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Abstract  

Trust models that rely on recommendation trusts are vulnerable to badmouthing and ballot-stuffing attacks. To 

cope with these attacks, existing trust models employ different trust aggregation techniques to process the 

recommendation trusts and combine them with the direct trust values to form a combined trust value. However, 

these trust models are biased as recommendation trusts that deviate too much from one’s own opinion are 

discarded. In this paper, we propose a non-biased trust model that considers every recommendation trusts 

available regardless they are good or bad. Our trust model is based on a combination of two techniques: the 

dissimilarity test and the Dempster Shafer Theory. The dissimilarity test determines the amount of conflict 

between two trust records, whereas the Dempster Shafer Theory assigns belief functions based on the results 

of the dissimilarity test. Numerical results show that our trust model is robust against reputation based attacks 

when compared to trust aggregation techniques such as the linear opinion pooling, subjective logic model, 

entropy-based probability model and regression analysis. In addition, our model has been extensively tested 

using network simulator NS-3 in an Infrastructure based WMN and a Hybrid based WMN to demonstrate that 

it can mitigate blackhole and grayhole attacks.   

Keywords—Wireless Mesh Networks, Information Fusion, Recommendation based Trust Model, Reputation 

based Attacks, Packet Dropping Attacks, Dempster’s Rule of Combination 

 

 



2 
 

I. INTRODUCTION 

A Wireless Mesh Network (WMN) is formed by a collection of mesh routers and mesh clients 

that cooperate to establish mesh connectivity and network coverage over an area [1, 2]. The mesh 

routers are usually static and form the wireless mesh backbone of the network for providing network 

access. The mesh clients, on the other hand, can be static or mobile and have limited computing 

capabilities. Each node relies on the cooperation of the intermediate nodes in forwarding the packets 

to the destination along a multi-hop path. The advantages of WMNs include low deployment cost, 

easy extension of network coverage to hard-to-wire areas and highly reliable wireless connectivity 

via the multi-hop communications. Due to this, WMN has found widespread applications in many 

areas of wireless networking that include public safety/military, residential, enterprise, campus 

networking and in rescue operations. Depending on the application requirements and the type of 

nodes present, WMNs can be further classified into an Infrastructure based WMN, Client based 

WMNs and Hybrid based WMNs where the Hybrid based WMNs is basically a combination of the 

Infrastructure based WMN and Client based WMNs architecture consisting of static mesh routers and 

mobile clients respectively. 

However, due to the openness and the multi-hop nature of the WMNs, attacks can be launched at 

any layer of the Internet protocol stack [3, 4]. While cryptography has been the traditional approach 

of providing network security in terms of confidentiality, integrity, authentication, and non-

repudiation, it is not sufficient to protect the network against nodes exhibiting selfish behaviors i.e. 

nodes that refrain from forwarding packets to save scarce resources. Such selfish behavior is hard to 

detect as they appear to be legitimate nodes with valid cryptographic keys. Subsequently, they may 

misbehave and conduct packet dropping attacks such as blackhole and grayhole attacks to degrade 

the overall throughput of a network.  To enforce cooperation in the network, various trust models 

have been developed to detect and isolate selfish nodes in order to improve the network throughput. 

The first pioneering work [5] was proposed in 2000 by Marti et al., who proposed the use of trust 
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ratings to assess the reliability of a node in forwarding packets. In their model, they have proposed 

the Watchdog mechanism which gathers information based on the promiscuous mode of observations. 

Using this information, a trust rating is defined for selfish node detection. The downside of this 

model is that trust convergence is slow as the trust evaluation only depends on the direct observations.  

To enable the trust value to converge faster, [6-8] have proposed to rely on both the direct trust 

and indirect trusts from the neighboring nodes. By gathering recommendation trusts from the other 

nodes, it improves the detection time of selfish nodes in the network [9]. Consequently, the use of 

direct and indirect trusts has become the design standards of many recent trust models. However, as 

pointed out by [10-14], trust models that depend on recommendation trusts are more prone to 

badmouthing attacks and ballot-stuffing attacks. More specifically, the malicious recommender may 

assign a very poor trust value in an attempt to demote the reputation of a well-behaved node known 

as the badmouthing attacks. As a result, the well-behaved node is blacklisted from further 

communications which lead to network partition. The malicious recommender may also try to 

promote its accomplice’s trust level by recommending a very high trust value known as the ballot-

stuffing attacks. This prolongs the lifetime of the malicious nodes in the network for causing further 

damage. Methods of preventing the badmouthing and ballot-stuffing attacks have been discussed by 

[9-22] where models employing different trust aggregation techniques to combine the direct trusts 

and indirect trusts have been proposed. These techniques impose further constraints to process the 

recommendation trusts before the aggregation process. In [9], recommendation trusts are only 

considered if they pass the deviation test which is determined by the similarity with one’s own direct 

trust. In [7, 13], only positive recommendation trusts are allowed to propagate in the network. In [10-

12, 14], constraints are imposed where only recommendation trusts from the trustworthy nodes with 

trust value higher than a pre-defined threshold are considered in the trust aggregation. Due to these 

reasons, the existing trust models are said to be biased as important evidence may be discarded. In 
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addition, trustworthy nodes may misreport the recommendation trusts only to a certain group of 

nodes in the network which increase the difficulty of detection. 

In this paper, we propose a non-biased trust model called the DS-Trust model to address two 

problems in WMNs, that is, (1) to overcome the attacks that can subvert the proper operation of the 

reputation systems, namely the badmouthing and the ballot-stuffing attacks (2) to mitigate the effects 

of packet dropping attacks that cannot be solved by cryptography. Our trust model is non-biased 

because every recommendation trusts, whether they are good or bad are considered in the trust 

aggregation process using the Dempster Shafer Theory (DST) [23]. Henceforth, our trust model is 

called the DS-Trust model. The major contributions of our work are summarized below: 

• Propose the Dempster Shafer’s rule of combination to fuse direct trust and indirect trusts together 

to obtain the final combined trust. 

• Introduce a dissimilarity test to check the amount of conflict between one’s own observations and 

each received recommendation trusts. The result of the dissimilarity test is then used to determine 

the basic probability assignment (bpa) mass for each subset of the power set in DST. 

• Demonstrate that DS-Trust has a higher resiliency against badmouthing attacks and ballot-

stuffing attacks compared to the benchmarking approaches. 

• Incorporate the DS-Trust into the Ad hoc On Demand Distance Vector Routing (AODV) protocol 

[24] and analyze the performance of an Infrastructure based WMN and Hybrid based WMNs to 

show that it can mitigate packet dropping attacks.  

 

The rest of the paper is organized as follows. Section II reviews the related works on trust 

aggregation techniques. Section III presents the network model and reviews some of the attacks 

addressed by DS-Trust. Section IV presents the concept of DST that serves as a basis of our proposed 

trust model. Section V provides the details of the DS-Trust model. Section VI presents the 

performance improvements of DS-Trust against badmouthing and ballot-stuffing attacks. Section VII 
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presents the simulation results to demonstrate the performance of DS-Trust in an Infrastructure based 

WMN and Hybrid based WMN. Section VIII concludes the paper. 

II. RELATED WORKS 

Recommendation trusts are important in trust modeling because it improves the trust evaluations 

and shortens the detection time of selfish nodes in the network. When recommendation trusts are 

available, there needs to be a method to combine them with the direct trust values. This process is 

commonly known as the trust aggregation. In this section, we provide a review of the most common 

trust aggregation techniques and classify them into four types: linear opinion pooling, entropy-based 

probability model, subjective logic (SL) operators and regression analysis. 

A. Linear Opinion Pooling 

In [9, 16], S. Buchegger and J.-Y. Le Boudec have proposed the use of linear opinion pooling to 

combine the recommendation trusts to form an indirect trust value. In this approach, the linear 

opinion pooling technique is just a weighted average of the individual recommendation trusts as 

shown in (1).  

