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Asymptotic behaviour for operators of Grushin

type: invariant measure and singular

perturbations.

Paola Mannucci, Claudio Marchi, Nicoletta Tchou
Università degli Studi di Padova, Université de Rennes 1

Abstract

This paper concerns singular perturbation problems where the dy-
namics of the fast variable evolve in the whole space according to an
operator whose infinitesimal generator is formed by a Grushin type
second order part and a Ornstein-Uhlenbeck first order part.
We prove that the dynamics of the fast variables admits an invariant
measure and that the associated ergodic problem has a viscosity so-
lution which is also regular and with logarithmic growth at infinity.
These properties play a crucial role in the main theorem which estab-
lishes that the value functions of the starting perturbation problems
converge to the solution of an effective problem whose operator and
initial datum are given in terms of the associated invariant measure.

Keywords: Subelliptic equations, Grushin vector fields, invariant measure,
singular perturbations, viscosity solutions, degenerate elliptic equations.1

2010 AMS Subject classification: 35B25, 49L25, 35J70, 35H20, 35B37,
93E20.

1 Introduction

This paper is devoted to study with PDE’s methods some asymptotic fea-
tures of processes described by the dynamics

(1.1) dZt = b(Zt)dt+
√
2σ(Zt)dWt for t ∈ (0,+∞), Z0 = x0 ∈ R

2,
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where Wt is a 2-dimensional Brownian motion while the matrix σ is degen-
erate and of Grushin type and the drift b is of Ornstein-Uhlenbeck type,
namely

(1.2) σ(x) =

(

1 0
0 x1

)

, b(x) = −αx, α > 0.

The columns of σ in (1.2) satisfy Hörmander condition: X1 = (1, 0) and
[X1,X2] = (0, 1) span all R2. Hence, we have that [X1,X2] = ∂x2

.
In particular, we shall investigate:
1) existence and uniqueness of the invariant measure of this process;
2) existence, uniqueness and regularity of the solution for the ergodic prob-
lem of the infinitesimal generator L (see (2.1));
3) the asymptotic behaviour as ǫ → 0 of the value function of optimal
control problems driven by

(1.3)

{

dXt = φ̃(Xt, Yt, ut)dt+
√
2σ̃(Xt, Yt, ut)dWt, X0 = x ∈ R

n

dYt =
1
ǫ b(Yt)dt+

√
2√
ǫ
σ(Yt)dWt, Y0 = y ∈ R

2.

The paper is organized as follows: in Section 2 we prove existence and
uniqueness of the invariant measure. In Section 3 we establish our main
result on perturbation problem, to this end, we introduce the approximated
ergodic problems and investigate the regularity of their solutions.

2 Existence of the invariant measure

We consider the stochastic dynamics (1.1) with coefficients as in (1.2). The
main aim of this section is to prove existence and uniqueness of the in-
variant measure m associated to the process (1.1). To this goal, we use a
Liouville property for the infinitesimal generator of (1.1) (see [4] for other
Liouville properties for Grushin operator in a semilinear framework with a
superlinear growth for the zeroth order term).

Let us recall from [3] that a probability measure m on R
2 is an invari-

ant measure for process (1.1) if, for each u0 ∈ L
∞(R2), it satisfies

∫

R2

u(x, t)m(x) dx =

∫

R2

u0(x)m(x) dx

where u(x, t) = Ex(u0(Xt)) is the solution to the parabolic Cauchy problem

∂tu+ Lu = 0 in (0,+∞)× R
2, u(x, 0) = u0(x) on R

2
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where

(2.1) L(y, q, Y ) := −tr(σσTY )− b · q ≡ −Y11 − y21V22 − b(y)q

is the infinitesimal generator of process (1.1). For the sake of completeness,
let us recall the result in [12, Example 5.1].

Theorem 2.1 The diffusion process (1.1) admits exactly one invariant
probability measure m.

Proof. Under our assumptions it is easy to check that the matrix Aρ = σρσ
T
ρ

where

σρ(x) =

(

1 0 0
0 x1 ρ

)

is such that Aρ → A in L∞ and Aρ is locally definite positive. Moreover
taking

W (x) =
1

12
x41 +

1

2
x22,

we have
−tr(Aρ(x)D

2W (x))) = −2x21 − ρ2.

