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Abstract

The characteristic damage mechanisms of a four-layer plain weave glass fiber/epoxy matrix

composite are analyzed by means of optical microscope observations on the edge of a rectangular

specimen under tensile loading. Digital image correlation is used to determine the size of

transverse yarn cracks and yarn-yarn debonding around the crack tips. An algorithm based on

Finite Fracture Mechanics is proposed to model crack and debond initiation and propagation in

the composite, which takes into account possible couplings between the cracks. The predicted

debond and crack densities are in good agreement with the experimental observations.

Keywords: B. Transverse cracking; B. Debonding ; C. Damage mechanics; C. Finite element

analysis (FEA)

1. Introduction

Woven composites are increasingly used for lightweight aeronautical and automotive appli-

cations. The large variety in the choice of the reinforcing fabric allows the number of assembly

operations to be reduced, which results in fewer weak points in a structure and lower production

costs.

The behavior of woven composites may be optimized using design tools able to describe

the change in their mechanical behavior from damage initiation to failure. Currently, design

methods are based on macroscopic models predicting damage growth and failure in 2D [1, 2]
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and 3D [3, 4, 5, 6, 7] woven composites. These models require time consuming and expensive

experimental tests in order to calibrate their parameters. Moreover, the model parameters

must be recalibrated each time the constituents or the fiber architecture change. The number

of tests may be reduced if some of the parameters can be determined by simulation of virtual

tests with explicit modeling of damage initiation and propagation at the mesoscopic scale, at

which the architecture of the fiber reinforcement architecture is defined.

Several strategies have been introduced to model damage at the mesoscopic scale. Gao

et al. [8] proposed an analytical damage model using a mosaic laminate representation of the

composite. This model allows for the calculation of the Young’s modulus of the damaged

composite. However, yarn undulation, which has a major influence on damage location [9,

10], is neglected. Damage in woven composites at the mesoscopic scale is generally modeled

using Finite Element (FE) approaches based on Continuum Damage Mechanics (CDM) [9,

10, 11, 12]. One drawback of such models is an erroneous prediction of damage propagation

directions [12, 13]. Moreover, these models require regularization methods in order to avoid

damage pattern dependence on the FE mesh [14, 15], and very fine meshes in order to obtain

a good representation of localized cracks observed experimentally [16, 17, 18, 19]. Localized

cracks can be modeled more accurately using discrete damage models [19, 20, 21, 22], which

consist in directly inserting cracks in the FE mesh.

The modeling of damage growth requires tools that are able to determine damage initiation

and propagation within the composite. Damage initiation in woven composites is generally

modeled using a stress-based criterion [9, 10, 11, 12, 19, 23], which gives a good estimate of

the crack locations [19, 23, 24]. However, the damage initiation strain is underestimated if

only a stress criterion is used and a better estimate is obtained [24] if energetic considerations

based on Finite Fracture Mechanics (FFM) [31] are also taken into account, as proposed by

Leguillon [32], for instance. In a previous work [24], it has been shown that, in the studied

composite, the energy criterion is dominant and thus Finite Fracture Mechanics can be used to

accurately model the initiation of yarn cracks. Moreover, it also allows for the determination of

the crack initiation configuration (e.g., length, orientation). The propagation of existing cracks
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in quasi-brittle materials can also be modeled using Fracture Mechanics. Yet, to the authors’

knowledge, damage propagation in woven composites has mainly been studied using models

based on CDM [9, 10, 11, 12].

In this work, Finite Fracture Mechanics is followed to model damage growth in a composite

consisting of four layers of glass fiber plain weave and epoxy matrix. In Section 2, optical

micrographs of yarn cracks and debonding are presented. The crack and debond lengths are

determined by means of digital image correlation (DIC). The algorithm developed to assess

damage propagation is summarized in Section 3. It is used in Section 4 to determine the

propagation of multiple cracks taking into account the possible coupling between several cracks.

A comparison of the predicted damage growth to the experimental observations is presented in

Section 5.

2. Digital image correlation for damage detection

2.1. Material and testing

The composite under investigation was manufactured at Onera and consists of four layers of

E-glass fiber plain weave reinforcement embedded in Araldite LY564/Hardener XB 3487 epoxy

matrix. The plain fabric thread count is 2.2 warps/cm × 2 wefts/cm. The fabric mass per unit

area is 504± 40 g/m2, the linear density of the yarns is 1200 TEX and the mass density of the

fibers is 2.54 g/cm3. The dry fabric was compacted in a steel mold before matrix injection,

which results in a mean fiber volume fraction in the composite of 47 %. A parallelepipedic

specimen was tested under incremental tensile loading in order to quantify damage using op-

tical microscopy focused on the edge of the specimen at four strain levels, as well as Young’s

modulus and Poisson’s ratio changes using stereo-DIC [19]. Acoustic Emission (AE) was also

used in order to determine the damage initiation strain. The damage mechanisms observed

experimentally follow the microstructure of the composite (Figure 1(a) and (b)). Transverse

yarn cracks and debonding between yarns around the crack tip are observed (Figure 1(b)).

