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A complex mixed-mode crack propagation test performed with a 6-axis testing machine and full-field measurements
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A new type of mixed mode crack propagation test is proposed. A single crack is initiated and propagates in a stable way up to complete failure. A combination of tensile, shear and in-plane rotation performed by a 6-axis testing machine is prescribed. The rotation creates a tension/compression gradient in the sample ensuring the stability, while the shear direction is closely related to the orientation of the crack and the tensile load is responsible for the actual propagation.

The experiment is performed in an interactive manner, namely, depending on the crack tip position estimated by Digital Image Correlation (DIC) during the test, the loading is changed to bifurcate the crack. The displacements of the sample surfaces are assessed using multiple DIC measurements and displacement sensors. The displacement fields on each face of the sample give access to the crack pattern, and also to the actual boundary conditions that are crucial for a faithful numerical analysis of the test. Last, the 6 load components are recorded enabling for a complete description of the 3D mechanical behavior of the specimen.

propagation, Multiaxial testing

Introduction

The development of multiaxial testing machines is rather recent. They have the advantage of applying boundary conditions very close to real-life cases, but also various loading types on the same specimen geometry. Moreover even tests requiring less loading axes (e.g., tensile test) may be performed without relying on the mechanical stiffness to ensure zero displacements along the other directions. Loading axes as well as 'constrained' axes are controlled by the regulation loop.

Parallel machines seem good candidates for material testing because of their high accuracy and stiffness in comparison with serial machines [START_REF] Merlet | Parallel robots[END_REF]. The most used one is the 6-axis Gough-Stewart platform (a.k.a. 'hexapod') architecture [START_REF] Gough | Universal tyre test machine[END_REF][START_REF] Stewart | A platform with six degrees of freedom[END_REF], invented in the 1960s for tire testing, but only recently used for structure (e.g., spine stiffness measurement [START_REF] Stokes | Measurement of a spinal motion segment stiffness matrix[END_REF][START_REF] Motoyoshi | Development of 6-axis material tester for measuring mechanical spine properties[END_REF][START_REF] Ding | Real-time FPGA control of a hexapod robot for 6-DOF biomechanical testing[END_REF]) or material (i.e., crimped wool [START_REF] Witz | Mechanical properties of crimped mineral wools: Identification from digital image correlation[END_REF], carbon composite [START_REF] Michopoulos | Towards a recursive hexapod for the multidimensional mechanical testing of composites[END_REF] or concrete [START_REF] Nierenberger | Multiaxial testing of materials using a stewart platform: Case study of the nooru-mohamed test[END_REF]) testing.

In terms of measurement, the current trend is the spread of easy, rich and accurate full-field measurement techniques such as Digital Image Correlation (DIC) [START_REF] Sutton | Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation[END_REF]. The associated technological revolutions are the appearance of digital cameras and the increasing computation power. A large range of algorithms has then been implemented and improved to gain from these technological changes. From early 2D local approaches [START_REF] Burt | Local correlation measures for motion analysis: a comparative study[END_REF][START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF] to Finite-Element descriptions [START_REF] Sun | Finite-element formulation for a digital image correlation method[END_REF][START_REF] Besnard | Finite-element" displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF], and integrated approaches [START_REF] Roux | Stress intensity factor measurements from digital image correlation: Post-processing and integrated approaches[END_REF], the measurement techniques have been constantly improved and adapted to the studied problem.

Stereovision has also been combined to DIC to measure 3D shapes and 3D surface displacements [START_REF] Luo | Accurate measurement of threedimensional deformations in deformable and rigid bodies using computer vision[END_REF][START_REF] Helm | Improved three-dimensional image correlation for surface displacement measurement[END_REF], and more recently 3D volumetric displacement measurements [START_REF] Bay | Digital volume correlation: threedimensional strain mapping using X-ray tomography[END_REF] with the use of X-ray tomography. These new techniques totally change the experiment-simulation dialog since the boundary conditions can now be described with 2D or 3D full-field data, as well as the kinematic field in the region of interest of the specimen.

These two breakthroughs combined together enable for the improvement of existing tests or the design of new tests. The most interesting tests to revisit are the ones where Saint-Venant's assumption cannot be made since it is now possible to accurately control and measure Dirichlet boundary conditions.

