAT)E 24
| (1 —cosh(wAT))E

B= { —wsinh(wWAT)E ] (25)

where E is the 3 x 3 identity matrix. Inequality constraints
over pe and py translate into similar constraints over Ax
and Az. The friction constraint (9H]) becomes:

[C 0] Az[k] - CAz[k] < C(pZ[K] - pElk]) (26)



Next, define o;[k] < —V;Vi1 - (GUk]V; x V;Z%[k]) the
positive slackness of the COP constraint on the ™ vertex in
the reference trajectory. Expanding (8H) yields, in geometric
form (we omit indexes [k] to alleviate notations and write Ap

the first three coordinates of Ax):

ViVie1-(GWVix Az+V; ZUx Ap+Azx Ap) < o;k] (27)
And in matrix form:
Aplk]"H;Az[k] + hp[k]" Ap[k] + hz[k]T Az[k] < o[k] (28)

. . =
with H; the cross-product matrix of V;V;,; and

] < Hi(pL[K] - pvi),

] < H,(py, — pLIk]).

hplk
hylk

At this point, one could put polyhedral bounds on Az or Ap
and solve a (bigger) conservative linearized system. This is
e.g. the approach followed in [3], [7] where COM trajectories
are boxed into user-defined volumes. However, contrary to
these previous works, our problem here applies to residual
variables, which we can assume to be small. Intuitively, if
1Ap| < [GUVi and [|Az[| < [[V;Z?]. then Ap x Az]|
SM be orders of magnitude smaller than the linear term
|GV, x Az+V; Z% x Ap||. We therefore neglect this residual
cross-product, resulting in a linear COP constraint:
hplk]" Ap[k] + hz[k]" Az[k] < ofk] (29)
After implementing the complete pipeline described so far,
we checked the validity of this assumption down the line. We
found that, in the simulation framework described in the next
section (which includes noise and delays in both control and
state estimation) the ratio

|Ap x Az|
|GV; x Az +V;Z% x Apl|

is equal on average to 0.005 with a standard deviation
of 0.005 for 10,000 sampling times corresponding to five
minutes of locomotion. That is, the cross-product term is
roughly two orders of magnitude smaller than the linear one,
which a posteriori legitimates our assumption.

Coming back to problem formulation, our constrained
LQR is finally cast as a quadratic program with cost function:

. M—1

minimize T (wee||Ax[K] ]2 + w. || Az[E]||?

inimize S (el A lh]]? + - A1)
+ wyy|| Az[M]|?

subject to Vk, 23) A 26) A 29)

We solve this problem using the classical single-shooting
formulation described in e.g. [14] and implemented by the
Coprcﬂ library. In experiments, we set the terminal weight to
wy: = 1 and the cumulative weights to w,. = w, = 1073,

(30)
€29

4https://github.com/vsamy/Copra

Fig. 3.  Walking pattern generation over an elliptic staircase with tilted
steps. At each control cycle, a new trajectory (dotted line) is computed via
nonlinear optimization for the Floating-base Inverted Pendulum (red: current
state, blue: desired state at the end of the receding horizon). In this model,
the ZMP Z can leave the surface patch S and the COM can move freely
in 3D while keeping linear equations of motion.

V. SIMULATIONS

We validated the proposed method in simulation with
a model of the HRP-4 humanoid robot. Our benchmark
test is a randomly-generated elliptic staircase that includes
all the characteristics that we deem important for rough-
terrain locomotion: going up, forward and down using tilted
contacts (no two contacts are coplanar). Our simulations
use pymanoiaﬂ an extension of OpenRAVE for humanoid
robotics. Compared to the results reported in [3], these new
simulations model both noise and delay in ZMP control and
COM estimation:

« COM state estimation: zero-mean noise with am-
plitudes of 10cms™! on position and 10cms~2 on
velocity. Nominal delay is set to 20 ms.

e Ankle ZMP control: zero-mean noise with amplitude
10 mm ms~'. Control delay, i.e. the characteristic dura-

tion before a new command is achieved, is set to 20 ms.

Pattern generation is supervised by a finite state machine
that alternates single and double support phases. In double
support, the conservative multi-contact controller from [3] is
used with the current step target as terminal condition. When
the NMPC (Section [Il) running in the background finds a
trajectory traversing the next step, the state machine switches
to the next swing phase (single support).

In single support, the multi-contact controller is replaced
by the LQR from Section When the NMPC successfully
finds a new solution, usually with a delay between 0 and
3 control cycles, this trajectory is resampled and sent to the
LQR as a new reference. The LQR then produces an updated
trajectory which is sent to the whole-body inverse kinematics
and foot ZMP controllers. The numbers of NMPC and LQR
steps are set respectively to N = 10 and M = 30. With

Shttps://github.com/stephane-caron/pymanoid
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Fig. 4. Difference in COM trajectories between this work (blue line) and
our previous multi-contact walking pattern generator [3] (black dotted line).
Note that the perspective is isometric, not linear. Footholds correspond to
the downward part of the elliptic staircase depicted in Figure 3] Numbers
next to them indicate their altitude in cm. The new trajectory is dynamic as
the COM goes only marginally over the edges of the footholds, as opposed
to the quasi-static one where it nears the vertical of foothold centers.

this design, our pattern generator is able to locomote the
humanoid accross the elliptic staircase depicted in Figure [3]
However, when disabling the linear-quadratic regulator, the
robot only walks a couple of steps before NMPC numerically
unstabilities make it unable to recover from perturbations.
Sample outcomes are shown in the accompanying videos.
These results can be reproduced using the source code [28].