The damage analysis requires the calculation of crack and debond densities inside the ma-

terial. The crack (resp. debond) density is defined as the ratio between the total crack (resp.
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debond) surfaces and the volume of the observed zone. Since optical microscopy only provide

a surface measurement of crack and debond lengths on the specimen edge, the crack (resp.

debond) density ρexpc (resp. ρexpµ ) obtained experimentally is calculated as a function of the

number of cracks Ncracks, the crack (resp. debond) lengths `ck (resp. `µk) and the height h and

length L of the observed zone 
ρexpc =

Ncracks∑
k=1

`ck
Lh

ρexpµ =
Ncracks∑
k=1

`µk
Lh

(1)

Gao et al. [25] showed that the crack densities measured inside and on the edge of a woven

composite were similar. This is confirmed for the studied material by transmitted light observa-

tions on the tested specimen (see Figure 1(a)), which show that the crack densities on the edge

and in the central part of the specimen are qualitatively similar. Therefore, it seems reasonable

to assume that the crack and debond densities calculated in Equation (1) are representative of

the whole material.

2.2. Damage detection

Intra-yarn cracks can generally be easily identified via optical micrographs on the specimen

edge since most of them are orthogonal to the loading direction (Figure 1b) and therefore open

under tension. However, it is more difficult to detect small cracks or debonding that are almost

parallel to the loading directions (Figure 1b). Therefore, digital image correlation between a

state without damage and a cracked state is used to detect cracks [26, 27]. In this work, a

mechanically regularized global DIC method [28] is used. The main advantage of this method

compared to classical local DIC is its ability to detect displacement discontinuities due to the

presence of a crack by taking into account a mechanical regularization. The method consists

in defining a mesh on the reference image and determining a displacement field, u, defined at
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each node of the mesh, that minimizes the functional Φt over the region of interest (ROI)



(1 + wm + wb)Φ
2
t = Φ̃2

c + wmΦ̃2
m + wbΦ̃

2
b

Φ̃c = Φc(u)
Φc(v)

, Φ̃m = Φm({u})
Φm({v}) , Φ̃b = Φb({u})

Φb({v})

Φ2
c(u) =

∑
ROI ϕ

2
c(x) =

∑
ROI(f(x)− g(x + u(x)))2

Φ2
m({u}) = {u}t[K]t[K]{u}

Φ2
b({u}) = {u}t[L]t[L]{u}

(2)

where f and g are, respectively, the gray levels of the pictures in the reference and deformed

configurations, x any pixel location, {u} the column vector gathering all nodal displacements,

[K] the (rectangular) stiffness matrix associated with the inner nodes, and [L] an operator

acting on the boundary nodes. The normalized functionals are based on a trial displacement

field, v, which is chosen as a plane wave [28]. The weights wm and wb are directly linked to

the regularization lengths `m and `b, which weigh each term of the functional Φt. ϕc is called

the correlation residual field, which highlights the differences between the reference and the

deformed pictures corrected by the measured displacement field u (e.g., cracks and debonding).

Before the test, and for each strain level, 27 micrographs have been acquired on the visible area

of the specimen edge. The DIC method is used to obtain the correlation residuals for the 27

areas using a mesh composed of 3-noded triangles whose characteristic edge length is 20 pixels

(the size of the region of interest in each area is about 650 × 1000 pixels), resulting in about

2,500 degrees of freedom. The regularization lengths are `m = 2`b = 64 pixels. This choice

results from a compromise between the spatial resolution and the measurement uncertainty.

