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Abstract

The understanding of the influence of non-axisymmetric internal frames on the
vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the
naval or aeronautic industries. Several numerical studies have shown that the
non-axisymmetric internal frame can increase the radiation efficiency signifi-
cantly in the case of a mechanical point force. However, less attention has been
paid to the experimental verification of this statement. That is why this pa-
per proposes to compare the radiation efficiency estimated experimentally for a
stiffened cylindrical shell with and without internal frames. The experimental
process is based on scanning laser vibrometer measurements of the vibrations
on the surface of the shell. A transform of the vibratory field in the wavenumber
domain is then performed. It allows estimating the far-field radiated pressure
with the stationary phase theorem. An increase of the radiation efficiency is
observed in the low frequencies. Analysis of the velocity field in the physical
and wavenumber spaces allows highlighting the coupling of the circumferential
orders at the origin of the increase in the radiation efficiency.

Keywords: Stiffened shell, Vibroacoustics, Non-axisymmetric, Laser
vibrometer, wavenumber analysis.

1. Introduction

Many works can be found in the literature dealing with the vibroacoustic
behavior of cylindrical shells reinforced by circumferential stiffeners [1, 2, 3]. As
a matter of fact, many structures in the aeronautical or naval industry can be
modeled by stiffened cylindrical shells. Williams et al. [4] measured the nearfield5

pressure on a submerged cylinder excited by a point force. They deduced the
vibration and radiation from the cylinder thanks to a technique called the gen-
eralized nearfield acoustical holography. In a subsequent study, the authors
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analyzed the results in the wavenumber domain [5]. This analysis shows a great
interest to give a physical insight of the vibroacoustic behavior of the cylindrical10

shell. More particularly, wavenumber diagrams can be plotted and the waves
contributing to the far-field radiation can be identified. The technique is later
used by Photiadis et al. to investigate the response of a stiffened cylinder in
the wavenumber domain [6]. The wavenumber diagrams show more complex
patterns, due to the stiffeners periodicity and the propagation of Bloch-Floquet15

waves. Slowness surfaces, which are given by the normal to the curves of large
amplitude and large radius of curvature on the wavenumber diagrams, are used
to predict the dominant directions of wave propagation.

The studies mentioned previously are limited to axisymmetric systems. How-
ever, in industrial applications, internal structures such as floor partitions or20

engine foundations can have an influence on the vibroacoustic behavior of the
stiffened cylindrical shell. Experimental work has been carried out for a stiff-
ened cylindrical shell coupled to numerous oscillators, and the influence on the
scattered or radiated pressure has been highlighted [7, 8]. The results show
that adding internal degrees of freedom reduces scattering from flexural Bloch-25

Floquet waves and gives rise to a noisy speckle pattern. Nevertheless, in the case
of a point mechanical excitation, only a few studies based on numerical simula-
tion have investigated the effect of non-axisymmetric internal frames. Some of
them use discretization methods such as Finite Element Method and Boundary
Element Method to predict the radiated pressure by an immersed shell with30

and without internal masses or structures and show the importance of flexible
mounts [9, 10]. Other studies use substructuring approaches based on the ad-
mittance method to include internal structures in an axisymmetric cylindrical
shell [11, 12]. The main results are that more circumferential orders tend to
play a role in the response of the cylindrical shell when it is coupled to a non-35

axisymmetric internal frame. If the problem is decomposed on a modal basis, it
is equivalent to say that the non-axisymmetry tends to couple the circumferen-
tial orders [13]. As the structural waves having low wavenumbers are the main
contributors to the far-field radiated pressure, the coupling with low circumfer-
ential numbers tends to increase the radiation efficiency. Another effect of the40

internal frame is given by the fuzzy internal theory [14, 15]. This theory states
that if the internal structure has a high modal density and if the impedance
at the junction with the cylindrical shell is adapted, the addition of internal
degrees of freedom can give rise to an apparent damping effect.