𝑇𝑇𝑖𝑖,𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∑ 𝜔𝜔𝑘𝑘𝑇𝑇𝑘𝑘,𝑗𝑗
𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁

𝑘𝑘=1        ∀𝑘𝑘 = 1,2, …, N (1) 

where 𝜔𝜔𝑘𝑘 is a small positive weight in the range (0,1), 𝑇𝑇𝑘𝑘,𝑗𝑗
𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼denotes the recommendation trust of 

node 𝑗𝑗 as observed by recommender 𝑘𝑘 and 𝑇𝑇𝑖𝑖,𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 denotes the indirect trust of node 𝑗𝑗 as derived by 

node 𝑖𝑖. In this model, the recommendation trusts are only considered if they are compatible with the 

current indirect trust value determined using a deviation test, otherwise the recommendation trusts 

are discarded. In [13, 20, 21], the authors have proposed to derive the weight associated with each 

recommendation trust in (1) based on the trustworthiness of the recommender such that the 

recommendation trusts that come from an untrustworthy recommender are discounted more than the 

one that comes from a highly reputed recommender. In [21], Li et al. have proposed an additional 

check besides the deviation test to differentiate badmouthing and conflicting behavior attacks. This 
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additional check is based on checking the trust level of the recommenders in providing 

recommendations which are maintained separately inside a reputation generation system. In [20], R. 

Chen et al have proposed two mechanisms to consider the trust recommendations, namely the 

threshold based filtering and the relevance based trust mechanisms. In threshold based filtering, only 

nodes with recommender trustworthiness higher than a pre-defined threshold are considered and in 

relevance based trust scheme, only recommenders with high trust in a particular context are taken 

into considerations. Based on these criteria, selected recommendation trusts are aggregated using the 

weighted average method before they are combined with the direct trust through another weighting 

function to form an aggregate trust. 

B. Entropy based Probability Model 

In [10-12, 14], Y. Sun et al. have proposed two models based on the probability theory to govern 

trust propagation through a third party. The first model is called the trust concatenation model. 

Suppose node 𝑖𝑖  wants to establish the trust level of node 𝑗𝑗  through a recommender  𝑘𝑘 , the trust 

concatenation model defines the formula in (2) to merge the trust probabilities.  

𝑃𝑃𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖,𝑘𝑘𝑃𝑃𝑘𝑘,𝑗𝑗 + (1 − 𝑃𝑃𝑖𝑖,𝑘𝑘)(1 − 𝑃𝑃𝑘𝑘,𝑗𝑗)        (2) 

where 𝑃𝑃𝑖𝑖,𝑗𝑗 is the probability that node 𝑗𝑗 performs an action,  𝑃𝑃𝑖𝑖,𝑘𝑘 is the probability that recommender 

𝑘𝑘 makes good recommendations and 𝑃𝑃𝑘𝑘,𝑗𝑗 is the probability that node 𝑗𝑗 performs some actions in the 

recommender’s view. The probability values are estimated by evaluating the expected value of the 

Beta distribution [25]. The second model is called the multipath propagation model which is used in 

scenarios where there are multiple recommendation paths between node 𝑖𝑖 and node 𝑗𝑗. In the second 

model, the mean and variance of the each path 𝑚𝑚 is first converted to Beta parameters (𝛼𝛼𝑚𝑚,𝛽𝛽𝑚𝑚). 

Then, a new pair of parameters (𝛼𝛼,𝛽𝛽) is updated as follows in (3). 

𝛼𝛼 = ∑ 𝛼𝛼𝑖𝑖𝑚𝑚
𝑖𝑖=0          ∀𝑖𝑖 = 1, … ,𝑚𝑚 (3) 



7 
 

𝛽𝛽 = ∑ 𝛽𝛽𝑖𝑖𝑚𝑚
𝑖𝑖=0           ∀𝑖𝑖 = 1, … ,𝑚𝑚 

Once 𝛼𝛼 and 𝛽𝛽 values are updated, the aggregated probability is found by evaluating the expected 

value of the beta distribution. After that, the aggregated probability is converted to trust values using 

the entropy function as described in (4). 

𝑇𝑇𝑖𝑖,𝑗𝑗 = �
1 − 𝐻𝐻�𝑃𝑃𝑖𝑖,𝑗𝑗�,                             𝑓𝑓𝑓𝑓𝑓𝑓 0.5 ≤ 𝑃𝑃𝑖𝑖,𝑗𝑗 ≤ 1
𝐻𝐻�𝑃𝑃𝑖𝑖,𝑗𝑗� − 1,                            𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑃𝑃𝑖𝑖,𝑗𝑗 < 0.5

 

𝐻𝐻�𝑃𝑃𝑖𝑖,𝑗𝑗� = −𝑃𝑃𝑖𝑖,𝑗𝑗𝑙𝑙𝑓𝑓𝑙𝑙2�𝑃𝑃𝑖𝑖,𝑗𝑗� − (1 − 𝑃𝑃𝑖𝑖,𝑗𝑗)𝑙𝑙𝑓𝑓𝑙𝑙2(1− 𝑃𝑃𝑖𝑖,𝑗𝑗). 

(4) 

C. Subjective Logic Operators 

In [26], Josang have proposed an algebra that is able to quantify uncertainty in trust relationships 

between entities. Such uncertainties occur due to the imperfect knowledge about the reality or due to 

the lack of evidence. Consequently, this leads to the notions of belief, disbelief, and uncertainty 

which forms the basis of subjective logic. In this model, trust is treated as a subjective opinion 

consisting of four parameters (𝑏𝑏𝑖𝑖,𝑗𝑗,𝑑𝑑𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗 ,𝑎𝑎𝑖𝑖,𝑗𝑗)  where 𝑏𝑏𝑖𝑖,𝑗𝑗  and 𝑑𝑑𝑖𝑖,𝑗𝑗 represents node  𝑖𝑖 ’s belief and 

disbelief in node 𝑗𝑗, 𝑢𝑢𝑖𝑖,𝑗𝑗 represents the amount of uncertainties regarding the observations and 𝑎𝑎𝑖𝑖,𝑗𝑗 is 

the a prior probability in the absence of evidence. These parameters have the following relationships 

and satisfy the following conditions in (5).  

𝑏𝑏𝑖𝑖,𝑗𝑗 + 𝑑𝑑𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗 = 1.0,            𝑏𝑏𝑖𝑖,𝑗𝑗,𝑑𝑑𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗 ,𝑎𝑎𝑖𝑖,𝑗𝑗 ∈ [0.0,1.0] (5) 

From the definition of an opinion, trustworthiness of a node is derived by evaluating the expectation 

of the subjective opinion as defined in (6)  

𝑇𝑇𝑖𝑖,𝑗𝑗 = 𝑏𝑏𝑖𝑖,𝑗𝑗 + 𝑎𝑎𝑖𝑖,𝑗𝑗𝑢𝑢𝑖𝑖,𝑗𝑗 (6) 

where 𝑇𝑇𝑖𝑖,𝑗𝑗  represents node  𝑖𝑖 ’s trust in 𝑗𝑗  and the parameter 𝑎𝑎𝑖𝑖,𝑗𝑗  determines how much uncertainty 

contributes towards the trust computation. Because subjective logic is able to account for uncertainty, 

it improves the clarity and expressiveness of an opinion compared to the traditional probabilistic 

logic. The subjective logic further establishes two operations [27, 28] to handle trust propagations in 
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a network. The first operator is called the discounting operator which is used to derive a trust opinion 

from transitive paths via a recommender. The second operator is called the consensus operator and is 

used to derive a trust opinion from multiple parallel paths. The concept of subjective logic has been 

very popular and widely used in Mobile Ad Hoc Networks (MANETs) [8, 17, 18]  and WMNs [19] 

including VANETs [29] with some slight variations. In [17],  the trust opinions from multiple 

recommenders are first combined into a single opinion using the weighted average approach before it 

is fused with the direct trust using the consensus operator. In [18], the weighting factor for each 

recommendation trust opinion is derived based on a familiarity value that denotes the familiarity 

degree of the recommender with the target node to be evaluated. In [19], each of the recommendation 

trusts are weighted by the trustworthiness of the recommender. Subsequently, the recommendation 

trusts are aggregated using a simple average function. In [29], subjective logic is proposed as a tool to 

merge opinions coming from different misbehaviour detection mechanisms together to enhance the 

trust accuracy and detection capability of the system. 