The correlation residuals obtained for the area outlined in black in Figure 1(b) are shown in

Figure 1(c). The crack and debond lengths on the edge of the specimen are measured manually

using the correlation residuals.
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3. Algorithm for damage propagation in the representative unit cell

3.1. Crack propagation

Linear elastic fracture mechanics (LEFM) describes the propagation of cracks in (brittle)

elastic materials. Brittle means in this case that the plastic zone around the crack tip is much

smaller than the characteristic length of the material [29]. For the material under investiga-

tion, plastic deformation of the matrix in the yarns is only visible between the fibers at the

microscopic scale. The size of the plastic zone is thus of only a few micrometers. Therefore,

LEFM can be used for the crack propagation analysis at the mesoscopic scale in the studied

material. The proposed approach, which is used to determine crack and debonding propagation

in the composite, is based on Griffith’s theory [30], assuming that a crack can propagate if the

potential energy release due to crack propagation is at least equal to the energy required to

extend the surface of the crack

δWp + δWk +GcδS = 0 (3)

where δWp and δWk are, respectively, the potential and kinetic energy variations. The surface

of the new crack is δS, and Gc the critical energy release rate of the material. A static state

before crack propagation means that δWk > 0, which leads to a necessary condition for crack

propagation

−δWp

δS
≥ Gc (4)

For continuous crack growth, the condition given in Equation (4) holds for any surface increment

δS. The differential form of Equation (4) is obtained when δS tends to 0

−∂Wp

∂S
= G ≥ Gc (5)

where G is the differential energy release rate. The propagation criterion established by Griffith

consists in comparing G to the critical energy release rate Gc. If G < Gc, the crack does not
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propagate. For a quasi-static problem, the condition for stable propagation is given by

G = Gc and
dG

dS
< 0 (6)

In particular, crack propagation is stable if the crack does not propagate without any increase

in prescribed strain. For a quasi-static problem, the condition for unstable propagation reads

G > Gc or (G = Gc and
dG

dS
> 0) (7)

Griffith’s theory is adapted to study the propagation of an existing crack, but cannot be used

to predict crack initiation. In the studied composite material, the initiation of transverse yarn

cracks is quasi-instantaneous, which means that the time needed for a crack to initiate over

a finite length is very small compared to the other timescales involved in the problem (e.g.,

characteristic loading time). The hypothesis that the cracks initiate instantaneously on a finite

length is a good approximation. Therefore, crack initiation can be determined using coupled

stress and energy criteria [32]. The method consists in finding the crack initiation configuration

that fulfils both stress and energy criteria and minimizes the crack initiation strain. The stress

criterion must be fulfilled over the whole surface of the crack in the undamaged material, while

the energy condition states that the energy released by crack initiation must be at least equal

to Gc∆S, which is required to open the crack of surface ∆S.

The coupled criterion was used to model the initiation of transverse yarn cracks in the

same material as studied herein. It was found that for the composite under investigation, the

energy criterion is dominant [24]. Thus, FFM can be used. FFM is based on the assumption

that damage does not grow continuously but by finite increments. In that case, the differential

energy release rate is replaced by the incremental energy release rate in the condition given in
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Equation (5) 
Ginc(S0, S) = 1

∆S

∫ S
S0
G(S̃)dS̃

d(Ginc(S0,S)∆S)
dS

= dGinc(S0,S)
dS

∆S +Ginc(S0, S) = G(S)

∆S = S − S0

(8)

If dGinc

dS
< 0, the differential energy release rate is lower than the incremental one, and vice-

versa. If the incremental energy release rate reaches an extremum, both energy release rates

are equal (since dGinc

dS
= 0).

The study of crack propagation in composites requires the calculation of the differential

energy release rate and its derivative. In the complex 3D case of woven composites, this step

requires FE calculations. The energy release rate can be computed using a local approach such

as, e.g., the so-called G-θ method [33, 34, 35]. In that case, the simulation of the energy release

rate is based on the local stress distribution in the vicinity of the crack front and requires very

fine meshes. Another possibility consists in making an energy balance between the states before

and after propagation for a small crack surface increment. For an infinitesimally small crack

surface increment (i.e., when ∆S → 0), the differential and the incremental energy release rates

are equal (see Equation (9)). Therefore, crack propagation can be evaluated by computing the

incremental energy release rate for small crack surface increments

lim
∆S→0

Ginc(S0, S) = G(S0) (9)

3.2. Propagation algorithm

In this section, an algorithm able to predict crack propagation in the composite is presented.

As explained in the previous section, the energy release rate is computed by calculating the

incremental energy release rate for small crack surface increments. The objective of the pro-

posed algorithm is to determine the change in the set of parameters describing the crack shape

d = (d1, ..., dn) as functions of the increasing strain level ε. Figure 2 shows the flowchart of the

algorithm:

• If damage has fully propagated (for example when a crack has crossed the whole yarn),
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the algorithm stops.

• Otherwise, if the condition G ≥ Gc is fulfilled, crack propagation is determined by the

parameter di whose variation δi, which is defined in Figure 2, maximizes the energy release

rate. If not, the strain level is increased.