The aim of the present work is to discuss experimental results of a point-45

driven stiffened cylindrical shell with and without a non-axisymmetric internal
frame. The effect of the internal structure on the vibroacoustic behavior of
the cylindrical shell, and more especially on the radiation efficiency is inves-
tigated. The main obstacle for estimating accurately the radiation efficiency
lies in the estimation of the radiated power. Precision methods using sound50

pressure require a large number of microphones and are difficult to set up [16].
Measurement by scanning using sound intensity [17] is widely used to measure
the radiated power from machines, but it can be difficult to define an enclos-
ing surface around the system. To tackle these issues, the methodology of the
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present work is based on the use of the stationary phase theorem. It relates the55

far-field radiated pressure to the spectral velocity field of the shell (i.e. the ve-
locity field in the wavenumber domain). An advantage of this approach over the
measurement with microphones or intensity probes is that the directivity can
also be estimated. The spectral velocity field can be obtained with a scanning
laser vibrometer and a 2D Fourier transform. Attention is paid to the definition60

of the scanning grid in order to avoid aliasing effect.
The paper is organized as follows:

• Background on the estimation of the far-field radiated pressure from the
spectral displacements of the shell is given in section 2.

• The system and the experimental setup are presented in section 3.65

• Operational dispersion curves plotted from the spectral velocity field are
discussed in section 4.

• In section 5, the stationary phase theorem is used to determine the far-field
radiated power and to investigate the influence of the non-axisymmetric
frame on the radiation efficiency.70

• Velocity fields are compared for the axisymmetric and non-axisymmetric
cases in the real space and in the wavenumber domain in section 6.

• Finally, conclusions are drawn in section 7.

2. Spectral displacements and far-field pressure

Let us consider a cylindrical shell of radius R0 immersed in an acoustic75

domain. The shell can either be of infinite length or of finite length extended
by a cylindrical baffle. Considering the cylindrical coordinates (x, r, θ), x being
the axis of the shell, W (x, θ) is the radial shell displacements at a given angular
frequency ω.

A two dimensional Fourier transform can be used to transform the spatial80

variations of a vibratory field into the wavenumber domain. The 2D Fourier
transform of W (x, θ) is given by

W (x, θ) 7→ ˜̃W (kx, n) =

∫
R

∫ 2π

θ=0

W (x, θ)e−j(kxx+nθ)dxdθ (1)

where kx is the axial wavenumber and n the circumferential order. As the
cylindrical shell is 2π-periodic along the circumferential coordinate θ, then n is
a relative integer.85

The wavenumber analysis gives an opportunity to analyze the wave propa-
gation on the structure and the role played by the contribution of each circum-
ferential order. The wavenumber analysis also gives an insight on the spectral
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components contributing to the radiated pressure, through the radiation circle
defined by the points of coordinates (k̄x, n̄) in the wavenumber domain90 (

n̄

R0

)2

+ k̄2x = k20 (2)

where k0 = ω
c0

is the acoustic wavenumber and c0 = 340 m.s−1 is the sound
velocity in air. For a plate, the radiation circle represents the supersonic acoustic
domain, in which the components radiate to the far-field. It remains a good
indicator for localizing the radiating waves on a cylindrical shell when the effect
of the curvature is low [5].95

The vibratory field in the wavenumber domain can be used to estimate the
far-field radiated pressure. For R in the acoustic far-field, i.e. R � 2π

k0
, the

asymptotic expression for the Hankel function and the stationary phase theorem
can be used [18]. If ξ is the angle from the point to the normal axis and θ is the
circumferential angle, the far-field pressure p can be written as:100

p(R, ξ, θ) =

+∞∑
n=−∞

jρ0ω
2

2π2Rk0 cos ξ

˜̃W (−k0 sin ξ, n)

H
(2)
n

′
(R0k0 cos ξ)

e−jRk0+jn(θ+π
2 ) (3)

where ρ0 = 1.2 kg.m−3 is the density of air and H
(2)
n

′
is the derivative of the

Hankel function of second kind and order n. For a cylinder of finite length,
the stationary phase theorem is based on the assumption of a baffled cylinder.
However, the influence of the baffle on the radiation due to radial vibrations
is weak when the shell is long compared to the acoustic wavelength [19]. The105

stationary phase theorem may then be used to predict the radiated pressure from
the cylindrical shell. One of the advantages of the wavenumber analysis is that
it allows the calculation of the radiated pressure from vibrations measurements
only.