D. Regression Analysis 

In [15, 22], Y. Wang et al have proposed the LogitTrust model to estimate the trustworthiness of 

nodes with logit regressions. It gathers the direct and indirect observations as a function of the 

operational and environmental factors to infer the trustworthiness of a node. Trust, in this model, is 

expressed as a logistics function and is given by (7). 

𝑇𝑇𝑗𝑗𝐼𝐼+1 =
1

1 + 𝑒𝑒−(𝑥𝑥𝑡𝑡)𝑇𝑇𝛽𝛽𝑗𝑗
 (7) 

where 𝑇𝑇𝑗𝑗𝐼𝐼+1 represents the trust of node 𝑗𝑗 at time 𝑡𝑡 + 1, 𝑥𝑥𝐼𝐼 is a vector of variables that characterize 

the operational and environmental factors at time 𝑡𝑡 and 𝛽𝛽𝑗𝑗 is a vector of regression coefficients.  The 

Expectation Maximization (EM) algorithm is then used to estimate the regression coefficients such 

that the log-odds of a node in providing a satisfactory service are greater than 0. After that, the 

regression coefficients are substituted back into (7) to compute the trust of a node. The LogitTrust 
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achieves resiliency against badmouthing and ballot-stuffing attacks by replacing the latent error in 

logistics distribution with a white noise in t-distribution. Because the t-distribution has heavier tails, 

the impacts of records with a high variance are weighted down; therefore, it provides a more accurate 

estimate. However, this method is sensitive to sampling bias and requires more samples to achieve 

stable and accurate results. 

III. SYSTEM MODEL 

A. Network Model 

We consider the Infrastructure-based WMN and the Hybrid-based WMNs in our model. The 

Infrastructure-based WMN is made up of static mesh routers that establish an infrastructure backbone 

for the clients. These static mesh routers can be installed within a building to connect stationary 

computers and other related devices together to form a small-size enterprise network [2]. The mesh 

routers can also be installed on the rooftop of multiple buildings to bridge communication between 

them to form an even larger corporate enterprise networking. Some of the mesh routers are equipped 

with gateway functionality that enables them to provide internet connectivity and to relay traffic to 

and from the Internet to support the entire enterprise network. This greatly improves the information 

flow among departments and facilitates management of data. In contrast, the Hybrid based WMNs 

consist of static mesh routers and mobile clients. The mobile clients roam around the network and 

can access the network services through the mesh routers or through direct meshing with other mesh 

clients. An application scenario of Hybrid based WMNs is the Vehicular Networks (VNs) as 

discussed by [30]. The roadside units are assumed to be the mesh routers and the mobile mesh clients 

are the vehicles on the road. In this case, WMN enabled VNs can be used to support applications 

including accident reporting, collision avoidance, electronic toll collection and etc.  
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B. Attack Model 

We consider two types of attacks in the system: reputation based attacks that subvert the proper 

operation of the reputation systems and packet dropping attacks that are due to the selfish behavior of 

the nodes. Selfish nodes, in this case, try to preserve their own resources while exploiting the services 

of others and depleting their resources.   

First, we consider two reputation based attacks, namely the badmouthing attacks and ballot-

stuffing attacks. In the bad mouthing attacks, the recommender node attempts to ruin the reputation 

of a well-behaved node intentionally by providing bad recommendations against it so as to decrease 

the chance of that node being selected for service. Ballot-stuffing attack, on the other hand, does the 

exact opposite. The malicious recommenders attempt to boost the trust of another malicious node by 

providing good recommendations so as to increase the chance of that malicious node being selected 

as a forwarder. Subsequently, the trustee may conduct other attacks such as the packet dropping 

attacks.  

Second, we consider two types of packet dropping attacks that are the blackhole and grayhole 

attacks. By a blackhole attack, a malicious node will advertise itself as having the best route to the 

destination even though it does not have a route to it.  It does this by sending a Route Reply (RREP) 

packet immediately to the source node [4]. The source node, upon receiving this malicious RREP 

assumes the route discovery is complete and ignores all other RREPs from the other nodes and 

selects the path that now includes the malicious node as a relay node to forward the data packets. 

Subsequently, the malicious node drops all the traffic received to create a blackhole in the network. A 

grayhole attack is a variation of the blackhole attacks. Instead of dropping all the traffic, the node 

drops the packets selectively that makes grayhole attacks more difficult to detect as the selective 

packet dropping may be perceived as packet loss because of the unreliable wireless channels in the 

networks. Hence, the grayhole attacks may go undetected for a longer period of time than the 

blackhole attacks [4]. Furthermore, the grayhole nodes may appear well-behaved during the route 
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discovery process or at the starting of data transmission. Subsequently, they will start to drop packets 

randomly that originate from specific peers in the network. 

IV. PRELIMINARIES 

In this section, we introduce the concept of DST [23] and highlight the motivations behind the 

use of DST that serves as the basis of our proposed DS-Trust model.  

A. Background 

DST is a theory of belief based on plausible reasoning and uncertainty [23]. It has two interesting 

features, one of which is the ability to quantify uncertainty. To illustrate this idea, let us assume that 

node 𝑋𝑋 has a belief of 0.8 in the trustworthiness of node 𝑌𝑌 as a forwarding node. If DST is used, the 

remaining belief of 0.2 is classified as uncertainty because there is no evidence to support that node 𝑌𝑌 

is untrustworthy. With traditional probability theory, the remaining probability is assigned to the 

untrustworthy state to obey the additive rule of probability. Hence, DST is more flexible than 

traditional probability theory in handling ignorance or lack of evidence. Another feature of DST is 

the ability to handle conflicting evidences from multiple sources. This is reflected in the Dempster’s 

rule of combination operator where the conflicting information is ignored through a normalization 

factor to emphasize the agreement among multiple evidences. These unique features make DST very 

appealing for modelling trust relationships, including trust aggregation, especially in wireless 

networks where unreliable overhearing and contradicting opinions because of misbehaviors are 

prevalent. In the following, we focus on the three important functions related to DST. 

B. Concepts of DST 

Let Θ be the frame of discernment containing a finite set of possible possibilities. Let 2Θ be a 

power set of  Θ that contains singleton and all possible unions of the singletons including Θ. An 

evidence source generates a belief mass or bpa denoted by a mass function  𝑚𝑚𝑗𝑗(∙) for various subsets 

of the power set where 𝑗𝑗 = {1, … , 𝐽𝐽} refers to the index of the evidence source.  In this case, the mass 
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function,  𝑚𝑚𝑗𝑗(∙)  is a probability defined as a mapping from a set 𝑠𝑠𝑠𝑠2Θ  to a non-negative value 

between 0 and 1 given in (8). 

 𝑚𝑚𝑗𝑗(𝑠𝑠): 2Θ → [0,1],            𝑠𝑠 ∈ 2Θ (8) 

 𝑚𝑚𝑗𝑗(𝜙𝜙) = 0 (9) 

 � 𝑚𝑚𝑗𝑗(𝑠𝑠) = 1
𝑠𝑠𝑠𝑠2Θ

 (10) 

 The bpa expresses the strength of the evidence pertaining to the subset of 2Θ under consideration. 

When assigning bpa, two conditions must be adhered to, that is. no bpa should be assigned to the 

empty set 𝜙𝜙 and the sum of belief mass should be equal to 1 according to (9) and (10) respectively. 

DST further defines two functions that make use of the bpa. They are called the belief function and 

plausibility functions. Belief functions are the sum of all bpas that supports a proposition, 𝑠𝑠 defined 

in (11) while the plausibility function is represented by the sum of all masses that partially or fully 

support a proposition, 𝑠𝑠 as in (12). Together, the belief and plausibility functions define a belief 

interval bounded by [𝑏𝑏𝑒𝑒𝑙𝑙𝑖𝑖𝑒𝑒𝑓𝑓(𝑠𝑠),𝑝𝑝𝑙𝑙𝑎𝑎𝑢𝑢𝑠𝑠𝑖𝑖𝑏𝑏𝑙𝑙𝑖𝑖𝑡𝑡𝑝𝑝(𝑠𝑠)] where the probability of a set 𝑠𝑠𝑠𝑠2Θ can be obtained.  