• The current configuration (d, ε) is updated

The proposed algorithm deals with both stable and unstable crack propagation:

• Stable propagation

It has been shown that, for the composite under investigation, the incremental energy

release rate of an intra-yarn crack has a maximum level [24]. The crack initiation con-

figuration corresponds to this maximum level at S = S∗ (see Figure 3, which shows the

change of G and Ginc as functions of S). At this maximum, the incremental and differ-

ential energy release rates are equal, as shown in the previous section, and the derivative

of the differential energy release rate is negative. Therefore, the condition given in Equa-

tion (6) is fulfilled and crack propagation is stable. If the derivative of the differential

energy release rate remains negative for S > S∗, the propagation remains stable. If the

differential energy release rate increases again for S > S∗, crack propagation may become

unstable.

• Unstable propagation

The change in the differential and incremental energy release rates in case of unstable

propagation is shown in Figure 3(b-c). The propagation of a crack of area S∗ is unstable

since the condition given in Equation (7) is fulfilled. Therefore, the crack can propagate

without any increase in the strain level. The crack propagates at least up to an area

S∗ + ∆Smin satisfying G(S∗ + ∆Smin) = Gc. During crack propagation from S = S∗

to S = S∗ + ∆Smin, the released potential energy is higher than that required for the

generation of additional crack surface (G > Gc). This energy surplus is available for

further crack propagation [29, 36]. If this energy surplus is dissipated (i.e., not used for
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further crack propagation), the crack only propagates up to S∗ + ∆Smin. Conversely, if

the energy surplus is fully used for further crack propagation, the crack can propagate up

to S∗ + ∆Smax with the condition

A1 =

∫ S∗+∆Smin

S∗
(G(S)−Gc)dS =

∫ S∗+∆Smax

S∗+∆Smin
(Gc −G(S))dS = A2 (10)

If the differential energy release rate increases again after having reached a minimum

level so that G ≥ Gc for S ≥ S∗ + ∆Smax, then, a sufficiently high energy surplus may

lead to a jump over a region for which G < Gc and the crack keeps propagating in an

unstable manner (Figure 3(c)). If the energy surplus is not high enough to allow for

further crack growth, the crack propagates, at most, up to S = S∗ + ∆Smax, for which

A1 = A2 and G(S∗+∆Smax) < Gc (see Figure 3(b)). Then, the crack does not propagate

unless applying a strain increase ∆ε for which G(ε+ ∆ε, S∗ + ∆Smax) = Gc.

In practice, a part of the energy surplus is used for crack propagation whereas the rest

is dissipated [29]. Since it is difficult to quantify experimentally the part of the energy

that is dissipated, the two extreme cases are studied in this work, i.e., without or with

complete dissipation of the energy surplus.

3.3. Discrete damage modeling in a realistic representative unit cell

The propagation algorithm presented in the previous section requires the calculation of the

incremental energy release rate of a crack. Therefore, a geometrical representation and an FE

mesh of the composite including a good representation of the yarn volume fraction and of the

local strain/stress fields are required for an accurate determination of the potential energy of

the undamaged and cracked material.

At the mesoscopic scale, the reinforcement architecture of woven composites is approxima-

tively periodic, even if some variations are induced during the manufacturing process. Olave et

al. [37] have shown that these variations do not significantly influence the mechanical properties

of the composite. Moreover, periodic damage patterns have been observed along the edge of a
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woven composite specimen [19]. Therefore, perfect periodicity is generally assumed to model

woven composites, using an elementary pattern representative of the whole material (referred

to as Representative Unit Cell or RUC) in order to reduce computational costs. In this work,

the geometry of the reinforcement architecture in the RUC is obtained by compaction model-

ing [19, 38, 39], which yields geometries close to those of the real composite specimens [39]. A

conformal mesh of the geometry is generated using the meshing procedure developed by Grail

et al. [40]. Then, discrete cracks and debond zones are inserted in the FE mesh using the mesh

intersection algorithm, Z-cracks [41]. The main advantage of discrete damage modeling is the

possibility of directly describing localized cracks and debond zones observed experimentally

(Figure 4).