The far-field radiated power Pa is obtained by integrating the radiated pres-110

sure over the surface of the sphere of radius R:

Pa =
1

ρ0c0

∫ π

ξ=0

∫ 2π

θ=0

p2(R, ξ, θ)R2 sin θdξdθ (4)

As the acoustic domain is conservative, any value of R in the far-field can be
chosen to yield Pa. The radiation efficiency σ of a cylindrical shell is defined
by the ratio between the actual far-field radiated power Pa and the power that
would be radiated by a cylindrical shell of the same radiating surface S =115

2πR0L, having an uniform radial velocity equal to the mean quadratic velocity
< Ẇ >:

σ =
Pa

ρ0c0S < Ẇ >2
(5)

The mean quadratic velocity is defined as follows:

< Ẇ >2=
1

S

∫ L

x=0

∫ 2π

θ=0

|Ẇ (x, θ)|2dxR0dθ (6)

with Ẇ (x, θ) the point radial velocity at the point of coordinates (x,R0, θ).
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3. Presentation of the experimental setup120

3.1. Axisymmetric stiffened cylindrical shell

A stiffened cylindrical shell, which geometrical characteristics are given in
table 1, is shown in Fig. 1. The cylindrical shell is made of standard non-
alloy steel, for which common values may be considered: Young’s modulus E =
2.1.1011 Pa, density ρs = 7800 kg.m−3 and Poisson’s coefficient ν = 0.3. It has125

72 identical stiffeners of rectangular cross-section, which have been machined
from a thicker cylinder. The cylindrical shell is divided in five sections with
three different stiffeners spacings, as shown in the sketch in Fig. 1c. 15 mm
thick caps are screwed at the ends of the cylinder. This stiffened cylindrical
shell is referred to as the axisymmetric case.

Table 1: Stiffened cylindrical shell dimensions (mm).

Parameter Notation Value

Radius R0 100
Length L 1500

Shell thickness h 1.5
Stiffeners height hw 5

Stiffeners thickness tw 1
Stiffeners spacing 1 α 24
Stiffeners spacing 2 β 20
Stiffeners spacing 3 γ 17

(a) (b)

α

α

β

β

γ

(c)

Figure 1: Pictures of the axisymmetric stiffened cylindrical shell: (a) hanged on an arm and
(b) interior view. (c) Sketch of the cylindrical shell with the sections of different stiffeners
spacings.

130
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The ring frequency fr, for which the longitudinal wavelength is equal to the
circumference, is defined by the following equation [18]:

fr =
1

2πR0

√
E

ρs (1− ν2)
= 8657 Hz. (7)

The coincidence frequency, for which the acoustic wavenumber k0 is equal to
the flexural wavenumber in an equivalent plate of thickness h, can be defined
as [18]:135

fc =
c20

2πh

√
12ρs(1− ν2)

E
= 7812 Hz. (8)

In general, the radiation efficiency defined in Eq. (5) presents peaks at the ring
frequency and at the coincidence frequency [20]. It can be noticed that for this
model the ring frequency and the coincidence frequency have close values. The
radiation efficiency is expected to be low below these frequencies and to tend to
1 in the supersonic domain above the coincidence frequency.140

3.2. Non-axisymmetric internal frame

In the second configuration, a non-axisymmetric internal frame is added
inside the cylinder described in section 3.1. As shown in Fig. 2, it is a floor
which is 869 mm long, 64.3 mm high and 170.6 mm wide. It consists in a
1.5 mm thick plate, for which the ends have been cut along a circular arc of145

radius 98.5 mm, before being bended to form right angles. The contact between
the cylindrical shell and the floor is only on these two circular arcs. A square
tube of 20 mm wide and 2mm thick in steel is glued under the horizontal part
and reinforces the structure lengthwise.

(a)

(b)

Figure 2: Pictures of the non-axisymmetric internal frame: (a) top view and (b) bottom view.
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The floor is placed inside the cylindrical shell, with line contacts along the150

circumference at x = 0.315 m and x = 1.185 m. Several constraints need to be
taken into account to assemble the two subsystems:

• the displacements continuity should be verified (i.e. rigid connection) and
no damping (i.e. energy dissipation) should be introduced;

• the junctions should be strong enough to support the floor when the cylin-155

drical shell is hanged;

• the access inside the cylindrical shell is difficult because of the small radius;

• the process should not damage the cylinder;

• the internal structure could be dismounted once the measurements done.

