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Hierarchical Region-Network Sparsity for
High-Dimensional Inference in Brain Imaging

Danilo Bzdok, Michael Eickenberg, Gaël Varoquaux, Bertrand Thirion

INRIA, Parietal team, Saclay, France

Abstract. Structured sparsity penalization has recently improved sta-
tistical models applied to high-dimensional data in various domains. As
an extension to medical imaging, the present work incorporates priors on
network hierarchies of brain regions into logistic-regression to distinguish
neural activity effects. These priors bridge two separately studied levels
of brain architecture: functional segregation into regions and functional
integration by networks. Hierarchical region-network priors are shown to
better classify and recover 18 psychological tasks than other sparse esti-
mators. Varying the relative importance of region and network structure
within the hierarchical tree penalty captured complementary aspects of
the neural activity patterns. Local and global priors of neurobiological
knowledge are thus demonstrated to offer advantages in generalization
performance, sample complexity, and domain interpretability.

1 Introduction

Many quantitative scientific domains underwent a recent shift from the clas-
sical “long data” regime to the high-dimensional “wide data” regime. In the
brain imaging domain, many contemporary technologies for acquiring brain sig-
nals yield many more variables per observation than total observations per data
sample. This n� p scenario challenges various statistical methods from classical
statistics. For instance, estimating generalized linear models without additional
assumptions yields an underdetermined system of equations. Many such ill-posed
estimation problems have benefited from sparsity assumptions [3]. Those act as
regularizer by encouraging zero coefficients in model selection. Sparse super-
vised and unsupervised learning algorithms have proven to yield statistical rela-
tionships that can be readily estimated, reproduced, and interpreted. Moreover,
structured sparsity can impose domain knowledge on the statistical estimation,
thus shrinking and selecting variables guided by expected data distributions [3].
These restrictions to model complexity are an attractive plan of attack for the
>100,000 variables per brain map. Yet, what neurobiological structure best lends
itself to exploitation using structured sparsity priors?

Neuroscientific concepts on brain organization were long torn between the two
extremes functional specialization and functional integration. Functional special-
ization emphasizes that microscopically distinguishable brain regions are solving
distinct computational problems [14]. Conversely, functional integration empha-
sizes that neural computation is enabled by a complex interplay between these
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distinct brain regions [19]. However, local neuronal populations and global con-
nectivity profiles are thought to go hand-in-hand to realize neural processes. Yet,
probably no existing brain analysis method acknowledges that both functional
design principles are inextricably involved in realizing mental operations.

Functional specialization has long been explored and interpreted. Single-cell
recordings and microscopic tissue examination revealed the segregation of the
occipital visual cortex into V1, V2, V3, V3A/B, and V4 regions [22]. Tissue lesion
of the mid-fusiform gyrus of the visual system was frequently reported to impair
recognition of others’ identity from faces [11]. As a crucial common point, these
and other methods yield neuroscientific findings naturally interpreted according
to non-overlapping, discrete region compartments as the basic architecture of
brain organization. More recently, the interpretational focus has shifted from
circumscribed regions to network stratifications in neuroscience. Besides analyses
of electrophysiological oscillations and graph-theoretical properties, studies of
functional connectivity correlation and independent component analysis (ICA)
became the workhorses of network discovery in neuroimaging [6]. As a common
point of these other methods, neuroscientific findings are naturally interpreted
as cross-regional integration by overlapping network compartments as the basic
architecture of brain organization, in contrast to methods examining regional
specialization.

Building on these two interpretational traditions in neuroscience, the present
study incorporates neurobiological structure underlying functional segregation
and integration into supervised estimators by hierarchical structured sparsity.
Every variable carrying brain signals will be a-priori assigned to both region
and network compartments to improve high-dimensional model fitting based on
existing neurobiological knowledge. Learning algorithms exploiting structured
sparsity have recently made much progress in various domains from processing
auditory signals, natural images and videos to astrophysics, genetics, and confor-
mational dynamics of protein complexes. The hierarchical tree penalties recently
suggested for imaging neuroscience [12] will be extended to introduce neurobio-
logically plausible region and network priors to design neuroscience-specific clas-
sifiers. Based on the currently largest public neuroimaging repository (Human
Connectome Project [HCP]) and widely used region [8] and network [18] atlases,
we demonstrate that domain-informed supervised models gracefully tackle the
curse of dimensionality, yield more human-interpretable results, and generalize
better to new samples than domain-naive black-box estimators.