The so-called Nooru-Mohamed (NM) test [START_REF] Nooru-Mohamed | Mixed-mode fracture of concrete: an experimental approach[END_REF][START_REF] Nooru-Mohamed | Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear[END_REF] is one of them, initially designed to maximize the dependence of the results to the boundary conditions [START_REF] Mier | Geometrical and structural aspects of concrete fracture[END_REF]. It consists of loading with different combinations of tension and shear quasi-brittle cement-base specimens up to failure. The specimen shape, which is very compact, ensures that the mixed mode crack propagation highly depends on the boundary conditions. Two experimental challenges arose. First, due to the stiffness of the specimen, the difference of orders of magnitude between the size of the specimen (i.e., 200 mm), the characteristic displacement at failure (i.e., ≈ 20 µm) and the applied load (i.e., ≈ 10 kN) makes trustworthy measurements complex. Second, as underlined by Nooru-Mohamed himself [START_REF] Nooru-Mohamed | Mixed-mode fracture of concrete: an experimental approach[END_REF], only the displacements along the two loading axes could be acquired, while 3D displacements would be of interest because of the high sensitivity to boundary conditions. In spite of these drawbacks and the fact that only point-wise kinematic data were available (in addition to the final crack path), the so-called NM tests have become a benchmark for numerous models and numerical implementations [START_REF] Bolander | Fracture analyses using spring networks with random geometry[END_REF][START_REF] Fichant | A comparative study of isotropic and anisotropic descriptions of damage in concrete structures[END_REF][START_REF] Cusatis | Confinement-shear lattice CSL model for fracture propagation in concrete[END_REF][START_REF] Gasser | 3D crack propagation in unreinforced concrete: A two-step algorithm for tracking 3D crack paths[END_REF][START_REF] Luzio | A symmetric over-nonlocal microplane model M4 for fracture in concrete[END_REF][START_REF] Desmorat | Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials[END_REF][START_REF] Unger | Modeling of cohesive crack growth in concrete structures with the extended finite element method[END_REF][START_REF] Kozicki | Modelling of fracture process in concrete using a novel lattice model[END_REF][START_REF] Prochtel | On the dissipative zone in anisotropic damage models for concrete[END_REF][START_REF] Jirasek | Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models[END_REF][START_REF] Dong | Fracture of concrete structure using simplified meshless method[END_REF][START_REF] Lens | Constitutive models for cohesive zones in mixed-mode fracture of plain concrete[END_REF][START_REF] Réthoré | Mixed-mode crack propagation using a hybrid analytical and extended finite element method[END_REF] since it is one of the few mixed-mode crack propagation experiments (i.e., Refs. [START_REF] Fenwick | Mechanisms of shear resistance of concrete beams[END_REF][START_REF] Ballatore | Mixed mode fracture energy of concrete[END_REF][START_REF] Brokenshire | Torsional fracture tests[END_REF][START_REF] Winkler | Traglastuntersuchungen von unbewehrtenund bewehrten Betonstrukturen[END_REF] are among the few other mixed-mode crack propagation tests on cement-based material).

It is thus proposed to perform a new test inspired by Nooru-Mohamed's configuration. The specimen shape is very close but a single notch is preferred to a double notched sample. The nonproportional loading history is still composed of a vertical translation, which is corresponding to a tensile loading, and a horizontal translation corresponding to global 'shear,' but also of a additional rotation inducing a gradient of tensile stresses. The loading is applied with a 6-axis testing machine. This new experimental protocol has several advantages. First, since several full-field kinematic measurement systems are used, even if the applied boundary conditions do not exactly match the theoretical ones, the results can still be used for simulation purposes. Second, the addition of the rotation leads to stable crack propagation for the majority of the test so that the quantity of acquired data is very important contrary to a test that becomes unstable sooner. Third, several crack reorientations with non-negligible straight propagations between each of them allows damage and fracture models to be challenged for both propagation velocity and reorientation criterion. Last, the zigzag crack path is a convenient way to validate branching models.

The paper is organized as follows. First the material and the specimen will be described in Section 2.1, then the testing machine (Section 2.2), and how the specimen is gripped to the machine (Section 2.3). The complete instrumentation of the test will be thoroughly presented in Section 2.5, in addition to the validation of the experimental setup (Section 2.6). Last, the results of the test will be discussed (section 3).

Experimental protocol

Specimen & material

The studied specimen is a 50×200×200 mm mortar parallelepiped, with one 5 × 25 mm sawed notch (Figure 1). The point O spe sup used hereafter is located in the middle of the upper surface, at the interface between the concrete specimen and the glue layer below the steel plates.

The considered material is a mortar equivalent to the concrete used for the Vercors mock-up [START_REF] Galenne | A new mock-up for evaluation of the mechanical and leak-tightness behaviour of NPP containment building[END_REF], a 1:3 scale version of a nuclear confinement building. The mortar composition is given in Table 1. The specimen is cast vertically,i.e., the upper boundary condition corresponds to the free surface during casting.

Even though the mortar is very fluid during casting, a tomographic measurement (figure 2) reveals no heterogeneity of sand density in the region of crack propagation. The specimen is stored in a water basin with other specimens from the same casting for a temperature ranging from 20 to 26 taken out of the tank 6 days before the test so that the surface is dry to apply the speckle pattern for DIC purposes (see Sections 2.5 and 2.3). EN [START_REF] Afnor | Méthodes d'essais des ciments -Partie 1 : détermination des résistances mécaniques[END_REF] for 3 specimens. To check whether the measured Young's modulus was rate-independent, 2 other specimens were tested with a load rate 100 times 95 lower, corresponding to the order of magnitude of the strain rate of the tests performed on the hexapod. There was no noticeable variation of tensile strength (Table 2), and only a slight increase of Young's modulus. The standard (196-1 NF-EN) compression test was then performed on the 5 broken specimens, and the measured compression strength is equal to 80 ± 2.89 MPa.

100

The fracture energy G f is measured with 3-points bering tests following The darker upper part is due to tomographic reconstruction. 

X = 0 mm Y Z 20 mm

Testing machine 2.2.1. Machine hardware

The test is performed on a 6-axis electromechanical testing machine [START_REF] Nierenberger | Multiaxial testing of materials using a stewart platform: Case study of the nooru-mohamed test[END_REF],

based on a Bosch-Rexoth hexapod robot (Figure 4). The load capacity depends on the position of the end-effector, but may be summarized as approximately 120 kN & 70 kNm along Z direction, 50 kN & 45 kNm in the X -Y plane (the maxima cannot be reached in each direction at the same time because of the parallel architecture of the machine). The displacement space is also nontrivial but can be roughly represented as ±250 mm and ±22 • along X, Y and Z directions. The theoretical actuator displacement resolution equals 0.15 µm, leading to translation errors less than 0.14 µm (resp. 0.09 µm, 0.08 µm) along X (resp. Y , Z) direction and rotation errors less than 0.15 × 10 -6 rad when the machine is set in the middle of its displacement space (i.e., at mid-length of the actuators).