Tests are done on samples made of two steel plates perpendicularly assembled160

(not presented here for sake of brevity). Several types of glue, as well as brazing
are compared. An acrylic glue with activator (Loctite AA 330) is chosen for
this application. A picture of the assembled system is shown in Fig. 3.

Figure 3: Interior view of the stiffened cylindrical shell with the non-axisymmetric internal
frame.

3.3. Experimental setup

As shown in Fig. 4, the system is hanged vertically on an arm. A strap is165

used in order to limit the transfer of vibrations between the system and the
arm. A rotating platform allows rotating the cylindrical shell around its axis
and identifying precisely the angles. A 12.5 mm diameter patch is glued on
the outer surface of the cylindrical shell, and screwed to a shaker. The shaker
is hanged on the rotating platform in order to excite always the same point170

of coordinate (x, r, θ) = (1.195, 0.1, 0) in the cylindrical system (with x = 0
at the bottom of the cylindrical shell). This excitation point is located at the
bottom of a stiffener, and lies at 10 mm from one of the floor junctions in
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the non-axisymmetric configuration. Two elements come in between the patch
and the shaker: an impedance head that measures acceleration and force at175

the excitation point, and a threaded rod that limits the moments and allows
assuming a radial excitation in the cylindrical system.

Scanning vibrometer

Arm

Shaker

Stiffened 

cylindrical shell

Rotating platform

Strap

Impedance head

Non-axisymmetric 

internal frame

Figure 4: Sketch of the experimental setup.

The measurements are conducted in a semi-anechoic room (8.6 m long, 6.4 m
wide, 4 m high and 80 Hz cut-off frequency). The floor is made of concrete and
a 175 mm space separates it from the bottom of the cylinder. These acoustic180

conditions are supposed to weakly influence the shell vibrations as the bulk
modulus of air is low (i.e. weak coupling between the fluid and the structure).
The laser vibrometer is placed 2.68 m far from the cylindrical shell’s surface
as seen in Fig. 5. The vibrometer scans the cylinder from down to up along a
single generating line. The experiment consists in keeping the vibrometer at a185

fixed position while rotating the set cylindrical shell-shaker.
The aim is to measure the radial vibrations on the outer surface of the

cylindrical shell for the two configurations, that means with and without the
non-axisymmetric internal frame. The measurements are made up to 16 kHz.
The excitation is a chirp (swept-frequency sine), and the output is the transfer190

function with regard to the excitation force, calculated on 20 averages.

3.4. Scanning grid definition

The grid definition in the physical space determines the definition of the
wavenumber domain (see the properties of discrete Fourier transform [21]). In
order to examine the vibrations results in the wavenumber domain, the scanning195

grid is defined as a function of the flexural wavenumber kf of an equivalent plate
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Figure 5: Picture of the experimental setup

(in steel, of thickness h = 1.5 mm) at the highest frequency [18]:

kf =

(
ω

h

√
12 (1− ν2) ρs

E

)1/2

(9)

To avoid aliasing effect, the maximum axial wavenumber is kmaxx = kf '
207 m−1 and the maximum circumferential number is nmax = kfR0 ' 20.
For a cylindrical shell, as the system is stiffer than a plate because of the cur-200

vature, the natural wavenumbers of the propagative waves are lower than kf .
The criteria are thus stricter than they could be. The maximum distance dmax
between two consecutive measurement points is then:

dmax =
2π

2kmaxx

(10)

The numerical application yields dmax = 15 mm. A scanning line with Nx =
101 points along the cylinder is thus defined. The maximum angle θmax between205

two consecutive measurements is given similarly by:

θmax =
2π

2nmax
(11)

The present case gives θmax = 9◦ and results in Nθ = 41 lines to scan. The
system being symmetric, it is sufficient to measure between 0 and 180◦. The
experiment consists then in 21 linear scans, where the system is successively
rotated by 9◦.210

Similarly, the resolution in the wavenumber domain δkx is linked to the
length of the cylindrical shell:

δkx =
2π

L
' 4.2 (12)

9



The axial wavenumber resolution δkx can be enhanced using zero padding, but
results show that the resolution is fine enough to observe the variations with
the axial wavenumber.215