The potential energy of the undamaged and cracked RUCs are determined through FE

calculations. The meshes of the cracked and undamaged RUCs have exactly the same topology

and only differ because the nodes describing the crack surface are doubled in the cracked

mesh [24]. Periodic boundary conditions [12] are applied to the fabric plane directions of

the RUC, whereas the top and bottom surfaces are left free according to the real boundary

conditions of the specimen during tensile tests. The matrix behavior is assumed to be linear

elastic, and the mechanical properties given by the manufacturer are: Young’s modulus Em =

3.2 GPa, and Poisson’s ratio νm = 0.35. Micro-meso homogenization [10] is followed to obtain

the yarn behavior, using Ef = 73.6 GPa [42] and νf = 0.3 for the fibers. The fiber volume

fraction in the yarns is chosen so that the overall fiber volume fraction in the RUC is equal to

the fiber volume fraction in the composite specimen. A transversely isotropic elastic behavior

is obtained for the yarns, with El = 41.0 GPa, Et=9.8 GPa, νtt=0.32 and Glt=7.2 GPa (the

indices l and t refer, respectively, to the fiber and transverse directions). The local orientation

of the yarn is computed at each integration point through orthogonal projection of its position

on the neutral axis of the yarn. The tangent to the neutral axis at the projected point defines

the axis of transverse isotropy of the yarn material (i.e., the fiber direction) at the integration

point. In the following, the influence of the fracture mode is neglected. A constant and mode-

independent critical energy release rate Gc is assumed for the yarns. As the inserted yarn cracks
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are orthogonal to the loading direction, yarn cracking will occur mostly in mode I. The value,

Gc = 118 J/m2, has been taken from a published study on a similar material [45].

4. Damage growth modeling

4.1. Hypotheses on crack configuration

Since the crack shape is not known a priori, hypotheses must be formulated in order to limit

the number of possible crack configurations at damage initiation and therefore the number of

calculations required to compute the incremental energy release rate. The first hypothesis is

that the crack plane is parallel to the fiber direction since the fiber strength is much higher than

that of the matrix. The cracks are also assumed to traverse the whole yarn width with straight

crack fronts, and debonding is assumed to be symmetric on each side of the crack tip with

straight fronts. The crack locations are determined with a stress-based criterion [24], which

gives a good estimate of the crack locations [19, 23, 24], and the cracks propagate symmetrically

with respect to their center. Under these hypotheses, damage is described by 2 parameters,

namely, the crack length and the debond length. The number of cracks in the RUC is limited

to 14 (Figure 6), which corresponds to the crack density measured experimentally just before

failure. For each crack, the initiation length, strain and the corresponding debond initiation

length are determined using the method presented in Ref. [24]. For the sake of simplicity, the

same Gc level as for yarn cracking is chosen for debonding. While the assumption of pure

mode I fracture is a good approximation for the yarns, this is less obvious for the yarn interface

debonding. For a more accurate model, mode mixity has to be taken into account together with

the critical energy release rates of the yarn-yarn interface. This is possible [43, 44] with FFM

to model mixed mode fracture of adhesive joints. A summary of the crack initiation results and

the corresponding debond lengths obtained under these hypotheses are reported in Table 1.

4.2. Propagation with no debonding

An example of crack propagation with the proposed algorithm is discussed in this section.

The crack under investigation (no. 14 in Table 1) is located at (x, y, z) = (8.82 mm, 4.0 mm,
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1.24 mm). The crack initiation length (1.92 mm) and strain (7.56×10−3) have been determined

using the method presented in Ref. [24]. The crack surface increment is ∆S = 0.01 mm2

(about 1/300th of the area of a crack crossing the whole RUC, corresponding to a crack length

increment of about 0.03 mm) and the strain increment is ∆ε = 10−6. Figure 5 shows the change

in crack length as a function of strain obtained with the propagation algorithm if the energy

surplus is entirely used for further crack propagation (an example highlighting the differences

obtained by taking into account or not the dissipation of the energy surplus is presented in the

next section). Crack propagation is stable after crack initiation up to dc = 4.6 mm and for

dc > 5.7 mm, whereas it is unstable for 4.6 mm < dc < 5.7 mm.

4.3. Crack and debonding propagation

The initiation configuration of a crack without debonding maximizes the incremental energy

release rate [24]. At this maximum, Ginc = G = Gc and dG
dS

< 0, so that the propagation of

a crack without debonding would be stable. However, it has been shown [24] that debonding

can be initiated on a finite length at the crack initiation strain. After debonding initiation, the

crack configuration may not correspond to a maximum of the energy release rate (Figure 7(a)).

Therefore, crack propagation can either be stable (see Equation (6)) or unstable (Equation (7)).

The propagation of cracks and debond zones is modeled using the algorithm presented in Sec-

tion 3. For each iteration, the energy release rate for pure crack or pure debonding propagation

is determined. For all studied cracks, the energy release rate for crack propagation is higher

than for debonding propagation, regardless of crack length. Therefore, crack propagation is

modeled with a constant debond length equal to the initiation length.