The end-effector (labeled (4) in Figure 4) is equipped with an octogonal reference plate oriented along the hexapod own coordinate system X, Y , Z with a tilt less than 1 µm for 1 mm for each of the 3 directions. It enables fixing parts to be screwed on it as well as targets for Digital Image Correlation purposes.

Several of its surfaces are ground to enable displacement measurement with contact sensors. A small passive hexapod (labeled [START_REF] Witz | Mechanical properties of crimped mineral wools: Identification from digital image correlation[END_REF] in Figure 4) is positioned under the large active one. Its legs are instrumented with strain gages and it is used as a 6-axis load cell. Its measurement uncertainties are 80 N & 20 Nm.

Machine control

It is theoretically possible to control a parallel machine in force mode, or even in more complex modes such impedance control [START_REF] Lopes | A force-impedance controlled industrial robot using an active robotic auxiliary device[END_REF]. The present machine is nonetheless only driven in a displacement mode because of its axis card. The signal of the load cell is thus only recorded but not used for control purposes.

Even if the intrinsic stiffness of parallel machines is high, performing a test with a joint position control is not sufficiently accurate for a cement-based specimen as described before. Different techniques have been developed to circumvent this issue. The first one is to precisely assess the machine stiffness and take into account the specimen own stiffness change in the control loop of the machine [START_REF] Wang | Simulation research on adaptive control of a six-degree-of-freedom material-testing machine[END_REF]. Another solution is to directly measure the position of the endeffector and use an end-effector position control. The latter can be obtained with a set of uniaxial sensors [START_REF] Stokes | Measurement of a spinal motion segment stiffness matrix[END_REF][START_REF] Michopoulos | Towards a recursive hexapod for the multidimensional mechanical testing of composites[END_REF][START_REF] Ding | Real-time FPGA control of a hexapod robot for 6-DOF biomechanical testing[END_REF], or with a non-contact optical full-field measurement technique [START_REF] Flohic | A 3D displacement control by digital image correlation for the multiaxial testing of materials with a Stewart platform[END_REF]. One advantage of the optical method is that it does not hide the space around the specimen if used from a long distance. This last technique is chosen herein.

The control is done with a standard proportional integral (PI) corrector for each actuator as for a serial machine. The specificity is that the actuator length measurement is performed with a dedicated Digital Image Correlation (DIC)

technique [START_REF] Flohic | A 3D displacement control by digital image correlation for the multiaxial testing of materials with a Stewart platform[END_REF]. The principle consists of taking pictures of several flat targets

(2) mounted on the end-effector with several cameras mounted on the passive hexapod. The actuator lengths are sought as the solution to the minimization of a global problem, i.e., they minimize the difference between the current image and the reference image for each camera. The displacement of each target in front of its camera is described by 6 elementary rigid body motions. Because of the very small number of degrees of freedom, the DIC algorithm is integrated, namely, the measured degrees of freedom are directly the quantities of interest [START_REF] Hild | Measuring stress intensity factors with a camera: integrated digital image correlation (I-DIC)[END_REF], which offers a reduced computation time. Moreover the algorithm is implemented on Graphics Processing Units (GPUs), which enables for the parallelization of the computation.

(7) (4) (6) 
To relate the actuator lengths to the displacement observed by each camera, calibration matrices are used. These matrices are obtained via a calibration procedure where each actuator is shifted individually one after the other to record their influence on each target displacement. One pays close attention to move each actuator both ways to delete any clearance during the calibration, and prior to it (i.e., before taking the reference images). The procedure is followed just before the test with the targets and cameras in place, but without the specimen mounted on the machine. Since the procedure takes few minutes, it is started about an hour after the actuators and the lights are on so that the thermal deviations due to warm-up will not induce errors in the calibration matrices.

In the present case, 3 targets covered with a black and white speckle and 3 cameras (Leutron Picsight P141M-GigE camera, definition: 1392 × 1040 pixels, 20 frames per second, 12-bit digitization) are used. The cameras are fitted with the same Zeiss lens (50 mm F1.4) and the same Kenko (20 + 12 mm) extension tubes. The calibration procedure is carried out with an elementary displacement equal to 100 µm. The standard uncertainty of the actuator length measurement with this technique is sufficiently low to accurately control the hexapod machine (i.e., ≈ 0.4 µm with the present optical setup). Moreover the frequency of measurement (20 Hz) is sufficient to perform a quasi-static test.

It has been shown [START_REF] Flohic | A 3D displacement control by digital image correlation for the multiaxial testing of materials with a Stewart platform[END_REF] that the displacement error of the machine in such a configuration is less than 2 µm, and can be reasonably assessed to less than 1 µm because the error is partly due to the validation setup at this scale.

Gripping the specimen & boundary conditions

For the original NM tests and the present one, the loading is transmitted from the machine to the specimen through high performance glue (i.e., Sikadur 31 epoxy glue, cured during 24h before test). Moreover, the loading was applied by L-shaped steel plates. In the present case where the setup is designed to perform shear in both directions, flat or U-shaped parts should be used. Numerical simulations with a nonlocal damage model [START_REF] Lorentz | A variational formulation for nonlocal damage models[END_REF] (see Appendix A) show that damage occurs in the vicinity of the glued interface for flat parts (example of a simulation performed by allpying a proportional tensile-shear loading to the sample, Figure 5(a)). Experimental results also show crack initiations and propagations along these interfaces. Since the measured displacements on the specimen with DIC and not the ones of the machine will be used, interface debonding is not a limitation for the simulations. However, the gradual debonding of the interface implies that the theoretical boundary conditions are not at all applied to the specimen. Consequently, reorienting the main crack is more difficult if not impossible. To prevent that effect, monolithic U-shaped parts (Figures 1 and9 

Loading path

The loading path consists of a series of tension, rotation and shear steps (Figure 6 The tensile component is used to initiate and propagate the first crack. The global shear component (to be more accurate, the ratio shear/tension) is used to reorient the crack. Last, the in-plane rotation of the upper plate is combined with shear, which is equivalent to a pure rotation applied to both upper and lower plates in a symmetrical way. It leads to stable crack propagation since it induces a lower tensile stress in front of the crack tip (and possibly compressive stresses) and it also unloads the corners opposite the crack tip that are prone to damage (Figure 7).

