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Abstract

Several stains of the intracellular parasitic bacterium Wolbachia limit severely the competence of the mosquitoes
Aedes aegypti as a vector of dengue fever and possibly other arboviroses. For this reason, the release of
mosquitoes infected by this bacterium in natural populations is presently considered a promising tool in the con-
trol of these diseases. Following works by M. Turelli [4] and subsequently M. Strugarek et al. [21, 22], we con-
sider a simple scalar reaction-diffusion model describing the evolution of the proportion of infected mosquitoes,
sufficient to reveal the bistable nature of the Wolbachia dynamics. A simple distributed feedback law is proposed,
whose application on a compact domain during finite time is shown to be sufficient to invade the whole space.
The corresponding stabilization result is established for any space dimension.

1 INTRODUCTION
Dengue, chikungunya or zika fever put at risk considerable portions of the human population. In absence of vac-
cine or curative treatment, acting on the population of mosquitoes Aedes aegypti that are their vectors is essentially
the only feasible control method. Application of insecticides and mechanical remotion of breeding sites are the
most popular methods. However, implementing the latter necessitates massive public campaigns with mixed effi-
ciency, while beyond their negative impact on the environment and other species, intensive use of insecticides has
induced gradual increase of the mosquito resistance and correlative efficiency decrease [7, 15]. Therefore alterna-
tive methods have been proposed and implemented. Among them the release of transgenic or sterile mosquitoes
has been tested [2, 1]. The latter, based on local eradication of the vector, suffers from intrinsic lack of robustness
against subsequent reinvasions.

The release of Aedes aegypti mosquitoes infected by the bacterium Wolbachia has been proposed recently as
a promising strategy [23, 12, 11, 3, 14], due to the fact that it drastically limits the vectorial competence of the
infected mosquitoes [16]. Wolbachia is a maternally transmitted endo-symbiont, widely present in arthropods in
nature, but not in Aedes aegypti. It is characterized by cytoplasmic incompatibility, the fact that a Wolbachia-free
female fertilized by a Wolbachia-infected male does not produce viable offsprings [24]. Mathematical models
have been proposed to study the biological invasion of the Wolbachia-infected population [4, 6, 9, 14, 5].

Spacial invasion of a population is commonly modeled by reaction-diffusion system of equations. Barton
and Turelli [4] have shown the ability of the following reaction-diffusion system to describe Wolbachia invasion:
denoting p(t,x) ∈ [0,1] the proportion of infected mosquitoes at time t ≥ 0 in the point x ∈ Rd , the system reads

∂t p−∆p = f (p), (t,x) ∈ [0,+∞)×Rd , (1a)

p(0, .) = p0 ∈ L∞(Rd ; [0,1]). (1b)
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Notice that system (1) may be recovered through reduction of a more complex model describing the evolution of
each population of mosquitoes, under the assumption of large population [21]. The function f , characteristic of
the interactions between the two populations, is given by

f (p) = δdsh
p(1− p)(p−θ)

sh p2− (s f + sh)p+1
, θ =

s f +δ −1
δ sh

. (2)

All constants are positive, and have the following meaning: d is the death rate; δ > 1 measures the death increase
for the infected population; s f ∈ [0,1) characterizes the fecundity decrease ((1−s f ) is the ratio between the fecun-
dity in the infected and non-infected populations); sh ∈ (0,1] characterizes the completeness of the cytoplasmic
incompatibility (a fraction sh of uninfected females eggs fertilized by infected males will not hatch — in case of
perfect CI, sh = 1). We assume s f +δ −1 < δ sh, in such a way that θ ∈ (0,1). In such conditions, the function f
is bistable, in the following precise sense.