 𝑏𝑏𝑒𝑒𝑙𝑙𝑖𝑖𝑒𝑒𝑓𝑓𝑗𝑗(𝑠𝑠) = � 𝑚𝑚𝑗𝑗(𝑝𝑝)
𝑝𝑝⊆𝑠𝑠
𝑝𝑝∈2Θ

 (11) 

 𝑝𝑝𝑙𝑙𝑎𝑎𝑢𝑢𝑠𝑠𝑖𝑖𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑝𝑝𝑗𝑗(𝑠𝑠) = � 𝑚𝑚(𝑝𝑝)
𝑝𝑝∩𝑠𝑠≠∅
𝑝𝑝∈2Θ

 (12) 

C. Dempster’s Rule of Combination 

For a given frame of discernment, it is possible for multiple sources to provide their evidence. 

Assuming that evidence comes from independent sources, they can be combined in a pairwise 

manner using the Dempster’s rule of combination defined in (13) to arrive at a common shared belief. 

 𝑚𝑚𝐷𝐷𝐷𝐷(𝑠𝑠) = 𝑚𝑚1(𝑠𝑠)⨁𝑚𝑚2(𝑠𝑠)⨁…⨁𝑚𝑚𝐽𝐽(𝑠𝑠)         ∀𝑠𝑠 ∈ 2Θ (13) 
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where 𝑚𝑚𝐷𝐷𝐷𝐷(𝑠𝑠)  denotes the resulting mass function after combination and ⨁  represents the 

combination operator. If there are only two evidence sources, 𝐸𝐸𝑖𝑖 and 𝐸𝐸𝑗𝑗, the pairwise combination 

operator is written as follows:  

 
𝑚𝑚𝑖𝑖,𝑗𝑗(𝑠𝑠) =

1
1 − 𝐾𝐾

� 𝑚𝑚𝑖𝑖(𝑝𝑝)𝑚𝑚𝑗𝑗(𝑞𝑞)
𝑝𝑝∩𝑞𝑞=𝑠𝑠
𝑝𝑝∈2Θ
𝑞𝑞∈2Θ

                    𝑠𝑠 ≠ 𝜙𝜙 
(14) 

 𝐾𝐾 = � 𝑚𝑚𝑖𝑖(𝑝𝑝)𝑚𝑚𝑗𝑗(𝑞𝑞)
𝑝𝑝∩𝑞𝑞=𝜙𝜙
𝑝𝑝∈2Θ
𝑞𝑞∈2Θ

 (15) 

where 𝑚𝑚𝑖𝑖(𝑝𝑝) and 𝑚𝑚𝑗𝑗(𝑞𝑞) represent the bpa assigned to 𝑏𝑏𝑒𝑒𝑙𝑙𝑖𝑖𝑒𝑒𝑓𝑓𝑖𝑖 and 𝑏𝑏𝑒𝑒𝑙𝑙𝑖𝑖𝑒𝑒𝑓𝑓𝑗𝑗 functions respectively. The 

quantity 𝐾𝐾 denotes the amount of conflict between the two evidence sources and is treated as the 

normalization factor to ensure that the total sum of combined masses 𝑚𝑚𝑖𝑖,𝑗𝑗 = 1. In essence, the DST’s 

rule of combination sums up all the possible intersections of the propositions and normalized the 

value by removing all the conflicts in the system. 

V. DS-TRUST MODEL 

In this section, we describe the five modules of the DS-Trust model which is shown in Figure 1 

and their relationship to each other. The five modules are installed on every node, and they are the 

monitor module, the feedback module, the correlation module, the fusion module and the decision 

module.  

A. Monitoring Module 

The monitor module is equipped with the Watchdog mechanism [5] to monitor the next hop 

forwarding behavior by keeping track of the number of packets sent and the number of packets 

overheard locally. More specifically, each node stores the packet ID and the node ID that the packet 

is directed to in a table. When each node overhears a packet sent and finds a match in the 

corresponding table, the table entry corresponding to the overheard packet ID is deleted. During each 
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trust monitoring period denoted as  𝑇𝑇 , the node tallies the sum in the table and computes the 

forwarding probability of the downstream node as in (16). Next, the forwarding probability of a node 

is converted into a trust value using a set of equations (17) and (18).  

𝑝𝑝𝑓𝑓 =  
# 𝑓𝑓𝑓𝑓 𝑓𝑓𝑜𝑜𝑒𝑒𝑓𝑓ℎ𝑒𝑒𝑎𝑎𝑓𝑓𝑑𝑑 𝑝𝑝𝑎𝑎𝑝𝑝𝑘𝑘𝑒𝑒𝑡𝑡𝑠𝑠 𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡 𝑏𝑏𝑝𝑝 𝑠𝑠𝑖𝑖  

# 𝑓𝑓𝑓𝑓 𝑝𝑝𝑎𝑎𝑝𝑝𝑘𝑘𝑒𝑒𝑡𝑡𝑠𝑠 𝑠𝑠𝑒𝑒𝑠𝑠𝑑𝑑 𝑡𝑡𝑓𝑓 𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑑𝑑𝑖𝑖𝑠𝑠𝑙𝑙
 

(16) 

𝐷𝐷𝑇𝑇 = �
1 −  0.5𝐻𝐻𝑏𝑏�𝑝𝑝𝑓𝑓�, 𝑓𝑓𝑓𝑓𝑓𝑓 0.5 ≤ 𝑝𝑝𝑓𝑓 ≤ 1 

0.5𝐻𝐻𝑏𝑏�𝑝𝑝𝑓𝑓�,               𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑝𝑝𝑓𝑓 < 0.5
 

(17) 

𝐻𝐻𝑏𝑏�𝑝𝑝𝑓𝑓� = −𝑝𝑝𝑓𝑓 log2 𝑝𝑝𝑓𝑓 − �1 − 𝑝𝑝𝑓𝑓� log2�1 − 𝑝𝑝𝑓𝑓� 

 

(18) 

where 𝐷𝐷𝑇𝑇 denotes the trust value of a node, 𝐻𝐻𝑏𝑏(𝑝𝑝𝑓𝑓) denotes the binary entropy function and 𝑝𝑝𝑓𝑓 

denotes the forwarding probability of a node. The use of the entropy function is to reflect the amount 

of uncertainty about the gathered information because the promiscuous mode of observations is 

affected by channel conditions  and transmission power [5]. The mapping function in (17), on the 

other hand, is to bind the trust values in the interval (0,1) where a trust value of 1 means a node is 

fully trusted and a trust value of 0 means a node is not trusted. Furthermore, we incorporate the 

 

 
 

Fig. 1. DS-Trust Model. 
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exponential averaging function as shown in (19) to give more weight to the recent trust value than the 

past trust values. 

 𝐷𝐷𝑇𝑇𝐼𝐼 =  𝛼𝛼 ∙ 𝐷𝐷𝑇𝑇𝐼𝐼 + (1 − 𝛼𝛼) ∙ 𝐷𝐷𝑇𝑇𝐼𝐼−1   (19) 

where 𝛼𝛼 is a constant smoothing factor between 0 and 1, 𝐷𝐷𝑇𝑇𝐼𝐼 represents the trust value at time 𝑡𝑡 and 

𝐷𝐷𝑇𝑇𝐼𝐼−1 represents the previous trust value recorded by the monitoring module. If the smoothing factor 

𝛼𝛼 is large, it discounts the previous trust faster. Once the direct trust is obtained, it is passed to the 

correlation module and the decision module that is discussed later. 

B. Feedback Module 

This module is responsible for gathering recommendation trusts from the neighboring nodes. 