2 Methods

This paper contributes a neuroscience adaptation of hierarchical structured tree
penalties to jointly incorporate region specialization and network integration pri-
ors into high-dimensional prediction. We capitalize on hierarchical group lasso to
create a new class of convex sparse penalty terms. These conjointly acknowledge
local specialization and global integration when discriminating defined psycho-
logical tasks from neural activity maps. Rather than inferring brain activity from
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psychological tasks by independent comparisons of task pairs, this approach si-
multaneously infers a set of psychological tasks from brain activity maps in a
multivariate setting and allows for prediction in unseen neuroimaging data.

2.1 Rationale

3D brain maps acquired by neuroimaging scanners are high-dimensional but,
luckily, the measured signal is also highly structured. Its explicit dimensional-
ity, the number of brain voxels, typically exceeds 100,000 variables, while the
number of samples rarely exceeds few hundreds. This n � p scenario directly
implies underdetermination of any linear model based on dot products with
the voxel values. However, the effective dimensionality of functional brain scans
has been shown to be much lower [7]. Two types of low-dimensional neighbor-
hoods will be exploited by injecting accepted knowledge of regional specializa-
tion (i.e., region priors) and spatiotemporal interactions (i.e., network priors)
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Fig. 1. Building blocks of the hierarchical region-network tree. Displays the
a-priori neurobiological knowledge introduced into the classification problem by hierar-
chical structured sparsity. Left: Continuous, partially overlapping brain network priors
(hot-colored, network atlas taken from [18]) accommodate the functional integration
perspective of brain organization. Right: Discrete, non-overlapping brain region priors
(single-colored, region atlas taken from [8]) accommodate the functional segregation
perspective. Middle: These two types of predefined voxel groups are incorporated into
a joint hierarchical prior of parent networks with their descending region child nodes.
Top to bottom: Two exemplary region-network priors are shown, including the early
cortices that process visual and sound information from the environment.

Fig. 2. Hierarchical Tree Prior.

into statistical estimation.
Major brain networks emerge in hu-

man individuals before birth [9]. Their
nodes have more similar functional pro-
files than nodes from different networks
[2]. As a popular method for network ex-
traction, ICA [6] yields continuous brain
maps with voxel-level resolution. The re-
gion nodes of ICA network are spatially
disjoint sets of voxel groups that agree
with boundaries of brain atlases. Hence,
each region from a brain atlas can be
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uniquely associated with one of the extracted ICA networks. Here, previously
published network definitions obtained using ICA [18] and region definitions ob-
tained from spatially constrained clustering [8] allowed constructing a hierarchy
of global ICA networks with their assigned local cluster regions (Figure 1). The
ensuing network-region tree was used as a frequentist prior of expected weight
distributions to advantageously bias supervised model fitting.

Specifically, this tree structure was plugged into hierarchical sparsity penalty
terms [12]. It extends the group lasso [21] by permitting variable groups that
contain each other in a nested tree structure. The first hierarchical level are the
network groups with all the voxels of the brain regions associated with them.
Each network node in turn descends into a second hierarchical level with brain
regions of neighboring voxels (Figure 2). Induced by the region-network sparsity
tree, a child node enters the set of relevant voxel variables only if its parent
node has been selected [3]. Conversely, if a parent node is deselected, also the
voxel variables of all child nodes are deselected. Moreover, the coefficients of all
region or all network groups can be weighed individually. Trading off the voxel
penalties of the network level against the voxel penalties of the region level we
can design distinct estimation regimes.

2.2 Problem formulation

We formulate our estimation problem in the framework of regularized empirical
risk minimization applied to linear models. The goal is to estimate a good pre-
dictor of psychological tasks given a single brain image. Let the set X ∈ Rn×p

represent brain images of p > 0 voxels. We then minimize the risk L(ŷ, y) with
ŷ = f(Xŵ + b̂), where f is a link function (e.g., sigmoid for logistic regression,
identity for linear regression), and L usually represents an appropriate negative
loglikelihood. We incorporate an informative prior through regularization:

ŵ, b̂ = argminw,b L(f(Xw + b), y) + λΩ(w),

where λ > 0 and Ω is the regularizer. Brain regions are defined as disjoint groups
of voxels. Let G be a partition of {1, . . . , p}, i.e.⋃

i

gi = {1, . . . , p} and gi ∩ gj = ∅ ∀i 6= j

Brain networks consist of one or several brain regions. The set of brain networks
H also forms a partition of {1, . . . , p} that is consistent with G in the sense that

∀g ∈ G, h ∈ H, either g ⊂ h or g ∩ h = ∅.