Definition 1 (Bistable function) A continuous function f : [0,+∞)→ R is called bistable if there exists θ ∈
(0,1) such that f is null on 0,θ and 1, negative on (0,θ) and positive on (θ ,1). �

Measurements being achieved and available during the treatment process, it is possible to consider feedback
control strategies for scheduling and dimensioning of the releases. As usual, the expected advantage of feedback
compared to open-loop approaches (where the release schedule is computed once for all a priori), is its ability
to cope with parametric and dynamic uncertainties on the model. We propose and study in this paper a class of
distributed feedback laws that guarantee the success of the invasion. A major feature is that the control law we
propose acts on a fixed bounded domain, denoted Ω in the sequel, during a limited time T > 0. More precisely,
denoting u the proportion of infected mosquitoes, the controlled system satisfies the following reaction-diffusion
system, obtained from (1) by adding to the reaction term a distributed control term g with support in Ω and taking
nonnegative values only:

∂tu−∆u = f (u)+g(u)1[0,T ], (3a)

u(0, .) = u0 ∈ L∞(Rd ; [0,1]). (3b)

The main contribution of the present paper is to prove that there exists systematic way to choose a time T > 0, a
bounded domain Ω, and a distributed control law g(u) null outside the bounded domain Ω, such that, for any initial
value u0, the solution to the control problem (3) satisfies u(t,x)→ 1 when t→+∞, for any x in Rd . Moreover, we
propose explicit expressions for these objects, see below the precise statement of the main result, Theorem 6.

The outline of the paper is the following. Some well-known results on reaction-diffusion systems, useful for
the study, are recalled in the next section. The main result is stated and illustrated by numerical example in Section
3, and afterwards proved in Section 4. Concluding remarks and open questions are exposed in Section 5. Last, an
appendix provides the proof of a sufficient condition for invasion in bistable systems.

2 Some recall on reaction-diffusion systems
For the sake of clarity and completeness of the paper, we first recall in this section some useful results on bistable
reaction-diffusion systems (see e.g. [10]).

2.1 Comparison principle in parabolic systems
Definition 2 (Subsolutions and supersolutions) Let Ω⊂Rd be a regular, open set (bounded or not). Let T > 0.
Let f : R→R and h : ∂Ω→R be two smooth functions. We consider an elliptic operator L := ∆+k(x)∇, where
k is a smooth function Ω→ Rd . A subsolution to the parabolic problem

∂tu−L u = f (u) in Ω, u(t, ·) = h(t, ·) on (0,T )×∂Ω, (4)

u(0, ·) = u0(·) in Ω. (5)

is a function u such that

∂tu−L u≤ f (u) in Ω, u(t, ·)≤ h(t, ·) on (0,T )×∂Ω, (6)

u(0, ·)≤ u0(·) in Ω. (7)



Similarly, a super-solution of the parabolic problem (5) is a function u such that

∂tu−L u≥ f (u) in Ω, u(t, ·)≥ h(t, ·) on (0,T )×∂Ω, (8)

u(0, ·)≥ u0(·) in Ω. (9)

By definition, a solution is any function which is simultaneously a sub- and a super-solution. �

Sub- and supersolutions are used in the classical comparison principle:

Proposition 3 (Parabolic comparison principle) For all T > 0 we introduce the “parabolic boundary”

∂T Ω := [0,T )×∂Ω
⋃
{0}×Ω.

If u (resp. u) is a sub-solution (resp. a super-solution) to (5), and u is a solution such that u≥ u (resp. u≤ u)
on ∂T Ω, then this inequality holds on Ω× [0,T ]. �

2.2 Traveling waves in bistable reaction-diffusion systems
Motivated by the previous example, we examine in this paper the question of onset of traveling waves in general
system (1) with f a bistable function. Traveling waves are particular solutions of (1) of the type p(t,x) := p̃(x−ct)
which connects the two stable steady states, i.e. p̃(−∞) = 1, p̃(+∞) = 0. The quantity c corresponds to the
speed of the wave; when c > 0 the state 1 (complete infestation by Wolbachia for the example developed in
Section 1) invades the states 0, and vice versa. Injecting the expression p(t,x) := p̃(x− ct) into (1), we get
0 = ∂t p−σ∆p− f (p) =−cp̃′−σ p̃′′− f (p̃). Multiplying by p̃′ and integrating yields

c
∫ +∞

−∞

(p̃′(x))2 dx =−
∫ +∞

−∞

f (p̃(x))p̃′(x) dx =
∫ 1

0
f (x) dx,

from which we deduce that the sign of c is the same as the sign of
∫ 1

0 f (x)dx. Then, in order to have evolution
towards the equilibrium value 1, it is necessary that∫ 1

0
f (x) dx > 0 (10)

In consequence, we assume in all the paper that the following condition holds:

∃θc ∈ (θ ,1), F(θc) = 0 with F(x) :=
∫ x

0
f (ξ ) dξ , x ∈ [0,1] (11)

This seems to be the case for the problem presented in Section 1, see [4].
The issue of onset of traveling waves in systems of type (1) with f bistable fulfilling assumption (11) has been

studied in [4, 21, 22]. We now recall some key results, first introducing the key notion of propagule.