Figure 7(b) shows the change in crack length (modeled with and without debonding) as

a function of strain for crack no. 14 (Figure 6). After initiation, propagation is unstable

(respectively stable) if debonding is (respectively is not) taken into account. If debonding is

accounted for, crack propagation is unstable from 1.92 mm (initiation length) to 6.7 mm, if the

energy surplus is used for further crack propagation (respectively, 5.1mm, if the energy surplus

is dissipated). In both cases, crack propagation is accelerated by debonding.
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The change in the surface of the 14 cracks (with and without debonding) as a function of

strain is computed using the algorithm presented in Section 3. The propagation of a crack is

first modeled without taking into account the influence of other cracks in the RUC. The crack

density is determined as the ratio between the total crack surface and the RUC volume. Figure 8

shows the change in crack density as a function of strain for cracks with and without debonding,

and with and without using the energy surplus for further crack propagation. In the case of

cracks with no debonding, using the energy surplus for crack propagation, or not, has very little

influence on damage growth since crack propagation is mostly stable. If debonding is taken

into account (blue lines in Figure 8), crack propagation is locally accelerated when the energy

surplus is used for further crack propagation (dashed blue line in Figure 8). However, similar

damage growth is obtained in both cases. Compared to the levels obtained without debonding

(gray and black lines in Figure 8), damage growth is accelerated if debonding is accounted

for, which is mainly due to debonding initiations that make crack propagation temporarily

unstable. A saturation of the crack density is observed for ε > 0.01, which results from the

limited number of modeled cracks. This phenomenon is not observed experimentally since the

highest crack density measured before failure is 0.22 mm−1.

4.4. Interaction between cracks

Except for the first crack, cracks initiate and propagate in the presence of other cracks in the

damaged composite. It is thus necessary to evaluate the influence of a crack on the initiation

and propagation of other cracks.

First, the influence of a crack on the initiation of a second crack is studied when the second

crack is located in a yarn that is not in contact with the yarn that contains the first crack

(Figure 9(a)). The second crack initiation is modeled with or without the presence of the first

crack, which is 3.4 mm or 10 mm long. The second crack initiation lengths (1.28 mm in all

three cases) and strains (6.49× 10−3, 6.50× 10−3 and 6.54× 10−3) are very close, which means

that the first crack has a negligible influence on the second crack initiation if both cracks are

located in two different yarns that are not in contact.
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The influence of a crack on the initiation of a second crack is now studied when the two

cracks are located in the same yarn (Figure 9(b)). The initiation strain of the second crack is

calculated as a function of the distance between the cracks along the warp direction (∆x) for

the second crack of length 0.6 mm (Figure 10(a)) or 5.5 mm (Figure 10(b)) with, or without,

the presence of the first crack, which is 10 mm long. If both cracks are separated by more than

about 1 mm, the influence of the first crack on the initiation of the second crack is negligible.

Therefore, they can be treated separately. However, if both cracks are close to each other, it

is necessary to take into account their coupling since a higher second crack initiation strain is

obtained in the presence of the first crack.

Among the 14 studied cracks, 6 couplings are considered (cracks no. 4 and 7, no. 3 and

6, no. 5 and 8, no. 9 and 14, no. 11 and 12, no. 13 and 14). For each pair of cracks, the

first crack initiation length, strain and debond length are calculated. Then, the second crack

initiation length d2 and strain ε are determined, taking into account the possibility for the first

crack (whose initiation length is d1) to propagate by an increment δd1. This is achieved by

performing a new energy balance

W (d1, 0, ε)−W (d1 + δd1, d2, ε) = Gc(S(d1 + δd1)− S(d1) + S(d2)) (11)

which can be solved using the algorithm presented in Section 3.

The results for each pair of cracks are summarized in Table 2. The next step consists in

determining the debond length of the second crack (Table 2). Last, the propagation of both

cracks is determined, assuming that the debond lengths are constant during crack propagation.

Figure 11 shows a comparison of damage growth obtained taking into account, or not, the

coupling between close cracks, with and without debonding. For strain levels lower than 8 ×

10−3, the influence of coupling is negligible since only one crack pair is active. For higher strain

levels, the coupling between cracks tends to slow down crack propagation.
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5. Comparison between numerical and experimental results

In this section, the damage growth obtained taking into account the coupling between close

cracks and debonding around the crack front is compared to the experimental observations.