During every trust monitoring period 𝑇𝑇, the node broadcasts a request message for the direct trust of a 

target node. When the neighboring nodes receive the request message, each of them checks its own 

record to see if there is a trust record for the target node. If a record is found, the neighboring nodes 

send a recommendation message containing the trust value of the target node back to the requestor. In 

this case, the recommendation trusts from the recommenders are calculated the same way as 

described in the monitoring module. When the requestor receives the recommendation message, it 

weighs the received recommendation trust value by its opinion of the recommender to calculate the 

indirect trust and then, outputs it to the correlation module. Suppose node 𝐶𝐶 is the target node, node 𝐴𝐴 

is the requestor soliciting the opinion of the recommender 𝐵𝐵, the indirect trust denoted by 𝐼𝐼𝐷𝐷𝑇𝑇 is 

formulated as (20). 

 𝐼𝐼𝐷𝐷𝑇𝑇𝐴𝐴𝐴𝐴 = 𝐷𝐷𝑇𝑇𝐴𝐴𝐴𝐴 ∙ 𝐷𝐷𝑇𝑇𝐴𝐴𝐴𝐴 (20) 

C. Correlation Module 

The correlation module and the fusion module are the two core components of the DS-Trust 

model that help to mitigate badmouthing and ballot-stuffing attacks. Different from the approaches in 

[7, 9-12, 14], every single recommendation trusts received by the correlation module are considered 
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in the trust aggregation regardless they are good or bad. The correlation module uses the dissimilarity 

test to compare the direct trust record and the received indirect trust record.  The dissimilarity ratio 

measures the amount of conflict between one’s own opinion and the opinions of others. It determines 

how much the indirect trust records contribute towards the final trust aggregation. The dissimilarity 

ratio, as shown in (21), is expressed as the normalization of the absolute difference between the two 

trust records. If the dissimilarity ratio is large, it implies that the two trust records are in conflict. 

Thus, the evidence supporting the indirect trust record is viewed as uncertainty instead of being 

filtered out. On the other hand, a small deviation means that the two trust records are almost similar 

and this amplifies the belief with reduced uncertainty about the observed proposition. 

 
𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚(𝑎𝑎, 𝑏𝑏) =

|𝑎𝑎 − 𝑏𝑏|
|𝑎𝑎| + |𝑏𝑏|

 
(21) 

D. Fusion Module 

The role of the fusion module is to evaluate the trust value of a node by fusing the direct trust and 

the indirect trust together. Before the actual aggregation takes place, the results of the dissimilarity 

test are used to re-evaluate the contribution of the indirect trust values and this is carried out based on 

the Dempster Shafer Theory (DST) [23]. We first classify the behavior of the nodes into two states: 

trusted (T) and untrusted(𝑇𝑇�) that forms the frame of discernment Θ defined as (𝑇𝑇,𝑇𝑇�). For the power 

set denoted by 2𝛩𝛩, it consists of the following subsets: 

 2𝛩𝛩 = [(𝑇𝑇), (𝑇𝑇�), (𝑇𝑇,𝑇𝑇�), (∅)] (22) 

The set represented by (𝑇𝑇,𝑇𝑇�) denotes uncertainty in our model that means that a node can be trusted 

or untrusted. To facilitate the assignment of bpas, we apply the direct trust values obtained from (17) 

or (19) as the bpas to denote the strength of evidence pertaining to a particular subset of 2𝛩𝛩. In the 

design, if the trust value is above a certain detection threshold called 𝛾𝛾, it will be classified as a 

trusted node, whereas a trust value less than 𝛾𝛾 will be classified as an untrusted node. As an example, 

if the threshold 𝛾𝛾 is 0.5 and the direct trust value of a node is 0.6, the bpa assigned to the set 𝑚𝑚(𝑇𝑇) 
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will be 0.6. The remaining belief mass of 0.4 will be allocated to the set 𝑚𝑚(𝑇𝑇,𝑇𝑇�). For classification of 

indirect trust values, we leverage on the 𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚(𝑎𝑎, 𝑏𝑏) value received from the correlation module and 

classify the node according to rules defined in (23).  

If 𝐼𝐼𝐷𝐷𝑇𝑇 ≥  𝛾𝛾 then,                            

𝑚𝑚(𝑇𝑇,𝑇𝑇�) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚(𝑎𝑎, 𝑏𝑏) 

𝑚𝑚(𝑇𝑇) = 1 −𝑚𝑚(𝑇𝑇,𝑇𝑇�) 

𝑚𝑚(𝑇𝑇�) = 0 

(23) 

Else 

𝑚𝑚(𝑇𝑇,𝑇𝑇�) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑚𝑚(𝑎𝑎, 𝑏𝑏) 

𝑚𝑚(𝑇𝑇�) = 1 −𝑚𝑚(𝑇𝑇,𝑇𝑇�) 

𝑚𝑚(𝑇𝑇) = 0 

From (23), the dissimilarity value is treated as the belief mass for the set 𝑚𝑚(𝑇𝑇,𝑇𝑇�) because the amount 

of conflict between the two trust records denotes uncertainty. Next, depending on the value of the 

received IDT, the belief mass for the set 𝑚𝑚(𝑇𝑇) and 𝑚𝑚(𝑇𝑇�) is updated accordingly such that 𝑚𝑚(𝑇𝑇) +

𝑚𝑚(𝑇𝑇�) + 𝑚𝑚(𝑇𝑇,𝑇𝑇�) = 1 as stated in (23). Once the belief masses have all been updated for the direct 

and indirect trust, the Dempster’s rule of combination is applied to fuse the two trust evidences 

together and the result is sent to the decision module for actions. We provide a numerical example to 

illustrate the trust aggregation process. 

 

Example: Let us suppose that the first evidence 𝐸𝐸1 which represents node 𝐴𝐴’s direct trust value of 

node 𝐶𝐶, is 0.9. Because it is more than the detection threshold 𝛾𝛾 of 0.5, a bpa value of 0.9 is assigned 

to the set 𝑚𝑚(𝑇𝑇) and the remaining 0.1 is assigned to the uncertainty set 𝑚𝑚(𝑇𝑇,𝑇𝑇�). Suppose now the 

IDT about node 𝐶𝐶  from one of the recommenders, say node 𝐵𝐵  is 0.1.  The dissimilarity ratio 

between 𝐴𝐴’s trust and 𝐵𝐵’s trust will be 0.8 according to (21). Thus, for the second set of evidence, 𝐸𝐸2 
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that represents the indirect trust value of node C based on B’s recommendation, 𝑚𝑚(𝑇𝑇�)  will be 

assigned with 0.2 since IDT is less than 𝛾𝛾 and the remaining 0.8 will be allocated to set  𝑚𝑚(𝑇𝑇,𝑇𝑇�). 

With this information, we tabulate Table I and use the Dempster’s rule of combination in (14) and 

(15) to evaluate the final trust. Using the Dempster’s rule of combination, the combined belief 

𝑚𝑚1,2(𝑇𝑇) that node C is trusted from node A’s perspective is 

 
𝑚𝑚1,2(𝑇𝑇) =

1
1 − 𝐾𝐾

[𝑚𝑚1(𝑇𝑇) ∙ 𝑚𝑚2(𝑇𝑇,𝑇𝑇�)] 

                                                                    =
1

1 − 0.18
[0.72]

                           
 

                                                                   = 0.87805 

 

E. Decision Module 

If the network is sparse and there are no recommenders to provide indirect trust, the decision 

module will base its decision only on the direct trust from the monitoring module. Otherwise, the 

combined trust value as calculated per the fusion module is used. Below summarizes the actions 

undertaken by the evaluating node when the trust value falls below the detection threshold 𝛾𝛾. 