Definition 4 (Propagule) A propagule for equation (1) is any continuous initial function p0 : Rd → [0,1] such
that the corresponding solution p of (1) verifies

∀x ∈ Rd , lim
t→+∞

p(t,x) exists and equals 1

It is called α-propagule if its supremal value is equal to α . �

Due to the comparison principle, any initial condition bounded from below by a propagule is a propagule. Also,
due to the homogeneity of the space in equation (1), any translate of a propagule is a propagule. To summarize,
the set of propagules is an upper set, invariant by translation.

The following result answers the question of the existence of such objects. It has been stated in [22], as a
consequence of [18]. It relies on the existence of a threshold phenomena for the propagation in reaction-diffusion
system as studied in [26, 8, 20, 17].



Theorem 5 (Existence of propagule [22]) Consider system (1) with bistable function f fulfilling (11). Then, for
all α ∈ (θc,1] there exists a compactly supported, non-increasing function vα : R+→ R+ with vα(0) = α such
that, for any solution p of (1) whose initial condition p0 verifies:

∃x0 ∈ Rd , ∀x ∈ Rd , p0(x)≥ vα(|x− x0|), (12)

one has:
lim

t→+∞
p(t,x) = 1, (13)

for any x ∈ Rd , locally uniformly. Moreover, one can take the support of vα in [0,Rα ] with

Rα :=

((
1+

2F(α)

σα2−2F(θ)

)1/d

−1

)−1

+1. (14)

�

For sake of completeness, a proof of Theorem 5 is given in Appendix. Notice that Rα →+∞ when α → θc. The
estimate of Rα in (14) is not optimal, as a matter of fact the issue of optimality of the support of propagules is still
an open question.

3 IGNITING TRAVELING WAVES BY FEEDBACK CONTROL

3.1 Main result
In order to ignite the propagation of the traveling wave, we propose to impose during a finite time T > 0 a
feedback-law in an open bounded region Ω of the space Rd . For simplicity, the feedback-law will be chosen in
such a way that the resulting closed-loop system is linear. More precisely, we consider that the function g in (3)
reads

g(u) = (µ(1−u)− f (u))+ 1Ω, µ > 0. (15)

The notation (·)+ is for the positive part. Notice that the positive part is taken to guarantee the nonnegativity of the
control function g. We have that g(1) = 0, meaning that there is no action wherever the desired proportion u = 1
is attained.

Therefore, the controlled system under study is as follows

∂tu−σ∆u = µ(1−u) on [0,T ]× (Ω∩{g > 0}), (16a)

∂tu−σ∆u = f (u) on [0,T ]×
(
(Rd \Ω)

⋃
{g≤ 0}

)⋃
(T,+∞)×Rd , (16b)

u(0, ·) = u0. (16c)

The initial condition u0 takes on values in [0,1] and is typically zero in the problem of infestation by Wolbachia
previously described, corresponding to the situation where initially no mosquito is infected.

The main result of this paper is the following.

Theorem 6 Let f be a bistable function. Then, for any µ > 0, there exist T > 0 and a bounded open set Ω⊂ Rd

such that all solutions to (16) converge to 1 as t goes to +∞, locally uniformly on Rd . Moreover, for any α,α such
that θc < α < α < 1 it is sufficient, in order to have convergence, to choose T such that

T ≥ 1
µ

ln
(

α

α−α

)
(17)

and Ω containing a ball of radius (1+ ε∗(α,α))Rα where Rα is given in (14) and

ε
∗(α,α) :=

8√
(d−1)2 + 32

3
R2

α µ(1−α)
σα

−d +1
. (18)

�



This result states that, given a feedback function g as above (for fixed µ > 0), there exist a time of control
T and a domain Ω such that the proposed feedback control yields invasion of the Wolbachia-infected population.
The proof of this result relies on the construction of a subsolution to (16), itself located above a propagule (whose
existence is established by Theorem 5). Then the comparison principle will yield the result. The construction
of such a subsolution can be made explicit, leading to conditions (17) and (18). Notice that both these formulas
involve a free parameter α . The latter may be optimized to fit some requirement. For instance, if T is required to
be as small as possible, we may choose α as big as possible, i.e. close to 1. However, when α is close to 1, one
sees from (18) that the domain Ω should contain a ball with a radius going to +∞.