4. Operational dispersion curves for the axisymmetric system

The 2D Fourier transform defined in Eq. (1) is applied to evaluate experi-
mentally the velocity of the shell in the wavenumber domain. In practice, as
the velocities have been measured on a regularly spaced grid, the integrals of
Eq. (1) are approximated by the sum of all the points on the grid, weighted by220

the exponential functions:

˜̇̃
W (kx, n) '

Nx∑
i=1

Nθ∑
j=1

Ẇ (xi, θj)e
−j(kxxi+nθj)dmaxθmax (13)

where (xi, θj) is the coordinate of a point on the scanning grid.
Operational dispersion curves are constructed by plotting the amplitude of

the spectral radial velocity on the surface of the axisymmetric cylindrical shell as
a function of the frequency and the axial wavenumber, for a given circumferential225

order. The plots in Fig. 6 show the dispersion curves for the circumferential
orders n = 0, n = 1, n = 4 and n = 6 for the axisymmetric case. Theoretical
models are presented in the left column and compared to the experimental
results in the right column. The theoretical model uses the Fluegge equations for
an infinite cylindrical shell with stiffeners included in the dynamic model using230

smeared theory [22, 23]. An average stiffeners spacing of 20 mm is considered.
On the theoretical curves, the solid white line represents the flexural wavenum-

ber for an equivalent plate projected on the circumferential order n:

kxf (n) =

√
k2f −

(
n

R0

)2

(14)

where kf is the flexural wavenumber for a plate defined in Eq. (9). The dashed
white line represents the acoustical wavenumber projected on the circumferential235

order n:

kx0(n) =

√
k20 −

(
n

R0

)2

(15)

The area under this dashed curve represents the supersonic domain, where the
structural waves are strongly coupled to the acoustic domain and radiate ef-
ficiently. For the circumferential orders n = 0 and n = 1, the dashed-dotted
line respresents the longitudinal wavenumbers projected on the circumferential240

order n given by:

kxl(n) =

√
k2l −

(
n

R0

)2

(16)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Operational dispersion curves plotted from the spectral radial velocities (dB ref
1 m.s−1) in the axisymmetric case. (a) Theoretical, n = 0. (b) Experimental, n = 0.
(c) Theoretical, n = 1. (d) Experimental, n = 1. (e) Theoretical, n = 4. (f) Experimental,
n = 4. (g) Theoretical, n = 6. (h) Experimental, n = 6.
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where kl = ω
√
ρs(1− ν2)/E is the longitudinal wavenumber. For the circum-

ferential orders n = 4 and n = 6, kxl is not real and is not represented on the
plots.

For the theoretical model in Fig. 6a, the radial breathing mode n = 0 is245

plotted. As expected, one can see that the model for a plate is not adapted at
low frequencies (the solid white line does not fit the curve), meaning that the
curvature of the cylindrical shell has an important effect on the vibroacoustic
behavior. The trend for the plate model fits better at higher frequencies (above
12 kHz), where the curvature can be neglected [24]. The breathing mode appears250

around 8.5 kHz, at the ring frequency [see Eq. (7)]. The coincidence frequency
for the equivalent plate is given by the intersection of the flexural wavenumber
curve with the acoustical wavenumber [see Eq. (8)] and reads around 7.9 kHz.
This value is however not relevant for the present case because of the curvature.
Indeed, as the operational dispersion curve from the cylindrical shell model255

lies always under the dashed curve, it shows that the breathing mode always
radiates efficiently. In Fig. 6a and 6c, the curves seen close to the axis kx = 0
are propagating with high velocities. They are well approached by the dashed-
dotted lines and can be identified as longitudinal waves.

For the circumferential orders n = 1 and n = 4 in Fig. 6c and 6e respec-260

tively, the effect of curvature can also be seen. The dispersion curve have a
S-shape instead of the square-root shape for the flexural waves in a plate. The
coincidence frequency for the cylindrical shell model can then be read around
2.7 kHz, instead of 8 kHz for the plate. Cut-on frequencies can also be seen on
the operational dispersion curves. For instance, it can be seen that the waves265

cannot propagate for the circumferential order n = 4 below 1500 Hz. It can
be checked that the cut-on frequency increases with the circumferential order.
For the circumferential order n = 6 in Fig. 6g, the cut-on frequency is around
3700 Hz. For the circumferential order n = 6, the effect of curvature is less
important and the dispersion curve is closer to the plate model. However, it270

can be seen that the flexural waves are faster than the plate model shown by
the white solid line, due to added stiffness because of the curvature and the
stiffeners. Consequently, the whole dispersion curve is in the supersonic domain
and this circumferential order always radiates efficiently.