This allows for an unambiguous assignment of each region g ∈ G to one network
h ∈ H and thus generates a tree structure. A root node is added to contain
all voxels. For a brain image w ∈ Rp and a group g, the vector wg ∈ R|g| is
defined as the restriction of w to the coordinates in g. The penalty structured
by network and region information can then be written as

Ω(w) = α
∑
h∈H

ηh‖wh‖2 + β
∑
g∈G

ηg‖wg‖2.
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As originally recommended [21], we set ηg = 1/
√
|g| to account for discrepancy

in group sizes. The hierarchy-level-specific factors α > 0 and β > 0 can tradeoff
region-weighted and network-weighted models against each other. Decreasing α
leads to less penalization of brain networks and thus the tendency for fully active
groups and dense brain maps. If at the same time β is increased to induce group
sparsity, then only the structure of brain regions encoded by G is acknowledged.
Conversely, if β is chosen sufficiently small and α increased, the detected struc-
ture will derive from H, leading to the selection of brain networks rather than
regions.

Please note that the above tradeoff enables predominance attributed to either
brain regions or networks, although the penalty structure remains hierarchical.
If the network penalty layer sets a network group to zero, then all the contained
region groups are forced to have activity zero. Conversely, if a brain region has
non-zero coefficients, then necessarily the network containing it must be active.
This relation is asymmetric, the roles of G and H cannot be swapped: A brain
region can set all its coefficients to zero without forcing the corresponding net-
work to zero. A brain network can be active without its subregions being active.
When evaluating the tradeoff in (α, β), this needs to be taken into account.

The prediction problem at hand is a multiclass classification. We choose to
attack this using one-versus-rest scheme on a binary logistic regression. The one-
versus-rest classification strategy is chosen to obtain one weight map per class
for display and model diagnostics. Its loss can be written as

n∑
i=1

log(1 + exp(−yi〈xi,w〉)) + λΩ(w),

if y ∈ {−1, 1} and with xi ∈ Rp the training sample brain images. We opti-
mize parameters w using an iterative forward-backward scheme analogous to
the FISTA solver for the lasso [5].

2.3 Hyperparameter optimization

Stratified and shuffled training sets were repeatedly and randomly drawn from
the whole dataset with preserved class balance and submitted to a nested cross-
validation (CV) scheme for model selection and model assessment. In the inner
CV layer, the logistic regression estimators have been trained in a one-versus-rest
design that distinguishes each class from the respective 17 other classes (number
of maximal iterations=100, tolerance=0.001). In the outer CV layer, grid search
selected among candidates for the respective λ parameter by searching between
10−2 and 101 in 9 steps on a logarithmic scale. Importantly, the thus selected
sparse logistic regression classifier was evaluated on an identical test set in all
analysis settings.

2.4 Implementation

All experiments were performed in Python. We used nilearn to process and
resphape the extensive neuroimaging data [1], scikit-learn to design machine-
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Fig. 3. Prediction performance across sparsity priors. Comparing the perfor-
mance of logistic regression estimators with 6 different structured and unstructered
sparse regularization penalties (colors) in classifying neural activity from 18 psycho-
logical tasks (cf. 7, Table 1). The area under the curve (AUC) is provided on an identical
test set as class-wise measure (y-axis) and across-class mean (legend). Simultaneous
knowledge of both region and network neighborhoods was hence most beneficial for
predicting tasks from neural activity.

learning data processing pipelines [16], and SPAMs for numerically optimized
implementations of the sparse learners (http://spams-devel.gforge.inria.
fr/). All Python scripts that generated the results are accessible online for
reproducibility and reuse (http://github.com/banilo/ipmi2017).

2.5 Data

As the currently biggest open-access dataset in brain imaging, we chose brain
data from the HCP [4]. Neuroimaging data with labels of ongoing psychological
processes were drawn from 500 healthy HCP participants. 18 HCP tasks (cf.
7, Table 1) were selected that are known to elicit reliable neural activity across
participants. The HCP data incorporated n = 8650 first-level activity maps from
18 diverse paradigms in a common 60 × 72 × 60 space of 3mm isotropic gray-
matter voxels. Hence, the present analyses were based on task-labeled HCP maps
of neural activity with p = 79,941 z-scored voxels.