In the same manner, it is also possible to state that, given a maximal control time T > 0, there exist a domain
Ω and µ > 0 such that, if we use the feedback control function g, defined in (15), on [0,T ]×Ω, then Wolbachia-
infected mosquitoes invade the host population as t goes to +∞. For instance, let us fix α and α such that
θc < α < α < 1. Then, it suffices to take µ > 0 such that (17) is satisfied, i.e. µ ≥ 1

T ln(α/(α−α)), and we take
Ω containing a ball of radius (1+ ε∗(α,α))Rα , with Rα and ε∗(α,α) given respectively in (14) and (18).

Finally, assume given a bounded domain Ω strictly containing a ball of radius Rα for some α ∈ (θc,1), where
Rα is the radius of the support of a propagule in Theorem 5 (for instance Rα may be as in (14)). By “strictly
containing”, we mean that there exists ε > 0 such that B(1+ε)Rα

⊂Ω. Then, there exist T > 0 and µ > 0 such that
with the feedback control function g (15) on [0,T ]×Ω, the proportion of Wolbachia-infected mosquitoes goes to
1 as t goes to +∞, locally uniformly. Indeed, it suffices to choose µ such that for any α ∈ (α,1), we have

µ ≥ σα

(1−α)R2
α

(
2
ε2 +

1
2ε

(d−1)
)
.

Once µ is fixed, it suffices to take T as in (17).
All these results may be obtained by straightforward adaptations of Theorem 6, and will not be detailed here.

3.2 Numerical illustration
In order to illustrate the main result, we present a numerical example in one spacial dimension. The numerical
values, taken from [4], are chosen as s f = 0.1, sh = 0.3, δ = 1, then θ =

s f
sh

in the expression of f in (2). System
(16) is solved by discretization with an implicit finite difference scheme on the computational domain [−20,20].
For the feedback function, we take µ = 0.5 and Ω = [−1,1], and we fix the control time to T = 10.

The numerical results are presented in Figure 1. We display the time dynamics of the proportion of infected
population. The first plot in this figure corresponds to the initial data, which is zero everywhere. The second
plot displays the computed proportion at the final control time T = 10. It is observed in the following plots that
invasion occurs, showing that this control allows to pass from the steady state 0 to the steady state 1.

4 PROOF OF THEOREM 6
• We first prove the convergence result. The proof is based on the construction of several auxiliary functions,
permitting comparison with a solution u of (16). We will more precisely proceed as follows. Choose α ∈ (θc,1).
Due to Theorem 5, there exists an α-propagule vα with support contained in [0,Rα ] centered in zero with radius
Rα . We will show successively in the sequel that it is possible to find T > 0, ε > 0 and two nonnegative functions
u and u with support in B(1+ε)Rα

(all these objects depending upon α) such that

1. for any t ∈ [0,T ] and any x ∈ Rd , u(t,x)≤ u(t,x);

2. for any t ∈ [0,T ] and any x ∈ Rd , u(t,x)≤ u(t,x);

3. for any x ∈ BRα
, u(T,x)≥ α = max

x∈BRα

vα(|x|).

From these three properties, one deduces that, for any x ∈ BRα
,

vα(|x|)≤ u(T,x)≤ u(T,x)≤ u(T,x) (19)

As supp vα ⊂ [0,Rα ], one concludes that indeed vα(|x|) ≤ u(T,x) in the whole space Rd . Using the fact that vα

is a propagule, this demonstrates the convergence result in Theorem 6, by applying Theorem 5. Therefore, it now
only remains to prove the three points above.



Figure 1: Time dynamics of the proportion of infected population with a feedback control function as in system
(16). From top left to bottom right, the plotted times are : initial time, t=10, t=50, t=100, t=150, t=200.