The loading path is governed by two main features, namely, the crack is initiated in mixed mode loading and the process zone influence is checked by crack reorientation. The sought crack path (Figure 6(b)) is a first step of initiation and upward propagation (1), then a reorientation downward (2), followed by a subsequent propagation (3), then an upward reorientation (4) with a subsequent propagation [START_REF] Motoyoshi | Development of 6-axis material tester for measuring mechanical spine properties[END_REF], and last a reorientation downward (6) with a final propagation [START_REF] Witz | Mechanical properties of crimped mineral wools: Identification from digital image correlation[END_REF]. The crack will be kept close to the middle of the specimen and will not be too influenced by the imperfections of the boundary conditions. Moreover the shear loading will be applied both ways with crack upward and downward orientations so that crack closure and friction will occur during the steps fol- lowing the first propagation. Models taking into account these phenomena can thus be validated, and the validity domain of the models without such features may also be probed. Two propagations are in the upward direction (1 & 5), and two in the downward direction (3 & 7) so that the test is interesting in terms of branching condition at steps (4) and ( 6). This test addresses in particular the question whether the crack reorients itself and follows the path (5) (resp. path [START_REF] Witz | Mechanical properties of crimped mineral wools: Identification from digital image correlation[END_REF]) or branches from the previous reorientation point and follows path (5') (resp. (7')).

Instrumentation

Different kinematic measurement techniques are used to obtain both the boundary conditions and the displacement fields over the sample surface, namely, the hexapod own DIC system, a Linear Variable Differential Transducers (LVDT) setup and several other cameras for additional DIC analyses. Each system has its particular advantages and drawbacks:

• The hexapod own DIC system: fast (i.e., 20 Hz), low uncertainty (≤ 0.2 µm for in-plane motion of each camera [START_REF] Flohic | A 3D displacement control by digital image correlation for the multiaxial testing of materials with a Stewart platform[END_REF]), but only 3 translations and 3 ro-tations of the end-effector of the machine are measured.

• The Linear Variable Differential Transducers (LVDT) setup: fast (i.e., 10 Hz in the present case), low uncertainty (≤ 0.1 µm each), but only 3 translations and 3 rotations of the end-effector of the machine are obtained through additional calculation.

• Additional DIC systems: slow (i.e., 0.2 Hz), higher uncertainty (2 µm) but full-field measurements (about 10 5 kinematic degrees of freedom per analyzed image). The measured areas are the specimen surfaces, the Ushaped parts and the reference targets.

The three measurement setups are chosen because their redundancy and complementarity ensure trustworthy results at the micrometer scale. The LVDT and the additional DIC systems will be described in detail in Sections 2.5.1 and 2.5.2. A full description of the hexapod own DIC system can be found in Ref. [START_REF] Flohic | A 3D displacement control by digital image correlation for the multiaxial testing of materials with a Stewart platform[END_REF].

LVDT setup

An LVDT (WA-T series by HBM) setup composed of 6 sensors is used for measuring the displacements of the end-effector. A rigid steel frame is fitted on the passive hexapod and maintains the sensors as shown in Figure 8(a).

Knowing the position of each LVDT and its measurement surface orientation (Figure 8(b)) enables the 3 relative translations and rotations of the upper end of the hexapod to be calculated. The measurement areas are on the octogonal reference plate (Figure 8(a-b)), closer to the U-shaped plates than the DIC targets but still a few centimeters away from the specimen upper end. The main interest of this setup is that it is fitted to the machine via a different frame than the DIC control setup, so that spurious displacements due to the applied load deforming the frames would be different and thus detectable. This setup is sensitive to displacements perpendicular to the axis of each sensor (i.e., bias due to the roughness or surface misalignments). This bias is minimized as much as possible by using flat and ground surfaces, which are oriented along the hexapod own coordinate system X, Y , Z, and also orienting sensors along these axes. Consequently the deviation of the measurement of each individual sensor is about 1 µm and the corresponding standard uncertainty is 0.1 µm over a 2 mm range when only one translation of the end-effector along the sensor axis is considered. Because of the roughness and flatness defects of the surfaces, a set of six linear relationships linking any displacement of the hexapod to those measured by the LVDT setup cannot be stricto sensu considered. Since the first goal of this setup is to check the hexapod displacement during the test, an absolute measurement of the displacement of the end-effector is not necessary per se. Consequently the signal of the sensors are recorded during a displacement without load (i.e., no specimen is mounted), and used as a reference when the signals are measured during the test.

Additional DIC systems

Several cameras are placed around the specimen. They are used to measure the displacement of the specimen surfaces, but also the displacement of the U-shaped parts. Since the U-shaped parts and the targets are firmly screwed to the octogonal reference plate that is very stiff, it is considered, as a first approximation, that all these parts have the same rigid body motions, and thus the additional DIC setup provides a redundant information about the endeffector displacements.