3 Experimental Results

3.1 Benchmarking hierarchical tree sparsity against common sparse
estimators

Hierarchical region-network priors have been systematically evaluated against
other popular choices of sparse classification algorithms in an 18-class scenario
(Figure 2.3). Logistic regression with `1/`2-block-norm penalization incorporated
a hierarchy of previously known region and network neighborhoods for a neu-
robiological bias of the statistical estimation (α = 1, β = 1). Vanilla logistic
regression with `1-penalization and `1-`2-elastic-net penalization do not assume

http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
http://github.com/banilo/ipmi2017


Hierarchical Region-Network Sparsity for Brain Imaging 7

any previously known special structure. These classification estimators embrace
a vision of neural activity structure that expects a minimum of topographically
and functionally independent brain voxels to be relevant. Logistic regression with

corr = 0.32corr = 0.27corr = 0.17 corr = 0.20 corr = 0.23

corr = 0.18corr = 0.17corr = 0.11 corr = 0.13 corr = 0.16
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Fig. 4. Sample complexity in naive versus informed sparse model selection.
Ordinary `1-penalized logistic regression (upper row) is compared to hierarchical-tree-
penalized logistic regression (α = 1, β = 1, lower row) with increasing fraction of
the available training data to be fitted (left to right columns). For one example (i.e.,
“View tools”) from 18 psychological tasks (cf. 7, Table 1), unthresholded axial maps
of recovered model weights are quantitatively compared against the sample average of
that class (rightmost column, thresholded at the 75th percentile). This notion of weight
recovery was computed by Pearson correlation (corr). In the data-scarce scenario,
ubiquitous in neuroimaging, hierarchical tree sparsity achieves much better support
recovery. In the data-rich scenario, biologically informed logistic regression profits more
from the available information quantities than biologically naive logistic regression.

(sparse) group sparsity imposes a structured `1/`2-block norm (with additional
`1 term) with a known region atlas of voxel groups onto the statistical estimation
process. These supervised estimators shrink and select the coefficients of topo-
graphically compact voxel groups expected to be relevant in unison. Logistic
regression with trace-norm penalization imposed low-rank structure [10]. This
supervised classification algorithm expected a minimum of unknown “network”
patterns to be relevant.

Across experiments with stratified and shuffled cross-validation (90%/10%
train/test set) across pooled participant data, hierarchial tree sparsity was most
successful in distinguishing unseen neural activity maps from 18 psychological
tasks (89.7% multi-class accuracy, mean AUC 0.948 [+/- 0.091 standard devia-
tion] mean precision 0.87, mean recall 0.92). It was closely followed by logistic
regression structured by trace-norm regularization (89.4%, mean AUC 0.908
[+/- 0.148], precision 0.86, recall 0.91). Lasso featured an average performance
comparing to the other sparse estimators (88.6%, mean AUC 0.943 [+/- 0.093],
precision 0.86, recall 0.90). Elastic-Net, in turn, featured an average performance
comparing to the other sparse estimators (88.1%, mean AUC 0.941 [+/- 0.102],
precision 0.85, recall 0.84). Introducing a-priori knowledge of brain region com-
partments by sparse group sparsity (87.9%, mean AUC 0.939 [+/- 0.101], pre-
cision 0.85, recall 0.90) and by group sparsity (87.9%, mean AUC 0.847 [+/-
0.173], precision 0.85, recall 0.90) performed worst.
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In an important subanalysis, the advantage of the combined region-network
prior was confirmed by selectively zeroing either the ηg coefficients of all re-
gion groups or the ηh coefficients of all network groups in the hierarchical prior.
Removing region structure from the sparsity penalty achieved 88.8% accuracy,
while removing network structure from the sparsity penalty achieved 87.1% ac-
curacy. These results from priors with impoverished a-priori structure were in-
deed outperformed by the full region-network tree prior at 89.7% out-of-sample
accuracy.

In sum, driving sparse model selection by domain knowledge of region-network
hierarchies outcompeted all other frequently used sparse penalization techniques
for high-dimensional data.