Proof of point 1. For any T > 0 and any ε > 0, one may introduce the function u, solution to the problem

∂tu−σ∆u = µ(1−u), on [0,T ]×B(1+ε)Rα
, (20a)

u = 0, on [0,T ]×∂B(1+ε)Rα
, (20b)

u(0, ·)≡ 0, on B(1+ε)Rα
. (20c)

The function u thus defined is a subsolution for (16) on [0,T ] provided that B(1+ε)Rα
⊂Ω. Indeed, we have u≥ 0

on ∂B(1+ε)Rα
, and on the set {g≤ 0} we have f (u)≥ µ(1−u). Due to the comparison principle, we deduce that

u≤ u on B(1+ε)Rα
. Then, we extend u by the constant 0 on Rd \B(1+ε)Rα

and the point 1. is proved.

Proof of point 2. We will now construct the function u. Let us first introduce a function φ ∈C2([0,1]) such that
φ(0) = 1, φ(1) = 0, φ ′(0) = φ ′(1) = 0 and φ ′ ≤ 0 on [0,1]. Such function exists, take for instance the polynomial

φ(x) =−2(1− x)3 +3(1− x)2. (21)

Let now α ∈ (α,1) and introduce the radially symmetric nonincreasing function

γ(r) := α 1r≤Rα
+αφ

(
r−Rα

εRα

)
1Rα<r≤(1+ε)Rα

.

Clearly, γ is non increasing on [0,+∞). Moreover, its value is α on [0,Rα ] and its support is equal to [0,(1+ε)Rα ].
In particular, for any nonnegative r, 0≤ γ(r)≤ α .

By definition γ ∈C1(0,+∞) and, except possibly for r = Rα and (1+ ε)Rα , we may compute its Laplacian.
For any r ∈ (Rα ,(1+ ε)Rα), the latter is equal to

−∆γ = −∂rrγ−
d−1

r
∂rγ(r)

= − α

ε2R2
α

φ
′′
(

r−Rα

εRα

)
− α(d−1)

εRα r
φ
′
(

r−Rα

εRα

)
,

and it is equal to zero on (0,Rα)∪ ((1+ ε)Rα ,+∞).
Pick now ε > 0 such that

1
ε2 sup

(0,1)
|φ ′′|+ d−1

ε
sup
(0,1)
|φ ′| ≤ R2

α µ(1−α)

σα
. (22)

This is possible, since φ ∈C2(0,1) and α < 1. With such a choice of ε , one has, for all r ∈ (Rα ,(1+ ε)Rα),

|σ∆γ(r)| ≤ σα

ε2R2
α

sup
(0,1)
|φ ′′|+ σα(d−1)

εRα r
sup
(0,1)
|φ ′| ≤ µ(1−α)≤ µ(1− γ(r)). (23)

The last inequality is deduced from the fact that 0≤ γ(r)≤ α everywhere. Notice that since γ is constant on BRα
,

we have ∆γ = 0 and inequality (23) also holds true on BRα
.

We define now u, as
u(t,x) := (1− e−µt)γ(|x|). (24)

We compute

∂tu−σ∆u = µe−µt
γ− (1− e−µt)σ∆γ

≤ µe−µt
γ +µ(1− e−µt)(1− γ)

= µ(1−u− e−µt(1− γ)≤ µ(1−u). (25)

Formula (23) was used to deduce the first inequality, and the fact that γ ≤ α ≤ 1 to deduce the second one.
Moreover, by definition of γ , we have u(0, .) ≡ 0, and u(·,x) = 0 for any x ∈ ∂B(1+ε)Rα

. Then u is a subsolution
for (20). Applying the comparison principle, we deduce point 2.



Proof of point 3. Now, notice that from point 2 and from the definition of u in (24), we have

∀x ∈ BRα
, ∀t ∈ [0,T ], u(t,x) = (1− e−µt)α ≤ u(t,x). (26)

Choose T such that (17) is fulfilled. For such a choice, one deduces from (26) that u(T,x) ≥ α for any x ∈ BRα
.

This proves the point 3. and concludes the proof of the (locally uniform) convergence towards 1 contained in
Theorem 6.