• Isolate selfish nodes – the evaluating node will blacklist the misbehaved node. At the same time, 

it conducts a blacklist broadcast throughout the network to inform other nodes who will further 

block it from all subsequent communications.  We wish to highlight that excluding the blacklist 

nodes permanently from routing is better than assigning low ratings to them and allowing them to 

 
 

           𝐸𝐸2 
 

𝐸𝐸1 
{𝜙𝜙} = 0 {𝑇𝑇} = 0 {𝑇𝑇�} = 0.2 {𝑇𝑇,𝑇𝑇�} = 0.8 

{𝜙𝜙} = 0 {𝜙𝜙} = 0 {𝑇𝑇} = 0 {𝑇𝑇�} = 0 {𝑇𝑇,𝑇𝑇�} = 0 
{𝑇𝑇} = 0.9 {𝑇𝑇} = 0 {𝑇𝑇} = 0 {𝜙𝜙} = 0.18 {𝑇𝑇} = 0.72 
{𝑇𝑇�} = 0 {𝑇𝑇�} = 0 {𝜙𝜙} = 0 {𝑇𝑇�} = 0 {𝑇𝑇�} = 0 
{𝑇𝑇,𝑇𝑇�} = 0.1 {𝑇𝑇,𝑇𝑇�} = 0 {𝑇𝑇} = 0 {𝑇𝑇�} = 0.02 {𝑇𝑇,𝑇𝑇�} = 0.08 

Table I: Aggregation of 𝐸𝐸1 and 𝐸𝐸2 
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regain their trust slowly. It is because the latter may induce the misbehaved nodes to misbehave 

on and off intermittently to avoid detection which is more challenging to solve. In our model, the 

blacklist nodes who wish to re-join the network can contact an authorized WMN operator to be 

reinstated. The WMN operator will track the number of times a particular node has been 

blacklisted. If a particular node has been blacklisted repeatedly beyond a certain number of 

counts pre-defined by the WMN operator, it can never re-join the network. By relying on a 

trusted authority, the WMN operator has a better visibility of the health of the nodes in the 

network. 

• Initiate new route discovery – decision about the trust level of a node is also sent to the 

underlying routing protocol. It will trigger the routing protocol to send a route error (RERR) 

message to notify the source node to initiate a new route discovery to find a path free of selfish 

nodes.   

VI. SECURITY ANALYSIS 

We conduct an experiment to analyze numerically the changes in the trust value as a function of 

increasing badmouthing and ballot-stuffing attackers and compare our results to the benchmarking 

schemes discussed in the related works. The benchmarking schemes used are the linear opinion 

pooling technique, entropy-based probability model, subjective logic and the regression analysis 

technique based on the work of [20], [11], [29] and [22] respectively. The aim of this comparative 

study is to validate the effectiveness of the existing trust aggregation schemes in comparison to using 

DST for mitigation of badmouthing and ballot-stuffing attacks. In our comparison with the 

benchmarking schemes, the main focus is the idea behind each of the various aggregation techniques 

put forth in the related papers. As such, in the implementation of the linear opinion pooling technique 

presented in [20], we are not concerned about the optimal weight selection and therefore, have 

configured the weights for both the direct and indirect trust components of the linear combination 

function to 0.5. Also in [22], the key point is to assess the effectiveness of using the subjective logic 
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operators to combine trust, instead of validating the fusion of node-centric and data-centric opinions 

from different detection mechanism as presented in the paper. Nevertheless, we try to model as 

closely as possible in accordance with each paper to ensure a fair comparison. 

A.  Experiment Setup 

We consider the scenario as shown in Figure 2 to illustrate the aggregation of direct trust and 

indirect trust. We are interested in the number of badmouthing and ballot-stuffing attackers that can 

swing the trust values into the untrusted region. For this, we assume that the trust detection threshold 

is set to 0.5. According to Figure 2, node 𝐴𝐴 has local observations about node 𝐵𝐵 that is known as the 

direct trust. Besides that, there are up to 20 recommenders (node 𝐶𝐶 𝑡𝑡𝑓𝑓 𝑉𝑉) from which node 𝐴𝐴 can 

gather recommendation trusts about node 𝐵𝐵. The direct trusts are denoted by solid lines, whereas the 

recommendation trusts from recommenders 𝐶𝐶,𝐷𝐷  etc. are denoted by dotted lines. When node 

𝐴𝐴 receives the recommendation trusts, it calculates the indirect trusts by weighing the 

recommendation trust values based on the trust level of the recommenders 𝐶𝐶,𝐷𝐷, … ,𝑉𝑉 etc. We assume 

that node 𝐴𝐴  has the same direct trust value on each of the recommenders so that any observed 

changes in the trust aggregation results are due to the recommendation trust values. In the first 

experiment, we start by configuring one recommender to send a low rating of 0.1 to node 𝐴𝐴 to 

simulate badmouthing attacks and increase the number of badmouthing recommenders each round 

until it reaches 20. The same rule applies to the second experiment except that each recommender is 

now configured to feedback a rating of 0.9 to simulate ballot-stuffing attacks. In this comparison, the 

trust value is defined as a continuous value in the range (0,1).  Therefore, the trust value of the 

entropy-based probability model is remapped into the range (0,1)  using equation (17) for fair 

comparisons. 
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B. Results and Discussions 

Figure 3 describes the changes in the aggregate trust value by varying the number of 

badmouthing attackers.  As seen in Figure 3, the trust value of the LogitTrust model, the subjective 

logic model and the linear opinion pooling technique drops drastically down into the untrusted region 

when there is only one badmouthing attacker in the network. The entropy-based probability model is 

slightly better as it is able to tolerate up to two badmouthing attackers. On the other hand, the 

aggregate trust value of the DS-Trust model has the best performance. It is able to maintain a high 

trust within the trusted region for up to ten badmouthing attackers before the trust value enters the 

untrusted region. The improvement is due to the treatment of uncertainty when conflicting trust 

records are received. In particular, the dissimilarity ratio of the two records is treated as uncertainty 

that is viewed as either trusted or untrusted in DST framework. Subsequently, when the Dempster’s 

rule of combination is applied to combine the direct trust and the indirect trust, uncertainty is 

absorbed into the aggregation process that amplifies the belief that the node is trusted. Therefore, the 

DS-Trust model has a slower trust decay compared to the other benchmarking schemes. This shows 

that the proposed dissimilarity test and the Dempster’s rule of combination are able to mitigate the 

effects of badmouthing attacks effectively. From Figure 3, we further observe that the aggregated 

trust value based on the linear opinion pooling technique does not span the full range of possible trust 

 
 

 

 
 

Fig. 2.Trust aggregation. 
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values as seen by the low dip just below the trust threshold boundary of 0.5. The aggregated trust 

value is 0.495 indicating that the node is untrustworthy. This is due to the choice of the weighting 

factors in the linear function which we configure as 0.5 in this comparative study. We note that the 

performance of the linear opinion pooling technique could be improved by using a heavier weight on 

the direct trust component of the linear function. However, relying too much on the direct trusts 

would downplay the influence of the indirect trusts towards the final trust aggregation. To resolve 

this problem, R. Chen et al. [20] has proposed to set the weights dynamically in response to past node 

changes and environmental changes. However, this approach is not indicative enough to model the 

actual behavior of a node and can only be regarded as an estimate.  The other reason for the small 

trust variation as seen from the flat curve is that all the indirect trust values are first combined into a 

single aggregate indirect trust value using the weighted average approach before it is merged with the 

direct trust value. Therefore, the impact of the aggregated indirect trust is very small in comparison to 

direct trust observations. Figure 4 shows the trust relationship when there are ballot-stuffing attackers 

in the network. Similar results are observed where the DS-Trust model is able to tolerate up to ten 

ballot-stuffing attackers before it succumbs to the false recommendations while the rest of the 

scheme are vulnerable to a small number of ballot-stuffing attackers. In figure 4, the aggregated trust 

 

 
 

Fig. 3. Trust value as a function of badmouthing recommenders. 
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value based on the linear opinion technique is 0.5 that implies that node 𝐵𝐵 is trustworthy. This value 

is calculated based on the assumptions that the trustworthiness of each recommender from node 𝐴𝐴’s 

perspective is 1. We reiterate that the linear opinion approach is not effective even through the 

weights of the linear combination function can be dynamically adjusted according to the operation 

profile of a node [20]. This is because a node with healthy energy level and higher cooperative index 

does not necessarily mean that it is cooperative in nature and would adhere to the rules of the 

protocol. 

 

 

VII. PERFORMANCE ANALYSIS 

In this section, we incorporate the DS-Trust model into the AODV protocol [24] and evaluate the 

performance in terms of the Packet Delivery Ratio (PDR), Normalized Routing Overhead (NRO) and 

the network throughput. The performance is evaluated under the blackhole and grayhole attacks for 

two different types of WMN architecture: an Infrastructure based WMN and Hybrid based WMN. 