Kinematic full fields are measured on each side of the sample with a 'twin' camera setup (i.e., 2 identical cameras T 1 and T 2 shown in Figure 9(a)) and a 2D DIC algorithm using 3-noded triangular elements [START_REF] Tomičević | Mechanics-aided digital image correlation[END_REF] is provided by four LED panels (Microbeam 512 by Flolight) to have a uniform illumination on each side of the specimen. The design of the frame holding all the cameras (those of the hexapod control and the additional ones) is chosen to minimize its sensitivity to the applied load.

T1 T2 S1 r S1 l S2 l S2 r Z Y X (a) (1) (1') (2') (2) 
First, the frame (green part in Figure 9(a)) is linked to the lower U-shaped part through a 45-mm thick steel cylinder and the components of the frame are not subjected to flexural loading during the tests. Second, the frame is fitted through 4 points to the cylinder to be hyperstatic. Last, each set of three cameras on each side of the specimen is mounted on a 'subframe' (red parts in Figure 9(a)). Each subframe is linked to the central frame (black part in Figure 9(a)) by a single connection, so that no forces are transmitted through the subframe besides its own weight. Consequently the relative displacement between the three cameras can only be rigid body motions during the loading of the specimen, except if the subframe itself or the camera own base turn loose.

To be able to correct this last possible effect, and also a possible (and more likely) motion between the two subframes on each side of the specimen, reference targets have been added next to the specimen, fitted to the lower U-shaped part (Figure 9(b)). These 2-mm thick reference targets are covered with a random speckle on each side. They are visible by all 6 cameras so that spurious displacements of each camera can be deleted.

Setup validation

The sample is mounted with a two-step procedure to enable for a calibration of the measurement devices. First, the upper interface is glued and a dwell time is applied for cure. A displacement without load is applied to bring the lower part to the desired height, and the previous step is repeated. The goal of this intermediate step is to record the signals of all the instruments (i.e.,

LVDT sensors and cameras) within the range of displacement that will be applied afterward. Because no load is applied, the displacement of the machine is assumed to be very accurate (i.e., less than one micrometer [START_REF] Flohic | A 3D displacement control by digital image correlation for the multiaxial testing of materials with a Stewart platform[END_REF]) so that these measurements are considered as 'references' hereafter. Following such a procedure, it is possible to:

• Validate that every device is ready for the test.

• Record the signal of the LVDT sensors to compare them with the control command and the DIC results to check whether the machine is wellprepared.

• Record the signal of the LVDT sensors to compare them with those under load to detect potential trouble during the test.

• Assess the uncertainty of DIC methods and potential biases with simple rigid body motions of the specimen.

These last two points will be detailed.

Assessment of DIC uncertainties

The uncertainty of 2D-DIC obtained with cameras T 1 and T 2 is assessed. It turns out that air convection effects (shown in Figure 10) have higher contributions in the present case than the uncertainty due to acquisition noise [START_REF] Tomičević | Mechanics-aided digital image correlation[END_REF] and integer locking [START_REF] Besnard | Finite-element" displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF]. 
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A way of reducing this effect during the test is to blow air toward the specimen with a large fan. However the contribution is still larger than integer locking (but small in comparison with the displacement levels of the specimen).

The standard displacement uncertainty is about 1.3 (resp. 2.4) µm (i.e., 0.010 (resp. 0.018) pixel along Z (resp. Y ) direction) with the fan on. This anisotropy may be due to the direction of the air flow. Since a quasi static test is performed, an additional way of lowering the measurement uncertainty due to the high frequency convection phenomenon would be to perform a simple time filtering [START_REF] Poncelet | Dissipation measurements in steel sheets under cyclic loading by use of infrared microthermography[END_REF] or to resort to spatio-temporal DIC [START_REF] Besnard | A space-time approach in digital image correlation: Movie-DIC[END_REF].

The uncertainty of the rigid body displacement between the upper and the lower U-shaped parts obtained by stereo-DIC is assessed with 101 photographs taken when the hexapod stands still. The values are 0.07 µm (resp. 0.68, 1.77) for a translation along X (resp. Y , Z), and 0.0003617 rad (resp. 0.0077951, 0.001128) for a rotation along X (resp. Y , Z).

Comparison

Figure 11 shows the translations and rotations applied to the specimen without load (before gluing the lower surface for the 'baseline motions' part), or after complete failure (for the 'test motions' part). This second part has been performed after the test to apply exactly the same loading path to check for any difference.

The The prescribed displacements and the two measurements are in good agreement. During the first translations without rotation, the difference between LVDT measurements and command is less than 2% of the magnitude of displacement, while the difference between DIC measurements and command is less than 7% in the worse case (i.e., measured displacement along Z during Z translation). This error has not been explained since the DIC results are trustworthy (i.e., they lead to consistent numerical simulations as shown in Section 3) and the LVDT setup is also very accurate. One must keep in mind that even if this relative error seems large, the corresponding absolute error is very small (few micrometers).

Visible drifts on R X plateau must be considered carefully since these apparent still periods are in fact corresponding to large translations. Consequently these drifts may be interpreted as control errors (i.e., due to the DIC technique used by the control loop), but also as measurement errors of the LVDT setup (Figure 12). During the last plateau for example, the LVDT tips slide over more than 75 µm along Y and 200 µm along Z, while the drift corresponds to a difference of 5 µm between the LVDT measurements. Since the linearity error given by the LVDT maker is 1 µm for a 2-mm stroke, the drift may come from control errors but also slight flatness defects and misalignments of the octogonal reference part. 