Comparing the experimental and theoretical operational dispersion curves in275

Fig. 6 shows a good agreement between the curves. On the experimental plots,
spots of high amplitudes can be seen instead of continuous lines. These spots
correspond to axial resonances due to the fact that the experimental cylindrical
shell is of finite length. However, the comparison also shows that it is difficult to
isolate the contribution from only one circumferential order in the experimental280

case. Additional dispersion curves can indeed be seen, even if their levels are
lower than the main contribution. Three explanations are considered:

• As the cylindrical shell has sections with three different stiffeners spacings
(see Fig. 1c), it could explain why several dispersion curves can be seen
for one circumferential order. However, numerical tests show that the285

influence of the stiffeners spacing is weak on the dispersion curves and can
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only be seen at high frequencies.

• Uncertainties in the position of the points on the scanning grid can occur.
These uncertainties can break the regularity of the measured velocity field
and couple the circumferential orders. However, these uncertainties have290

been numerically tested on an infinite shell model and a equally distributed
law on the points of the scanning grid (not shown here for the sake of
conciseness). It can be seen that their influence is weak on the coupling
of the circumferential orders.

• Although the particular experimental care, the system and the excitation295

are not perfectly axisymmetric. Indeed, it is really hard in practice to
be sure that the shaker only excites the cylindrical shell in a perfectly
radial direction. Besides there may be imperfections on the cylindrical
shell geometry because of the machining (0.1 mm tolerance on the shell
thickness for instance) and the damages during transportation. It is known300

that non-axisymmetries tend to couple circumferential orders [13].

This suggests that the additional dispersion curves seen in the right column of
Fig. 6 are a coupling of the circumferential orders due to imperfections in the
axisymmetry of the system.

5. Influence of the non-axisymmetric internal frame305

5.1. Mean quadratic velocity

The mean quadratic velocity defined in Eq. (6) is written in a discrete form
as

< Ẇ >2=
1

S

Nx∑
i=1

Nθ∑
j=1

|Ẇ (xi, θj)|2dmaxR0θmax (17)

The mean quadratic velocity is plotted as a function of the frequency in Fig. 7a
for the axisymmetric case. Only the frequency range between 0 and 2500 Hz is310

shown in this plot in order to clearly see the resonance peaks. By looking at
the velocity repartition on the surface of the cylindrical shell for the resonance
peaks, one can notice that the circumferential modes appear by groups. This
phenomenon is linked to the fact that there is a cut-on frequency below which the
circumferential orders cannot appear, as explained in [25] and on the dispersion315

curves in section 4.
Before placing the non-axisymmetric internal frame in the cylinder, it was

hanged with flexible strings and an accelerometer was placed at an arbitrary
spot in order to measure the frequency response to an impact hammer. The
transfer function is plotted in Fig. 7b. This plot allows estimating qualitatively320

the number of resonances of the isolated non-axisymmetric internal frame, which
appears high in comparison with the number of resonances of the axisymmetric
cylindrical shell in the frequency range considered (cf. Fig. 7a).

The comparison of the mean quadratic velocities for the two configurations
(with and without the non-axisymmetric internal frame) is plotted as a function325
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Figure 7: (a) Mean quadratic velocity as a function of the frequency for the axisymmetric
stiffened cylindrical shell. (b) Transfer function between an impact point on the top of the
floor and an accelerometer placed on the side. (c) Comparison of the mean quadratic velocities
for the two configurations.

of the frequency in Fig. 7c. The first observation is that the vibration level is
lower in the non-axisymmetric case, in particular above 500 Hz. The cylindrical
shell and the internal structure have the same thickness and are made from
the same material. We can expect that the mechanical impedances of the two
structures are similar and then adapted to exchange vibratory energy from one330

structure to another. Besides, the modal density of the internal structure is
higher than the one of the cylindrical shell. The combination of these two
elements leads to an apparent damping effect on the shell because of energy
being trapped in the internal frame. Moreover, new resonance peaks can be
observed, in particular at low frequency between 200 and 500 Hz. The peaks335

frequencies (at 213, 234 and 273 Hz for instance) are directly linked to the
resonance of the non-axisymmetric internal frame seen in Fig. 7b.
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5.2. Radiated power and radiation efficiency