One important aspect in these simulations is that they
perform an independent check of contact-wrench feasibility
at every time step. Indeed, as mentioned in Section
constraints are only enforced at collocation points. Optimal
solutions may then violate constraints in between these
points, and additional validation is needed to make sure that
this does not happen. This point is particularly critical in our
NMPC where we use a small number of variable-duration
steps, and all the more justifies the addition of an LQR with
finer discretization.

TABLE I
PERFORMANCE OF THE NMPC AND LQR CONTROLLERS OVER TWO
FULL CYCLES ON THE ELLIPTIC STAIRCASE.

Function  # Calls  # Successes  Time (ms)
Build NMPC 115 115 25+ 8.5
Solve NMPC 2000 1452 21+ 11

Build LQR 1975 1975 1.9+0.2
Solve LQR 1975 1975 1.0+ 04

Table [I] reports computation times for both the NMPC
and LQR controllers over two full cycles on the elliptic
staircase. Building NMPC problems only occurs around
contact switches, the same nonlinear problem structure being
otherwise re-used between control cycles. In this scenario,
the robot called the double-support controller roughly once
every two steps to handle the extra control cycles needed by
the NMPC to complete its computations.

VI. CONCLUSION

We presented a real-time rough-terrain walking pattern
generator that is able to adjust its step timings automatically.
Our solution rests upon the floating-base inverted pendulum,
a model with linear equations of motion and where contact

stability can be checked using simple geometric construc-
tions. We developed a nonlinear predictive controller that
computes feedforward walking trajectories at roughly 30 Hz,
as well as a constrained linear-quadratic regulator computing
feedback controls one order of magnitude faster. The source
code to reproduce this work is released at [28].
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APPENDIX
A. Proof of Proposition

In this Appendix, all coordinates are taken with respect to
the local contact frame. The analytical formula of the contact
wrench cone at the origin O of this frame is given by [4]:

[FEL < wfs 1Y) < puf” (32)
TSl <Y 7 gl < X f? (33)
Tmin < 7-(2) < Tmax (34)
where the lower and upper bounds on yaw torque are:
def 2 z ©
Tmin = —p(X +Y)f* + [V 7 = pr5| + | X fY = pr)]
def

Tmax = +(X +Y)f* [V f* JF,“T(%‘ —|XfY Jr,L”—(y)|

In the pendulum mode, the contact wrench is equal to:

1% = Mag —zc¢) 6 = yof”
Y = Myc —yo) 18 = —xcf?
f7 = X 65 = xcfY —yof”

Injecting these equations into (32)-(34) yields two sets of
equations (we used a symbolic calculator to avoid painstak-

ing hand calculations here). First,
lze| <X, |yc| <Y (35)

rq —zc| < pza, |ya —yel < pza (36)

And second, after rearranging all terms suitably:
0 < (X +zc)(pze — (yo —ya)) + (Y +yo)(pze + (zc — xa))
0 < (X +zo)(pze + (yo —ya)) + (Y +yo)(pze — (¢ — za))
0< (X —zc)(nze — (yc —ya)) + (Y +yc)(puze — (vc — xg))
0 < (X —zc)(pze + (yo —ya)) + (Y + yo)(pze + (zc — xa))
0 < (X —z0)(pze + (yo —ya)) + (Y —yo)(puze — (zc — za))
0< (X +zc)(uze — (Yo —ya)) + (Y —yc)(uze — (vc — xa))
0 < (X +zc)(pze + (yo —ya)) + (Y —yeo)(pze + (zc — xa))
0< (X —zc)(nze — (yc —ya)) + (Y —yc)(pze + (vc — xc))

All right-hand side terms in this second set can be writen
as ab + cd, where a,b, c,d are positive slackness variables
from the first set of inequalities (33)—(36). Therefore, all
constraints in the second set are redundant, and the contact
wrench cone in irreducible form is given by (33)-(36). We
conclude by noting how corresponds to pc € S while
(36) represents pg € pc +C.

B. Support Volumes for Virtual Repulsors and Attractors

Let A denote the inequality matrix of the contact wrench
cone taken with respect to a fixed point O. In the pendulum
mode, contact stability can be written [3] in terms of the
position and acceleration of the COM as

(a+ao xpg) - Pec—g) <0 (37)

over all rows (a,ap) of the inequality matrix A . These
expressions are bilinear and not positive-semidefinite in
general, which precludes their direct use with e.g. convex
optimization. There is however one interesting setting where
these inequalities linearize without loss of generality:
Proposition 3: If the COM control law follows a propor-
tional attractor or repulsor H with stiffness k£ € R, that is

Pec = kipa —pa), (38)

then the set of contact-stable positions pg is a polyhedral

cone rooted at the apex v := py — g/k.
Proof: Injecting the control law into yields:

k(a+ao xpg) - (pn —pc—g/k) < 0 (39

Defining v := py — g/k, this expression expands to:
—k(a+ao x(pc —v+v)) -(pc—v) < 0 (40
—k(a+ao xv) (pc—v) < 0 (4D

using the fact that (a x b) - b = 0 (the scalar triple product
is a Gram determinant). We recognize the expression of a
linear polyhedral cone in pg with apex v. [ ]

This property applies to the following two cases:

o Virtual Repellent Point: k = —w? < 0 and H is the
VRP defined by Englsberger et al. [16]. Then, Equa-
tion (#T) defines the cone Cyrp(H,w?) of sustainable
COM positions when the VRP is located at pg.

o Virtual Attractive Point: £ > 0 and py = pg is
a desired COM location. In this case, Equation
defines the cone of COM positions that can be steered
toward p¢, for a given stiffness k.

Stabilizing the COM around a reference position p‘(i; requires
variable VRPs in the first approach and variable stiffness with
the second one.
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