3.2 Sample complexity of naive versus informed sparse model
selection

Subsequently, the sample complexity of `1-penalized and hierarchical-tree-penalized
logistic regression (α = 1, β = 1) was empirically evaluated and quantitatively
compared (Figure 4). Region-network priors should constrain model selection
towards more neurobiologically plausible classification estimators. This should
yield better out-of-sample generalization and support recovery than neurobiology-
naive `1-constrained logistic regression in the data-scarce and data-rich scenarios.
The HCP data with examples from 18 psychological tasks were first divided into
90% of training set (i.e., 7584 neural activity maps) and 10% of test set (i.e., 842
maps). Both learning algorithms were fitted based on the training set at different
subsampling fractions: 20% (1516 neural activity maps), 40% (3033 maps), 60%
(4550 maps), 80% (6067 maps), and 100% (7584 maps).

Regarding classification performance on the identical test set, `1-penalized
versus hierarchical-tree-penalized logistic regression achieved 83.6% versus 88.7%
(20% of training data), 85.0% versus 89.2% (40%), 86.8% versus 89.8% (60%),
88.9% versus 90.3% (80%), 88.6% versus 89.7% (100%) accuracy. Regarding

model sparsity, the measure s = ||w||1
||w||F was computed from the model weights w

of both penalized estimators for each of the 18 classes. The `1-penalized logistic
regression yielded the mean sparsities 50.0, 45.4, 40.0, 30.9, and 24.0 after model
fitting with 20% to 100% training data. The hierarchical-tree-penalized logistic
regression yield the sparsities 163.2, 160.2, 132.1, 116.2, and 88.4 after fitting
20% to 100% of the training data. To quantitative a measure of support recov-
ery, we computed Pearson correlation r between vectors of the z-scored model
coefficients and the z-scored across-participant average maps for each class. `1-
penalized versus hierarchical-tree-penalized logistic regression achieved a mean
correlation r of 0.10 versus 0.13, 0.11 versus 0.13, 0.13 versus 0.17, 0.16 ver-
sus 0.22, and 0.19 versus 0.29 across classes based on 20% to 100% training
data. Finally, regarding model variance, we quantified the agreement between
`1-penalized versus hierarchical-tree-penalized model weights after fitting on 5
different 20%-subsamples of the training data. For each classifier, the absolute
model weights were concatenated for all 18 classes, thresholded at 0.0001 to bi-
narize variable selection, and mutual information was computed on all pairs of
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the 5 trained models. This agreement metric of model selection across fold pairs
yielded the means 0.001 (`1) versus 0.506 (hierarchical tree).

Fig. 5. Support recovery as a function of region and network emphasis. The
relative strength of the region and network priors on the regularization is systemat-
ically varied against each other (i.e., α and β are changed reciprocally). Horizontal
brain slices are shown with the voxel-wise weights for each class from the fitted pre-
dictive model. The region-network ratio (columns) weighted voxel groups to priviledge
sparse models in function space that acknowledge known brain region neighborhoods
(left columns) or known brain networks neighborhoods (right columns). Among the 18
classes (cf. 7, Table 1), the model weights are shown for 3 exemplary psychological tasks
followed by participants lying in a brain imaging scanner (from top to bottom): tongue
movement, viewing locations and tools. The 18-class out-of-sample accuracy bottom
and the class-wise mean neural activity (rightmost column, thresholded at the 75th

percentile) are indicated. Different emphasis on regions versus networks in hierarchical
structured sparsity can yield very similar out-of-sample generalization. Favoring region
versus network structure during model selection recovers complementary, non-identical
aspects of the neural activity pattern underlying the psychological tasks.

Three observations have been made. First, in the data-scarce scenario (i.e.,
1/5 of available training data), hierarchical tree sparsity achieved the biggest ad-
vantage in out-of-sample performance by 5.1% as well as better support recovery
with weight maps already much closer to the respective class averages [20]. In
the case of scarce training data, which is typical for the brain imaging domain,
regularization by region-network priors thus allowed for more effective extraction
of classification-relevant structure from the neural activity maps. Second, across

Table 1. Out-of-sample performance by region-network emphasis

Reg-Net Ratio 100 50 10 5 2 1 1
2

1
5

1
10

1
50

1
100

Accuracy [%] 89.7 89.9 90.1 90.5 88.0 89.7 87.8 88.0 87.7 88.4 88.1

training data fractions, the weight maps from ordinary logistic regression ex-
hibited higher variance and more zero coefficients than hierarchical tree logistic
regression. Given the usually high multicollinearity in neuroimaging data, this
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observation is likely to reflect instable selection of representative voxels among
class-responsive groups due to the `1-norm penalization. Third, in the data-rich
scenario (i.e., entire training data used for model fitting), neurobiologically in-
formed logistic regression profited much more from the increased information
quantities than neurobiologically naive logistic regression. That is, the region-
network priors actually further enhanced the support recovery in abundant input
data. This was the case although the maximal classification performance of≈90%
has already been reached with small training data fractions by the structured es-
timator. In contrast, the unstructured estimator approached this generalization
performance only with bigger input data quantities.