The stationary phase theorem given in Eq. (3) is used to calculate the pres-
sure radiated in the far-field using the vibrations measurements on the cylin-340

drical shell in the wavenumber domain. In practice, the sum is calculated for
n between −nmax and nmax. The far-field radiated power is deduced by dis-
cretization of Eq. (4):

Pa =
1

ρ0c0

Nξ∑
iξ=1

Nθ∑
jθ=1

p2(R, ξi, θj)R2 sin θjδξθmax (18)

where (ξi)i=1,2,...,Nξ
is the vector of azimuthal angles and δξ the step between

two consecutive angles. For this example ξi is varying between -187◦ and +187◦345

with a step of δξ = 3◦

The radiated power calculated from the spectral displacements and the sta-
tionary phase theorem is plotted as a function of the frequency for the ax-
isymmetric and non-axisymmetric case in Fig. 8a. The influence of the non-
axisymmetric internal frame is mainly seen in the low frequencies (below 1 kHz).350

The radiation efficiency [see Eq. (5)] is plotted in Fig. 8b. The coincidence fre-
quency for the equivalent plate (h = 1.5 mm) is plotted with a vertical dotted
line. It is clear that the non-axisymmetric internal frame tends to increase the
radiation efficiency below the coincidence frequency. Differences up to 10 dB
can be seen at some frequencies on this configuration. Above the coincidence355

frequency, it can be said that the structure radiates efficiently with or without
the non-axisymmetry.

(a) (b)

Figure 8: Estimation as a function of the frequency for the two configurations using the
stationary phase theorem of (a) the radiated power (dB ref 1e-12 W) and (b) the radiation
efficiency (dB ref 1).

To explain the increase in the radiation efficiency, a focus is done on the
operational dispersion curves in the frequency range up to 3000 Hz, where the
radiation efficiency increases in the non-axisymmetric case. The experimental360
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operational dispersion curves for this frequency range are plotted for the ax-
isymmetric and non-axisymmetric case in Fig. 9 for the circumferential orders
n = 0 and n = 4. It can be seen that in the non-axisymmetric case, the con-
tribution of the circumferential order n = 0 is higher than in the axisymmetric
case, while the amplitude of the waves of circumferential order n = 4 is lower.365

It means that there is a coupling between the circumferential orders because of
the internal frame, and that energy is transmitted from higher circumferential
orders to lower ones. Besides, it has been shown in Fig. 6a that the circumfer-
ential order n = 0 is efficiently radiating, even in the low frequency range. This
explains why the cylindrical shell radiates more efficiently when it is coupled to370

a non-axisymmmetric internal frame. It confirms the observations from numer-
ical simulations [12]. In the next section, a closer look is taken at the velocity
field to understand the influence of the non-axisymmetric internal frame on the
repartition of the vibratory energy.

(a) (b)

(c) (d)

Figure 9: Operational dispersion curves plotted from the spectral radial velocities (dB ref 1
m.s−1) in the low frequency range. (a) Axisymmetric case, n = 0. (b) Non-axisymmetric
case, n = 0. (c) Axisymmetric case, n = 4. (d) Non-axisymmetric case, n = 4
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6. Maps of the radial vibratory field375

The velocity maps on the outer surface of the cylindrical shell are plotted
in Fig. 10 for the axisymmetric and the non-axisymmetric configurations, at
f = 1980 Hz and f = 3580 Hz. These frequencies are chosen because they show
an increase in the radiation efficiency in the non-axisymmetric case (2.8 dB at
1980 Hz and 1.9 dB at 3580 Hz) while having a drop in the radiated power (from380