Figures 12 and 13 show the change in crack and debond densities as functions of the macroscopic

strain. The critical energy release rate of the yarns was first taken from the work of Benzeggagh

and Kenane [45] who studied a unidirectional glass fiber/epoxy matrix composite. Their value

of Gc = 118 J/m2 leads to a good estimate of the initiation strain determined by acoustic

emission [24]. However, the crack density growth is overestimated compared to the experimental

data (Figure 12). A reason might be that the material studied in Ref. [45] was made with a

different epoxy matrix than the composite studied herein. Further, under the assumption

of linear elastic fracture mechanics, the strain at which a given crack density is reached is

proportional to the square root of Gc. A better estimate of the crack density is obtained for

Gc = 200 J/m2. However, the initiation strain of the first crack predicted with this Gc level is

higher than the first AE signal associated with damage [24]. A similar result is obtained for

the debond density growth, which is overestimated for Gc = 118 J/m2 and in better agreement

with the experimental data for Gc = 200 J/m2. These results indicate that the real critical

energy release rate of the yarns is probably closer to 200 J/m2 levels than 118 J/m2. The

initiation strain of the first crack is more dependent on local variations of the material such as

defects or residual stresses than the change in the overall crack density.

Despite the simplification of not taking into account the mode mixity in the model and

using the same Gc level for yarn cracking and debonding, the change of both crack and debond

densities is well reproduced if an appropriate value for Gc is chosen. This value may be of

limited physical meaning since it is unified Gc for yarn cracking and debonding that is mode

independent. However, the level, Gc = 200 J/m2, seems to be a reasonable value for the yarns,

since the critical energy release rate of the matrix given by the manufacturer is 280± 25 J/m2.

The relationship between the debond density and the crack density shown in Figure 14

is independent of Gc under the assumption that the critical energy release rate is the same
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for cracks and debonding. This assumption is supported by the fact that both cracking and

debonding result from inter-fiber matrix cracking at the microscopic scale. The change in

debond density with respect to the crack density agrees well with the experimental data.

Figure 15 shows the damaged RUC corresponding to the 4 measured crack densities. A

comparison of the experimental and numerical damage states at these 4 load levels is shown in

Figures 16 to 19. For high crack density levels, most experimentally observed cracks appear at

similar locations over the whole specimen edge, showing a certain periodicity of damage within

the material. In addition, some variability is observed within the zones with repeating damage

patterns, both in terms of crack location and number. Moreover, several crack locations are

observed only once. For lower crack density levels, less periodic patterns are observed. This may

be due to cracks that have been initiated inside the specimen but have not yet propagated to the

observed edge. Local phenomena such as, e.g., variations in the reinforcement architecture [37],

defects or porosities, residual stresses due to the manufacturing process, also have an influence

on crack initiation strain, location and propagation.

Last, the influence of damage on the macroscopic mechanical behavior of the composite

is obtained from meso-macro homogenization. The calculated Young’s modulus in the warp

direction and the in-plane Poisson’s ratio are in good agreement with the experimental data

(Table 3).

6. Conclusions

The proposed approach, which is based on discrete damage modeling in a representative

unit cell of a woven composite at the mesoscopic scale, allows damage growth in the composite

to be determined. Crack and debonding propagations are estimated by computing the incre-

mental energy release rate for small surface increments. The propagation of a crack without

debonding is stable after crack initiation. However, debonding initiation can make the propaga-

tion unstable and tends to accelerate crack propagation. Moreover, after initiation, the debond

length does not change before the crack has fully propagated through the entire unit cell. The

crack density change is slightly accelerated if debonding is accounted for, compared to the case
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of an absence of debonding.

The presence of a crack delays the initiation of additional cracks in its vicinity and slows

down their propagation. However, if two cracks are separated by more than 1 mm from each

other, this coupling becomes negligible and their propagations can be treated separately. The

change in debond density is correlated to that of crack density. This correlation is independent

of the value taken for the critical energy release rate, Gc, and agrees well with the experimental

observations. Good quantitative agreement between calculated crack and debond densities and

experimental observations is obtained for a critical energy release rate Gc = 200 J/m2. However,

for this Gc level, the calculated initiation strain of the first crack is significantly higher than

the first acoustic emission signal associated with damage. A possible explanation could be

the strong influence on the first crack initiation of local variations within the material such as

manufacturing defects or residual stresses.