The simulations are performed using the Network Simulator NS3 (v3.20) [31] and the results are 

compared to the baseline AODV and a variant of the DS-Trust that does not consider 

 

 
 

Fig. 4. Trust value as a function of ballot-stuffing recommenders. 
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recommendation trusts at all which we call the DS-Trust (w/o recommendations) model. Lastly, we 

analyze the computational complexity to evaluate the execution time of our model. 

A. Simulation Environment 

We consider two simulation topologies for the performance evaluation of DS-Trust. The first 

topology is a static environment to mimic the Infrastructure based WMN while the second topology 

is a hybrid environment consisting of static and mobile nodes to model the Hybrid based WMN. For 

the static topology, the source and destination nodes are located on the leftmost and rightmost side of 

the square grid denoted by a darker color as shown in Figure 5. In the Hybrid based WMN 

environment as shown in Figure 6, 50 mobile nodes are added to the static topology of 100 nodes and 

we simulate 8 CBR flows from the four gateway nodes located at four corners of the static grid to any 

random mobile nodes and vice-versa.  The starting time of each flow is uniformly distributed 

between 30 seconds and 200 seconds. The following performance metrics are used to evaluate the 

proposed DS-Trust model and the rest of the simulation parameters are given in Table II. 

• Packet Delivery Ratio (PDR) refers to the ratio of the number of delivered packets to the 

number of packets generated by the CBR sources. 

• Normalized Routing Overhead (NRO) refers to the number of routing control packets, such as 

the RREQ, RREP, RERR and the trust related control packets transmitted per data packet 

delivered at the destination. 

• Throughput refers to the amount of data successfully delivered to the intended destinations 

over a wireless channel. It is measured in bits per second (bps). 

• False positive rate is the ratio of the number of nodes that the DS-Trust model misreports as 

misbehaving to the total number of nodes in the network. 
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Fig. 5. Simulation topology for Infrastructure based WMN. 
 

  

 
 

Fig. 6. Simulation topology for Hybrid based WMN. 
 

Simulation tool NS-3 
Grid spacing 150m 
Transmission range 250 m 
Network area 1350 m x 1350 m 
Data rate 16kbps 
Packet size 512 Bytes 
Packet generation rate 4 packets/s 
Simulation time 300 s 
Traffic type CBR 
Transport protocol UDP 
Mac protocol IEEE 802.11b 
Propagation loss model RangePropagationLossModel 
Physical layer YansWifiPhy channel 
Detection Threshold, 𝜸𝜸 0.5 
Trust Monitoring Period, 𝑻𝑻 20s 

 

Infrastructure based WMN 
Mobility Static 
No: of nodes \ 100 
Traffic 10 source-destination pairs 
Routing protocol AODV (disable HELLO) 

Hybrid based WMN 
Mobility/Mobility pattern 50 mobile nodes  

RandomWaypoint 
No: of nodes  100 static  

50 mobile nodes 
Traffic 8 source-destination pairs 
Routing protocol AODV with HELLO 
  

 

Table II: Simulation Parameters 
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B. PDR Performance 

Figure 7 and 8 show the PDR performance of the various schemes in an Infrastructure based 

WMN and a Hybrid based WMN respectively when the network is under blackhole attacks. From 

Figure 7, we observe that the PDR of all the schemes remains almost the same when there is no 

blackhole attacker in the network. As the number of blackhole nodes increases, the PDR starts to 

decline. However, the DS-Trust model is able to achieve about 30% improvement in the PDR over 

that of the baseline AODV and about 15% improvement in the PDR over the DS-Trust (w/o 

recommendations) model. DS-Trust is more superior to the DS-Trust (w/o recommendations) 

because it gathers recommendation trusts from the neighboring nodes, which improves the detection 

time of selfish nodes in the network. As the number of blackhole nodes increases further, the PDR of 

the DS-Trust model starts to decline gradually because of more blackhole nodes being identified and 

isolated, and fewer alternatives are available for the forwarding paths. Similar results can be observed 

in the Hybrid based WMN shown in Figure 8 where the PDR improvement for the DS-Trust model is 

about 14% higher and 10% better compared to the baseline AODV and DS-Trust (w/o  

recommendations) model respectively. The PDR improvement is lower for the Hybrid based WMN 

than in the Infrastructure based WMN because it is more difficult to maintain link stability because of 

the node movement. Moreover, the effect of not using the recommendation trusts from the other 

nodes is more visible in this plot as there is almost no improvement in the PDR when compared to 

the baseline AODV. 

 Next, we study the PDR performance of the Infrastructure based WMN and the Hybrid based 

WMN under the influence of grayhole attackers. We assume that 10% of the network nodes are 

grayhole attackers and they perform dropping rates between 0% and 100%. Simulation results in 

Figure 9 show that the PDR performance of the DS-Trust model is almost similar to the baseline 

AODV when the selective dropping probability is between 0 and 0.4. This is expected because the 

trust detection threshold for the DS-Trust model is configured as 0.5. When the grayhole nodes start 
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to drop the packets at a rate of 50% or more, the DS-Trust model outperforms the baseline AODV 

and the DS-Trust (w/o recommendations) model. Furthermore, the DS-Trust model improves the 

PDR to an average of about of 80%. On the other hand, the DS-Trust (w/o recommendations) model 

could only improve the PDR by an average of 15% because it does not rely on the recommendation 

trusts for trust evaluations. Similar results are observed in the Hybrid based WMN topology.  As 

shown in Figure 10, the PDR of the DS-Trust model improves only when the grayhole attackers 

exhibit 50% or more dropping rate, which corresponds to the trust detection threshold in our model. 

 

 
 

Fig. 7. PDR performance in an Infrastructure based WMN 

 
 

Fig. 8. PDR performance in a Hybrid based WMN 
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However, the PDR improvement is only 10% better than the baseline AODV compared to the 28% in 

the static case. Similarly, the PDR improvement over the DS-Trust (w/o recommendations) model is 

only about 7%-8% compared to 12%-13% in the static environment. The main reason for the lower 

PDR improvement is node mobility. When nodes are mobile, the links become relatively unstable 

and less reliable that results in more packets drop. In the case of DS-Trust (w/o recommendations) 

model, the PDR did not improve at all because the recommendation trusts are not disseminated to 

other nodes to allow them to make a better judgment. 

 
 

Fig. 9. PDR performance in an Infrastructure based WMN in the presence of 10% grayhole  

 
 

Fig. 10. PDR performance in a Hybrid based WMN in the presence of 10% grayhole  
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C. NRO Performance 

The NRO metric is a measure of the effective use of the wireless channel. First, we examine the 

NRO performance under the blackhole attacks. Next, we analyze the performance in the presence of 

grayhole attacks. Figure 11 compares the NRO performance of the various schemes in an 

Infrastructure based WMN. Simulation results show that the baseline AODV has the lowest NRO 

followed by the DS-Trust (w/o recommendations) model and the DS-Trust model. The NRO 

performance of the DS-Trust model is higher than the DS-Trust (w/o recommendations) model 

because of the dissemination of recommendation trusts. In addition, both the DS-Trust models are 

higher than the baseline AODV because of the extra control packets introduced by our trust model, 

especially the periodic exchanges of trust information, the broadcast of control messages and the re-

initiation of new route discoveries upon detection of blackhole nodes. On the other hand, in the 

Hybrid based WMN scenario, as shown in Figure 12, the NRO performance of the DS-Trust model is 

much lower than the baseline AODV compared to the static case in Figure 11. This is because when a 

secure path is found, it is unlikely to change unless the node moves out of transmission range. Even 

when the link breaks because of mobility, the list of blackhole nodes is circulated to the other 

neighboring nodes. Therefore, the routing protocol avoids them during a new route discovery that 

leads to lesser route discoveries and lesser NRO.  