•We now demonstrate the estimates contained in the statement of Theorem 6. The estimate on T comes from (17),
see above. On the other hand, if φ in the beginning of the present proof is taken as in (21), then sup[0,1] |φ ′| = 3

2
and sup[0,1] |φ ′′|= 6, and condition (22) reads

6
ε2 +

2(d−1)
3ε

≤ R2
α µ(1−α)

σα

that is ε ≥ ε∗(α,α) defined in (18). This finally achieves the proof of Theorem 6. �

5 CONCLUSION AND OPEN QUESTIONS
In this paper, we have studied the use of feedback control in a release protocol, in order to guarantee invasion
of a host population in bistable reaction-diffusion models. Our application example concerns the invasion of the
maternally transmitted bacteria Wolbachia in populations of mosquitoes. The use of the latter is motivated by
its blocking action on the transmission of some arboviruses like dengue. We exhibit a class of feedback control
functions which, when applied on a bounded domain Ω during finite time T , allows to pass from a Wolbachia-free
population to fully Wolbachia-infected population as time goes to +∞.

Several perspectives may be investigated in the future. First, as mentionned above, optimizing the release
protocol is an important issue. Indeed, the conditions given in Theorem 6 are only sufficient, and may be im-
proved depending on the constraints to be satisfied. For instance, one may be interested in minimizing the global
number of mosquitoes introduced, or the treatment duration, or again the size of the release domain. However, the
propagules functions introduced in Theorem 5 are not optimal. The construction of optimal functions igniting the
propagation is still an open question.

Secondly, the mathematical model used in this study, dealing with the proportion of Wolbachia-infected
mosquitoes, is a simplified version of a more elaborated model for two species (Wolbachia-infected and Wolbachia-
free mosquitoes) [21]. Models including more biological features may also be encountered, for instance consid-
ering the different stages in the life of mosquitoes (larvae, eggs, pupae, adults), see [5] and references therein. An
interesting extension of the present work may be the study of a control on such more elaborated models.

Finally, we underline the fact that the environment is assumed homogeneous in the present work. Hetero-
geneity in the environment may have crucial consequences in the spread of population. In fact, stable fronts or
blockings have been observed [25, 13, 19]. Our study does not take into account these phenomena and the use
of a feedback control function to allow the crossing of potential barriers is a direction of research that will be
investigated.

APPENDIX: PROOF OF THEOREM 5 [22]
The approach is based on the energy method proposed by [18]. For sufficiently smooth function p(t,x), define the
energy as follows:

E[p](t) =
∫
Rd

(σ

2
|∇p(t,x)|2−F(p(t,x))

)
dx. (27)

For any solution p of (1), the energy is non-increasing, as

d
dt

E[p](t) =−
∫
Rd

(
σ∆p(t,x)+ f (p(t,x))

)2 dx. (28)

Therefore E[p](t)≤ E[p0] for any t ≥ 0 and any solution p with initial data p0. Moreover, [18, Theorem 2] states
that p(t, ·)→ 1 locally uniformly in Rd as t → +∞, provided that lim

t→+∞
E[p(t, ·)] < 0. Since t 7→ E[p(t, ·)] is

nonincreasing, it is sufficient to construct p0 such that E[p0]< 0 to prove Theorem 5.



Let α > θc, and consider the family of initial data radially symmetric non-increasing along the rays and
compactly supported in BR+1, R > 0, defined by φR(|x|) = α when 0≤ |x| ≤ R and φR(|x|) = α(R+1−|x|) when
R≤ |x| ≤ R+1. We may compute

E[φR] = |Sd−1|
∫

∞

0

(
σ

2
|φ ′R(r)|2−F(φR(r))

)
rd−1dr,

where |Sd−1| is the volume of the unit sphere in Rd . By definition of φR, we have

E[φR] = |Sd−1|
(
−
∫ R

0
F(α)rd−1dr+

∫ R+1

R

(
σα2

2
−F(φR)

)
rd−1dr

)
Due to the fact that f is bistable, F(θ), the minimal value of F on [0,1], is negative. Therefore,

E[φR]< |Sd−1|
Rd

d

(
−F(α)+

(
σα2

2
−F(θ)

)((
1+

1
R

)d

−1

))
.

Now F(α)> 0, since α > θc. We deduce that if R+1≥ Rα (such that supp(φR)⊂ BRα
), where Rα is defined in

(14), then E[φR]< 0. This achieves the proof of Theorem 5. �
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[26] Andrej Zlatoš. Sharp transition between extinction and propagation of reaction. Journal of the American
Mathematical Society, 19(1):251–263, 2006.