Test Results

General comments

The displacements applied during the test are presented in Figure 13. The first point worth noting is that the evolution is not linear during each step contrary to those shown in Figure 11. It presents plateaus because the loading is stopped from time to time to check the crack tip location and decide if the next loading step is started or if the current one goes on. It is also important to note that the test is quasi-static (i.e., the whole test lasts more than 10 h with an always stable crack propagation) so that apparently 'sudden' motions or force changes on the following figures are not. Only the final unstable crack propagation is a dynamic phenomenon.

The second point is that the test that is theoretically an 'in-plane' test performed on a 3D displacement machine can be indeed considered as in-plane, namely, the rotation levels along Y and Z shown in Figure 13(b) are negligible.

Moreover the X translation is very small : while the biais observed during the displacement without loading (i.e., performed without the specimen, as a reference) is about 12 to 16 µm, the measure is equal to ≈ 25 µm at the end of the test. This small drift is consistent with the very small out-of-plane 420 translation measured by stereo-DIC (i.e., less than 4 µm). The in-plane feature of the test is also confirmed by the measured forces and torques (Figure 14), namely, F X , M Y and M Z are close to zero. Moreover, the crack propagation is symmetric with respect to the Y -Z plane as proven by analyzing the displacement fields on both surfaces (Figures 15 and ) in addition to the final cracked surface (Figure 17). These last observations confirm that the test achieved what was originally planned.

Last, when the final crack is studied with tomography (Figure 18), no par- ticular 3D effect is observed, namely, the crack path is nearly the same in every X-section. However this result must be taken carefully since the curvature of the crack front along the propagation direction is not detectable with an a posteriori analysis like the present one.

Step by step analysis

Step 0 aims for no initiation, just an elastic loading up to 10 µm along Y and Z followed by an unloading at the same rate. The results show a linear change of the forces and torques with the applied displacements. A sudden drop of F z during the increase of the displacement appears, probably due to slip between two parts of the setup. The goal of this step is apart from checking that every measurement device is working normally to let such type of 'self-positioning' set in before the real loading. No crack is detected by DIC at maximum force nor at the end of the step. One notes a lower stiffness in the Y direction in comparison with Z in Figure 14.

Step 1 corresponds to a proportional combination of a translation along Y -to induce a global shear stress in the Y -Z plane -and a translation along Z added to a rotation along X -to induce a roughly uniform gradient of tensile The variation of F Z corresponds to an indirect sign of crack propagation. The stiffness of the specimen is slightly modified, namely, the slopes of F Y and to a lesser extent of M X are lower than at the beginning of the step.

Step 2 prepares the bifurcation by inverting the sign of F Y . As a consequence M X also evolves since the rotation about X is not modified during this step. Considering the displacement fields, no visible propagation occurs. The slope of F Y (U Y ) (Figure 19) is equal that of step 0, which means that in spite of the crack opening (up to ≈ 50 µm along Z near the notch, see Figures 15(a)

and 16(a)), the transmission of the load along Y through the crack faces is still possible. One does not even see any progressive crack closure during this step for which the slope would evolve.

Step 3 consists of linearly increasing the rotation and the vertical translation to re-propagate the crack. The latter turns and propagates downward (i.e., toward negative Z values) as expected (see Figures 15(B-b) and 16(B-b)).

Because of crack propagation, the forces and torques remain constant while the displacement evolves notably.

Step 4 prepares a new bifurcation. Same trends as for step 2 are observed except that the change of F Y is inverted (i.e., negative to positive values). The slope of F Y (U Y ) is equal to that of steps 2 and 0 (Figure 19) so that it is concluded that the load along Y is still transmitted through the crack faces despite a vertical opening of ≈ 75 µm (Figures 15(b) and 16(b)).

During step 5, the linear increase of rotation and vertical translation induces a bifurcation, so that the crack follows path 5 upward (Figure 6(b)) instead of branching and following path 5'. After a brief decrease of the forces and torques at the beginning of the step, they remain constant or slowly increase during stable crack propagation until the end of the step (Figures 15(C-c) and 16(Cc)).

Step 6 prepares another bifurcation (as steps 2 and 4 did). The change of F Y is identical to that of step 2, namely, from positive to negative values. The F Y (T y) slope is now lower than those of steps 4, 2 and 0. This means that the crack opening (Figures 15(c) and 16(c)) does not enable for the transmission of the load through the complete crack faces. Figures 15(d) and 16(d) show that the crack has started to branch during this step. This branching induces a small decrease of F Z . During step 7, only a translation along Z is applied so that F Z becomes positive. No bifurcation occurs to propagate downward. Instead, branching occurs so that the crack follows path 7' (Figure 6(b)). F Y tends to zero because of the thinning of the ligament and the opening of the crack and thus the larger compliance. The F Z (T z) slope is lower than at step 0, thereby proving that the load is (nearly) transmitted through the ligament. The crack becomes eventually unstable and complete failure occurs in a dynamic manner, which gives information about the limit of stability.

Last, to check that the whole results are consistent and ready for dataprocessing, a numerical simulation has been performed for each specimen face (since the test is very close to a planar test). A nonlocal scalar damage model [START_REF] Lorentz | A variational formulation for nonlocal damage models[END_REF] without crack closure, briefly summarized in Appendix A, has been used. The boundary conditions are measured on the specimen (not on the U-shape parts) with cameras T 1 and T 2 [START_REF] Carpiuc | Innovative tests for characterizing mixed-mode fracture of concrete : from pre-defined to interactive and hybrid tests[END_REF]. The computation converges and the overall trends 
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Conclusion

The goal of the paper is to present a rich and well instrumented case of inplane mixed-mode crack propagation in mortar, which can be used to validate numerical crack propagation / damage models. An innovative 6-axis testing machine with a displacement uncertainty about 1 µm has been used with several full-field kinematic measurement systems. The choice of the loading type, namely, a combination of global tension, shear and in-plane rotation, has lead to reorientations and stable crack propagation phases. The test is deemed rich because it includes several phenomena (i.e., initiation, propagation, bifurcation, branching, slow stable propagation and limit of stability, crack closure and friction) but not occurring all at the same time. A long step of propagation is obtained between each bifurcation/branching phase, which helps to differentiate the involved phenomena.