3.3 Support recovery as a function of region-network emphasis

Finally, the relative importance of the region and network group penalties within
the hierarchical tree prior was quantified (Figure 5). The group weight ηg of
region priors was multiplied with a region-network ratio, while the group weight
ηh of network priors was divided by that region-network ratio. For instance,
a region-network ratio of 3 increased the relative importance of known region
structure by multiplying β = 3

1 to ηg of all region group penalties and multiplying
α = 1

3 to ηh of all network group penalties (Table 1).
As the most important observation, a range between region-dominant and

network-dominant structured penalties yielded quantitatively similar general-
ization to new data but qualitatively different decision functions manifested in
the weight maps (Figure 5, second and forth column). Classification models
with many zero coefficients but high absolute coefficients in either region com-
partments or network compartments can similarly extrapolate to unseen neural
activity maps. Second, these achieve classification performance comparable to
equilibrated region-network priors that set less voxel coefficients to zero and
spread the probability mass across the whole brain with lower absolute coeffi-
cients (Figure 5, third column in the middle). Third, overly strong emphasis on
either level of the hierarchical prior provides the neurobiologically informative
results with maps of the most necessary region or network structure for sta-
tistically significant generalization (Figure 5, leftmost and rightmost columns).
In sum, stratifying the hierarchical tree penalty between region and network
emphasis suggests that class-specific region-network tradeoffs enable more per-
formant and more interpretable classification models for neuroimaging analyses
[17].

4 Conclusion

Relevant structure in brain recordings has long been investigated according to
two separate organizational principles: functional segregation into discrete brain
regions [15] and functional integration by interregional brain networks [19]. Both
organizational principles are however inextricable because a specialized brain
region communicates input and output with other regions and a brain network
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subserves complex function by orchestrating its region nodes. Hierarchical sta-
tistical models hence suggest themselves as an underexploited opportunity for
neuroimaging analysis. The present proof-of-concept study demonstrates the si-
multaneous exploitation of both neurobiological compartments for sparse vari-
able selection and high-dimensional prediction in an extensive reference dataset.
Introducing existing domain knowledge into model selection allowed privileging
members of the function space that are most neurobiologically plausible. This
statistically and neurobiologically desirable simplification is shown to enhance
model interpretability and generalization performance.

Our approach has important advantages over previous analysis strategies that
rely on dimensionality reduction of the neuroimaging data to tackle the curse
of dimensionality. They often resort to preliminary pooling functions based on
region atlases or regression against network templates for subsequent supervised
learning on the ensuing aggregated features. Such lossy approaches of feature
engineering and subsequent inference i) can only satisfy either the specializa-
tion or the integration account of brain organization, ii) depend on the ground
truth being either a region or network effect, and iii) cannot issue individual
coefficients for every voxel of the brain. Hierarchical region-network sparsity ad-
dresses these shortcomings by estimating individual voxel contributions while
benefitting from their biological multi-level stratification to restrict statistical
complexity. Viewed from the bias-variance tradeoff, our modification to logistic
regression entailed a large decrease in model variance but only a modest increase
in model bias.

In the future, region-network sparsity priors could be incorporated into var-
ious pattern-learning methods applied in systems neuroscience. This includes
supervised methods for whole-brain classification and regression in single- and
multi-task learning settings. The principled regularization scheme could also in-
form unsupervised structure-discovery by matrix factorization and clustering
algorithms [13]. Additionally, hierarchical regularization could be extended from
the spatial activity domain to priors of coherent spatiotemporal activity struc-
ture. The deterministic choice of a region and network atlas could further be
avoided by sparse selection of overcomplete region-network dictionaries. Ulti-
mately, successful high-dimensional inference on brain scans is a prerequisite for
predicting diagnosis, disease trajectories, and treatment response in personalized
psychiatry and neurology.
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