For a more in-depth comparison of the predicted damage growth, computed microtomogra-

phy observations would be required in order to observe the real 3D crack shapes. Future work

will aim at improving the proposed approach, e.g., by modeling non symmetrical propagation

of the cracks or by taking into account more complex crack shapes.
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Figure 1: (a) Light transmitted front view and (b) optical micrograph of the edge of the specimen. (c) Corre-
lation residuals over the area outlined in (b) highlighting an intra-yarn crack and debonding between yarns.
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Figure 2: Algorithm used to model damage propagation in the considered representative unit cell.
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Figure 3: Incremental and differential energy release rates as functions of the crack surface in the case of (a)
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Warp

Weft
Out of 
plane

Crack Debonding

Figure 4: Discrete damage modeling in the representative unit cell of the composite. Example of an intra-yarn
crack with debonding at the crack front.
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Figure 7: (a) Incremental energy release rate as a function of the crack surface (crack no. 14 in Figure 6) without
(red solid line) and with (blue dashed line) debonding. (b) Crack length as a function of strain without (in red)
and with (in blue) debonding, using the energy surplus released during the unstable phase for further crack
propagation (dashed line) or not (solid line).
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Figure 9: Damaged cell containing two cracks (a) in two different yarns and (b) in the same yarn.
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∆x along the warp direction from another crack (in blue) or without the presence of other cracks (in red).
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Figure 13: Debonding density as a function of strain obtained when Gc = 118 J/m2 (in red), Gc = 200 J/m2

(in blue), and observed experimentally (in black).

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ρ (mm
-1

)

ρ µ (
m

m
-1

)

Numerical
Experimental 
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Figure 15: Damage in the cell predicted for the crack density levels measured experimentally: (a) ρc =
0.09 mm−1, (b) ρc = 0.13 mm−1, (c) ρc = 0.18 mm−1, (d) ρc = 0.22 mm−1.
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Figure 16: Comparison between crack locations (a-e) observed experimentally on the edge of the specimen and
(f) obtained numerically for a crack density ρc = 0.09 mm−1.
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Figure 17: Comparison between crack locations (a-e) observed experimentally on the edge of the specimen and
(f) obtained numerically for a crack density ρc = 0.13 mm−1.
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Figure 18: Comparison between crack locations (a-e) observed experimentally on the edge of the specimen and
(f) obtained numerically for a crack density ρc = 0.18 mm−1.
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Figure 19: Comparison between crack locations (a-e) observed experimentally on the edge of the specimen and
(f) obtained numerically for a crack density ρc = 0.22 mm−1.
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Table 1: Location of the crack center (xc, yc, zc), crack initiation length (d∗c), debond initiation length (µ∗
c) and

initiation strain (εc) obtained for the 14 cracks under investigation using the method described in Ref. [24]

Crack 1 2 3 4 5 6 7 8 9 10 11 12 13 14
xc (mm) 0.65 3.31 8.08 2.05 4.8 8.82 1.82 4.3 0.2 0.78 3.5 5.4 7.89 8.82
yc (mm) 8.9 6.42 1.53 6.23 8.29 2.82 6.62 7.9 7.6 3.95 9.4 2.66 4.85 4.0
zc (mm) 0.11 0.37 0.19 0.43 0.48 0.5 0.74 1.01 1.22 1.26 1.51 1.57 1.20 1.24
d∗c (mm) 4.29 3.4 1.63 0.74 7.8 0.84 0.84 8.73 6.46 0.84 3.4 6.26 2.02 1.92
µc (mm) 0.033 0.063 0.066 0.021 0.02 0. 0.02 0.02 0.036 0.02 0.066 0.04 0.064 0.056
εc (×10−3) 9.34 6.8 6.58 8.82 9.05 9.8 7.72 10.1 7.92 8.10 8.04 8.71 8.37 7.56

Table 2: Strain (ε) level, crack (dc) and debond (µc) lengths obtained taking into account the coupling between
close cracks.

Coupling no. 1 2 3 4 5 6
Crack no. 4 7 3 6 5 8 14 9 11 12 14 13
ε (×10−3) 8.19 7.63 9.05 9.32 8.90 9.55
dc (mm) 0.84 0.43 5.62 0.25 8.76 0.4 7.45 1.65 5.63 6.13 7.7 2.35
µc (mm) 0.02 0 0.066 0 0.02 0 0.056 0 0.066 0 0.056 0.05

Table 3: Young’s modulus (E11) and Poisson’s ratio (ν12) obtained experimentally and numerically by meso-
macro homogenization at the four crack density levels measured experimentally.

ρc (mm−1) 0.0941 0.1304 0.1774 0.2202
ρµ (mm−1) 0.0379 0.0722 0.1002 0.1267

E11 (GPa) Numerical 20.66 20.54 20.42 20.24
E11 (GPa) Experimental [20.7–21.4] [20.3–20.8] [20.2–20.8] [20.1–20.6]

ν12 Numerical 0.125 0.123 0.122 0.119
ν12 Experimental [0.119–0.131] [0.117–0.131] [0.115–0.125] [0.113–0.123]
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