It is also considered as well instrumented because a large quantity of data has been recorded (i.e., more than 7,200 images for each of the six cameras, more than 10 h of acquisition at 10 Hz for each scalar data (LVDT measurements and load components). The uncertainties and biaises of each measurement system have been assessed and they are considered acceptable when compared with the total magnitude of displacements and loads. The availability of both the kinematic measurements on the two main surfaces of the specimen, of the forces and torques is of interest to better understand and compare the experimental results to numerical simulations. Tomographic images have also been acquired

to check the material heterogeneity and the final 3D crack path.

Several key points will make the numerical reproduction of the test easier.

First, the tested material has been characterized and the main parameters are given. Second, a case with a single crack has been chosen since numerical codes are generally less adapted to reproduce several crack propagations at the same time. Third, full-field measurements have been extensively used to improve the real boundary conditions assessment, and to enable for quantitative comparisons between the measured and simulated kinematic fields. Last, an in-plane test has been chosen and the static and kinematic measurements prove that the experiment can be considered as in-plane indeed. No tilt of the crack or crack curvature normal to the propagation direction is observed, so that 2D simulations are also possible.

During the propagation steps, the changes of loading enabled several reorientations of the crack to occur. Bifurcation has been tested three times and the case when the crack can bifurcate or branch to propagate has been tested twice. Bifurcation has been observed for the first step and branching for the second one, which illustrates both cases with an increase of complexity (i.e., a branched crack has to be managed only at the end of the test).

The paper aimed to describe the experimental protocol, the different avail- strength. The elastic domain is then an ellipsoid of revolution, differentiating tensile and compressive behaviors.

Last, the loss of material stiffness is expressed as

A(a) = (1 -a) 2 (1 -a) 2 + ma(1 + pa) ( 7 
)
where m is a parameter defining the tensile yield stress σ y = 3EG f 2mD and p the shape parameter for the asymptotic cohesive model.

The parameters used for the reported numerical simulations are given in Table 3. 

Young's modulus [GPa] 21

Poisson's ratio 0.2

Tensile strength [MPa] 3.9

Compressive strength [MPa] 80

Fracture energy [J/m 2 ] 100

Figure 1 :

 1 Figure 1: Geometry of the specimen (dimensions in mm). The dark grey parts are U-shaped steel plates.

  Effective water [kg/m 3 ] Cement [kg/m 3 ] Sand 0/4 [kg/m 3 ] Plasticizer [kg/m 3 ] The main mechanical properties of the mortar are obtained with a series 90 of five 3-point flexural and compression tests on 40 × 40 × 160 mm specimens from the same casting. The specimens were taken out of the water basin 3 days before the tests. The 3-point flexural tests follow the standard 196-1 NF-

Figure 2 :

 2 Figure 2: Tomographic image of the specimen before test. The density of sand is homogeneous.

Figure 3 :

 3 Figure 3: Force-deflection curves obtained during the 3-point bending tests. The first 3 specimens were out of the basin for 7 days, the last 3 for 12 hours.

Figure 4 :

 4 Figure 4: Six-axis testing machine. (a) CAD view with (1) base, (2) actuators, (3) moving platform, (4) upper end-effector, (5) room for specimen, (6) optical setup in close configuration with two cameras, (7) passive hexapod. The approximative lengths of 3 different parts are given for the sake of clarity. (b) Real testing machine fully equiped (apart from the 4 cameras for stereoDIC).

  (a)) with 18.5-mm wide × 25-mm height sidewalls made of steel are used to maintain the specimen with a 1.5-mm thick glue layer. Numerical simulations with perfectly rigid U-shaped boundary conditions still predict damage initiation at the tip of the sidewalls (Figure 5(b)) but this boundary effect vanishes on real tests because of the compliance of the glue and of the sidewalls.

  (a)) that lead to initiation, propagation and reorientation of the crack following a zigzag path (Figure 6(b)).

Figure 5 :

 5 Figure 5: Comparison of the damage field when flat (a) and U-shaped (b) plates are used for the same prescribed displacements on a double-notched sample.

Figure 6 :

 6 Figure 6: Three elementary loading paths: 'tension' (a-1), 'shear' (a-2) and 'rotation' (a-3), and the expected crack path (b).

Figure 7 :

 7 Figure 7: Damage field for a single notched sample subjected to proportional tension-shear.

  . The cameras are AVT MANTA G418B (definition: 2048 × 2048 pixels, 12-bit digitization), equipped with F1.4 35-mm lenses made by Zeiss. Furthermore, to have redundant measurements and also to quantify out-of plane displacements, global stereo-DIC [49, 50] is performed on each side of the specimen with four cameras (S l 1 and S r 1 , S l 2 and S r 2 shown in Figure 9(a)). These cameras are 60D Digital Single Lens Reflex by Canon, two of them equipped with F2.8 24-mm lenses by Canon, the other two equipped with F2.8 24-mm lenses by Nikon. The lighting

Figure 8 :

 8 Figure 8: (a) View of the upper part of setup showing the 3 cameras with their targets and the LVDT setup. (b) Configuration of the LVDT setup (the arrows indicate the measurement location and measurement direction of each LVDT).