82.8 dB to 66.5 dB at 1980 Hz and from 82.5 dB to 80.4 dB at 3580 Hz). Besides,
energy transfer through the internal structure can be observed. Looking at the
frequency response in Fig. 7a, it can be said that the axisymmetric cylindrical
shell has a resonance at 1980 Hz and has no resonance at 3580 Hz (out of the
range in Fig. 7a, but not on a resonance peak). The plots in Fig. 10 are functions385

of the tangential coordinate θ in abscissa and the axial coordinate x in ordinate.
The excitation is placed in θ = 0 and x = 1195 mm. A spot of low velocities can
be seen around the excitation, because the vibrometer cannot scan the surface
behind the shaker. At f = 1980 Hz, the mode (m,n) = (8, 4) is observed
for the axisymmetric case, where m is the longitudinal modal index and n the390

circumferential order. Adding the non-axisymmetric internal structure has two
main influences on the cartography at this frequency: the amplitude decreases
and the nodes of vibrations are modified.

In Fig. 10c it can be seen that the point force mainly excites the area close
to the excitation point. One of the possible explanations is that the cylindrical395

shell has sections with different stiffeners spacings. This means that there is
a mechanical impedance discontinuity between two consecutive sections, which
explains the localization effect seen at f = 3580 Hz. In the non-axisymmetric
case (Fig. 10d), the energy can be transmitted through the internal structure
to the other end of the cylinder, where the stifeners spacing is the same than in400

the section which is excited (see Fig. 1c).
To see the role played by the low circumferential orders, the radial velocities

are plotted in the wavenumber space for the two configurations and the two
frequencies in Fig. 11. In each plot, the amplitude has been normalized to the
highest value in order to compare the repartition of the radial velocities in the405

wavenumber space. At f = 1980 Hz, the amplitude maxima appear in the ax-
isymmetric case at the wavenumbers corresponding to the modal wavenumbers.
The circumferential order n = 4 is playing a leading role in this case. In the
non-axisymmetric case, more circumferential orders play a role, especially in the
low circumferential orders. The same observations can be made at f = 3580 Hz410

in Fig. 11c and 11d.
The radiation circle defined by Eq. (2) is plotted in white on the plots in

Fig. 11. The radiation circles are elliptical due to the plotting aspect ratio. It
can be noticed that the components inside the circle, which contribute to the
far-field radiated pressure, have a higher relative level in the non-axisymmetric415

case. The radiation efficiency is thus expected to increase at these frequencies,
as shown in section 5.2.
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(a) (b)

(c) (d)

Figure 10: Map of radial velocities (dB ref 1 m.s−1) on the outer surface of the cylindrical shell.
(a) Asymmetric case at f = 1980 Hz. (b) Non-axisymmetric at f = 1980 Hz. (c) Asymmetric
case at f = 3580 Hz. (d) Non-axisymmetric at f = 3580 Hz.

7. Conclusions

Experiments have been conducted on a stiffened cylindrical shell to investi-
gate the effect of a non-axisymmetric internal frame. A scanning laser vibrome-420

ter has been used to measure the radial velocities on a grid on the outer surface
of the point-driven cylindrical shell, with and without a non-axisymmetric in-
ternal frame. A wavenumber analysis of the vibrations of the shell is used to
discuss the vibroacoustic behavior of the shell. It shows that more circumfer-
ential orders tend to play a role when the cylindrical shell is coupled to the425

non-axisymmetric internal frame. More particularly energy is transmitted from
high to low circumferential orders. As the low wavenumbers are in the super-
sonic domain, the structure tends to radiate more efficiently. This phenomenon
explains the increase in radiation efficiency below the coincidence frequency seen
in the non-axisymmetric case.430

Further work consists in conducting the same experimental process at higher
frequencies. It will allow studying the influence of the non-axisymmetric internal
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(a) (b)

(c) (d)

Figure 11: Map of radial velocities (dB ref 1 m.s−1) in the wavenumber domain (kx, n).
(a) Asymmetric case at f = 1980 Hz. (b) Non-axisymmetric at f = 1980 Hz. (c) Asymmetric
case at f = 3580 Hz. (d) Non-axisymmetric at f = 3580 Hz.

frame on the propagation of Bloch-Floquet waves due to periodic stiffeners.
Besides, if the model is submerged in water, the coincidence frequency is about
20 times higher. In this case, it is likely that the effect of the internal frame is435

seen on a wider frequency range. Moreover, the strong coupling with the fluid
can be investigated.
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