 

 
 

Fig. 11. Normalized routing overhead performance in an Infrastructure based WMN 
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In the case of selective dropping or grayhole nodes in an Infrastructure based WMN, the increase 

in the NRO is more apparent when the dropping rate is 50% and more as depicted in Figure 13. This 

is true because the trust detection threshold is 0.5. As a result, more control packets are being 

broadcast to inform the other nodes of the grayhole nodes, including the control packets needed for a 

new route discovery. On the other hand, the NRO performance for both the DS-Trust models in the 

Hybrid based WMN are quite similar to the Figure 12 where both the NRO performances are lower 

than the baseline AODV. This is illustrated in Figure 14. 

 
 

Fig. 12. Normalised routing overhead performance in a Hybrid based WMN 

 
 

Fig. 13. Normalized routing overhead performance in an Infrastructure based WMN in the presence of 10% 
grayhole 
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D. Effects of Mobility 

Next, we investigate the effects of mobility on the PDR and the NRO performance in a Hybrid 

based WMN under the influence of the blackhole nodes. The number of blackhole nodes in the 

network is 8 and the speed is varied from 10m/s to 40m/s. Simulation results in Figure 15 show that 

the DS-Trust model has the highest PDR performance compared to the baseline AODV and the DS-

Trust (w/o recommendations) model. As the node speed increases, the PDR decreases for all the 

schemes because of more link breakages in the network. Figure 16 illustrates the NRO performance 

for different mobility speeds. It is observed that the NRO performance increases when the node 

mobility is high. However, the NRO performance of the DS-Trust model is lower than that of the 

baseline AODV. This confirms our observations that DS-Trust model is able to isolate selfish nodes 

and exclude them from routing.  

E. Throughput Performance 

We are interested in the throughput performance of the DS-Trust model when the application rate 

is increased in an Infrastructure based WMN and a Hybrid based WMN. We assume there are 8 

blackhole nodes and the application rate is varied from 16384bps to 200000bps. Figure 17 compares 

 
 

Fig. 14. Normalized routing overhead performance in a Hybrid based WMN in the presence of 10% grayhole 
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the throughput performance of the DS-Trust model in an Infrastructure based WMN with the baseline 

AODV and DS-Trust (w/o recommendations) model.  As shown in Figure 17, the DS-Trust model 

denoted by the line with the 95% confidence tick marks, is able to achieve a higher throughput than 

the DS-Trust (w/o recommendations) for application rate between 16384bps and 65536bps. Beyond 

the rate of 65536bps, there is no performance improvement between the two models. This could be 

due to the blacklist of false positives located near the source node that results in no available 

 
 

Fig. 15. PDR performance in a Hybrid based WMN under varying speed 
 
 

 
 

Fig. 16. Normalized routing overhead performance in a Hybrid based WMN under varying speed 
 



33 
 

forwarding paths to send the packets to the destination. We also observe that the throughput for the 

DS-Trust and the DS-Trust (w/o recommendations) starts to decrease beyond 65536bps. This is 

caused by the high packet collisions due to the increased sending rate. Because a fixed trust detection 

threshold is assumed, the DS-Trust models are not able to differentiate losses due to the collisions or 

malicious intent. Thus, higher false positives are generated, resulting in a reduction in the throughput 

performance. The throughput performance of the Hybrid based WMN is presented in Figure 18 

 

 
 

Fig. 17. Throughput Performance in an Infrastructure based WMN  

 
 

Fig. 18. Throughput performance in a Hybrid based WMN  
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where it is observed that the DS-Trust model is able to maintain a high throughput throughout the 

range of the packet sending rates. Comparing the throughput performance of the baseline AODV and 

the DS-Trust (w/o recommendations) model, the throughput improvement of the DS-Trust is about 

25% higher. The throughput of the DS-Trust (w/o recommendations) model remains low because the 

detection of selfish nodes takes a long time since the recommendation trusts are not used, hence, 

more packet drop. Furthermore, blackhole nodes may move to other parts of the network to conduct 

packet dropping attacks. For the false positive rate, DS-Trust model performs better than the DS-

Trust (w/o trust recommendations) model because the trust evaluation is improved using 

recommendation opinions from many other nodes. 

F. Computational Complexity 

First, we estimate the computational complexity of each module in the DS-Trust model using the 

Big O notation. After that, we merge them to determine the overall execution time of the DS-Trust 

model.  In the monitoring module, each node needs to compute the direct trust of the downstream 

nodes it encounters every trust monitoring period. So the computation complexity of the monitoring 

module is 𝑂𝑂(𝑁𝑁) where 𝑁𝑁 denotes the number of nodes in the network. The feedback module sends 

out recommendation requests to solicit recommendation trusts from its one hop neighbors. Upon 

receiving the recommendation trusts, each node needs to lookup the trust value of the recommender 

which is 𝑂𝑂(1) in complexity and weigh each of the received recommendation trusts to calculate the 

indirect trusts. Suppose there are 𝑠𝑠  recommenders, the complexity of the feedback model is 

thus 𝑂𝑂(𝑠𝑠). The correlation module takes the direct trust and indirect trust values as input to compute 

the dissimilarity test. Therefore, the correlation module requires 𝑂𝑂(𝑁𝑁𝑠𝑠)  in complexity where 𝑁𝑁 

denotes the number of nodes in the network and 𝑠𝑠  is the number of recommenders providing 

feedback. Next, the fusion module uses the Dempster’s rule of combination to fuse two trust records 

together that is, the direct trust and the indirect trust. The complexity is given by 𝑂𝑂(2𝐷𝐷) where 𝑆𝑆 is 

the number of elements in the frame of discernment and 2𝐷𝐷 corresponds to the number of interactions 
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of the two mass functions. When there are 𝑁𝑁 nodes and 𝑠𝑠 recommenders, the overall complexity of 

the fusion module is given by 𝑂𝑂(𝑁𝑁𝑠𝑠 ∗ 2𝐷𝐷). With these values, the total runtime of the entire trust 

model is estimated as  𝑂𝑂(𝑁𝑁) + 𝑂𝑂(𝑠𝑠) + 𝑂𝑂(𝑁𝑁𝑠𝑠) + 𝑂𝑂(𝑁𝑁𝑠𝑠 ∗ 2𝐷𝐷) where the complexity is dominated by 

the fusion module. However, we only consider two elements in the frame of discernment. Hence, the 

complexity of the DS-Trust is low which is 𝑂𝑂(4𝑁𝑁𝑠𝑠) ≈ 𝑂𝑂(𝑁𝑁𝑠𝑠). Furthermore, the trust computations 

are carried out every trust monitoring period 𝑇𝑇 which simplifies the complexity of the whole model 

as 𝑂𝑂(𝑁𝑁𝑠𝑠 𝑇𝑇⁄ ). 

VIII. CONCLUSIONS 

In this paper, we have proposed the DS-Trust model which consists of five modules: a monitoring 

module, a feedback module, a correlation module, fusion module and a decision module. The 

monitoring module monitors the next hop forwarding promiscuously and formulates the direct trust 

using the entropy function to describe the unreliability of promiscuous listening. The correlation 

module performs dissimilarity test between the direct trust and all the received recommendation trusts 

to determine the amount of conflict in the trust records. The fusion module then uses the results of the 

correlation module to re-evaluate the contribution of the indirect trust value and proposes the 

Dempster’s rule of combination to fuse the direct trust and indirect trust together. We have 

demonstrated numerically that the DS-Trust model is capable of handling highly misleading trust 

information and mitigate the effects of badmouthing and ballot-stuffing attacks compared to the linear 

opinion pooling, subjective logic model, entropy-based probability model and logit regression 

approaches. In addition, we have applied the DS-Trust model to two different WMN architectures and 

perform extensive NS-3 simulations to demonstrate that DS-Trust is resilient to packet dropping 

attacks and is able to recover from the blackhole and grayhole attacks.  More specifically, DS-Trust is 

able to improve the PDR and the throughput of the network with reasonably routing overhead. As a 

future work, we plan to estimate wireless losses due to bad wireless channel quality or medium access 
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collisions to set the trust detection threshold adaptively. This would allow us to detect grayhole 

attackers with much higher accuracy and further improve the packet delivery ratio and throughput. 
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