Figure 9 :

 9 Figure 9: (a) camera setup and (b) example of image obtained with camera T 1 .

Figure 10 :

 10 Figure 10: Example of vertical displacement fields for two consecutive time steps (i.e., 5 s between (a) and (b)) while the specimen is still. Convection effect is visible.

Figure 11 :

 11 Figure 11: Translations (a) and rotations (b) expressed at point O spe sup during the validation step of the setup without load, prescribed ('comm' subscript), measured by LVDT ('LVDT' subscript) and by DIC ('DIC' subscript).

  of the two sides corresponds to the in-plane displacements U y DIC , U z DIC , and Rx DIC at U x = 0, which are expressed at point O spe sup in Figure11. During the steps called 'basic movements', there is first a period where the displacements are recorded while the specimen is held still (step 0), then a 50 µm cyclic translation along X is performed(step 1), then a 100 µm cyclic translation along Y (step 2) and then along Z (step 3). The displacements corresponding to the test are then performed ('test movements' 0 -7), starting with a proportional 150 µm loading-unloading Y -Z translation (step 0).

Figure 12 :

 12 Figure 12: Displacement measurements obtained by the LVDT setup during the validation step.

Figure 13 :

 13 Figure 13: Translations (a) and rotations (b) expressed at point O spe sup during the test: prescribed ('comm' subscript), measured by LVDT ('LVDT' subscript) and by DIC ('DIC' subscript).

Figure 14 :

 14 Figure 14: Forces (a) and Torques (b) measured during the test and expressed at point O spe sup .
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Figure 15 :

 15 Figure 15: Displacement fields observed on face 1: (A)-(E) show U Y and (a)-(e) U Z components. (A)-(a) (resp. (B)-(b), (C)-(c), (D)-(d), (E)-(e)) correspond to the end of step 1 (resp. step 3, 5, 6, 7).

Figure 16 :Figure 17 :

 1617 Figure 16: Displacement fields observed on face 2: (A)-(E) show U Y and (a)-(e) U Z components. (A)-(a) (resp. (B)-(b), (C)-(c), (D)-(d), (E)-(e)) correspond to the end of step 1 (resp. step 3, 5, 6, 7). Images have been flipped for the sake of comparison with Figure 15.

Figure 18 :

 18 Figure 18: Tomographic images of the upper part of the specimen after the test for different X sections. Zinc iodide was used to enhance the crack visibility.

Figure 19 :Figure 20 :

 1920 Figure 19: Evolution of forces versus translation along Y (a) and Z axes (b).

  are in good agreement exemplified by the comparison between the simulated and the experimental force-displacement curves shown in Figure21. The different steps of the test are clearly reproduced and for each one the simulation is

Figure 21 :

 21 Figure 21: Comparison between the force-displacement curves predicted by the damage model and the experimental data in shear (a) and tension (b).

  superimposed with the displacement field at the end of the test. The measured and simulated crack paths are very close. The load and kinematic measurements performed during the test are thus deemed trustworthy.

Figure 22 :

 22 Figure 22: Comparison between measured vertical displacement field and damage field (thick black line) on face 1 (a) and 2 (b).

  able data and the general results of the test. It nonetheless does not allow for a fine numerical simulation since the complete experimental data set size is hundreds of megabytes. To use these data and the results of the 3-point flexural tests, readers are welcome to contact the authors or directly download them from ftp.lmt.ens-cachan.fr (anonymous login, then cd toget/ConcreteCrackTests). Several standard specimens (cylinders and bars) are still available to enable for testing not originally foreseen. The presentation of the complete benchmark database (i.e., 11 other tests preformed with the exact same setup) and the preparation of the data for downloading is currently in progress. Since this 'interactive' test leads to a successful stable and zigzagged crack propagation, this work calls for a full automated test (or hybrid test) based on the same principles, testing machine and instrumentation.5. AcknowledgementsThis work has been supported and carried out within the EnerCampus framework. It has also benefited from the support of the French 'Agence Nationale de la Recherche' through the 'Investissements d'Avenir' program under the reference ANR-10-EQPX-37 MATMECA. The authors are grateful to B. Smaniotto for the acquisition of tomographic data, and to C. Jailin for assis-tance during the test and data-processing.

Table 1 :

 1 Concrete mix composition.

Table 2 :

 2 Average (± standard deviation) concrete properties obtained for two loading rates.

	Load rate Young's modulus Tensile strength
	50.0 N/s	17.25±0.74 GPa	3.8±0.4 MPa
	00.5 N/s	20.03±0.05 GPa	4.1±0.4 MPa

Table 3 :

 3 Set of material parameters used in the numerical simulations.

Appendix A: Damage model

The nonlocal (gradient) damage model [START_REF] Lorentz | A variational formulation for nonlocal damage models[END_REF] used herein describes the material state by the infinitesimal strain tensor and by a scalar damage field a with 0 < a < 1. The stress/strain relationship reads σ = A(a)E :

(

with E denotes Hooke's tensor, and A(a) a decreasing function.

The energy function governing the growth of the damage variable is written as

where ka stands for the dissipation energy, and c is the nonlocal parameter.

These two parameters control both the size of the damage localization zone and the dissipated energy

where G f is the fracture energy per unit area, and D the length scale parameter, i.e., half of the damage band width.

The damage criterion is obtained by deriving the function Φ with respect to

and the loading-unloading conditions in the Khun-Tucker form are given by

The Γ function defines the elastic domain shape

where α, β and γ are parameters that can be identified from three material properties, namely, the tensile strength, the compressive strength and the shear