−b(x)DW =
1

3
αx41 + αx22.

Then LρW = −tr(σρσ
T
ρ D

2u) + b · Du ≥ 1 is equivalent to the following
condition

1

3
αx41 + αx22 ≥ 2x21 + 1 + ρ2,

hence W satisfies

LρW ≥ 1 in B(0, R0)
C
, W ≥ 0 in B(0, R0)

C
, lim

|x|→∞
W = ∞

for ρ sufficiently small.
Then following the procedure used in [12, Proposition 2.1], using the

function W , there exists an unique invariant measure mρ for the process
with diffusion σρ, and arguing as in [12, Theorem 2.1 (proof)] and using
again the function W we obtain the existence of the invariant measure
associated to the process (1.1). For the proof of uniqueness, we refer the
reader to [12, Theorem 2.1]. 2
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Remark 2.1 Lions-Musiela in [11] have considered a similar degenerate
case but in their paper the elements of the matrix are bounded in R

2 in
this way

σ(x) =

(

1 0
0 x1√

1+x2
1

)

.

Remark 2.2 Following [12, Example 5.1] can can obtain similar results of
Theorem 2.1 with a more general drift term b:

bi(x) = bi(xi),

{

bi(xi) ≤ − Ci

|xi|1−β for xi ≥ R

bi(xi) ≥ Ci

|xi|1−β for xi ≤ −R

for β ≥ 0, R > 0 and suitably chosen Ci > 0 (i = 1, 2).

Remark 2.3 As applications of the existence of an invariant measure we
obtain, arguing as in [12] the following results:

lim
δ→0+

δuδ(x) = lim
t→+∞

u(t, x) = lim
t→+∞

v(t, x)

t
=

∫

R2

fdm,

where m is the invariant measure of and uδ, u and v are the solutions
respectively of

δuδ + Luδ = f(·), in R
2,

ut + Lu = 0 in (0,+∞)× R
2, u(0, ·) = f(·) on R

2,

vt + Lv = f(·) in (0,+∞) × R
2, v(0, ·) = 0 on R

2,

and L is defined in (2.1).

3 Asymptotic behaviour for a singular perturba-

tion problem

In this section, we investigate the limit of the value function

V ǫ(t, x, y) := sup
u∈U

E[

∫ T

t
f(Xs, Ys, us)ds + ea(t−T )g(XT )]

where E denotes the expectation, U is the set of progressively measurable
processes with values in a compact metric set U and a is a fixed positive
parameter and (Xt, Yt) are driven by (1.3) (note that V ǫ depends on ǫ
through the coefficients of the dynamics).
Throughout this section, we shall assume
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i) the function f = f(x, y, u) is Lipschitz continuous in (x, y) uniformly
in u and, for some Cf > 0, it satisfies

|f(x, y, u)| ≤ Cf (1 + |x|) ∀(x, y, u) ∈ R
n × R

2 × U ;

ii) the function g is continuous in (x, y) and there exits Cg such that

|g(x, y)| ≤ Cg(1 + |x|) ∀(x, y) ∈ R
n × R

2;

iii) φ̃(x, y, u) and σ̃(x, y, u) are Lipschitz continuous and bounded in (x, y)
uniformly on u: |φ̃(x, y, u)| ≤ Cφ̃, |σ̃(x, y, u)| ≤ Cσ̃.

Problems of this type arise from models where the variables Y evolve
much faster than the variables X. We refer to [2] and [13] for the financial
models which inspired this research.

By standard theory (see [7]), the value function V ǫ is the unique (vis-
cosity) solution to the following Cauchy problem

(3.1)











−∂tV
ǫ +H

(

x, y,DxV
ǫ,D2

xxV
ǫ,

D2
xyV

ǫ

√
ǫ

)

+1
ǫL(y,DyV

ǫ,DyyV
ǫ) + aV ǫ = 0 in (0, T ) × R

n ×R
2

V ǫ(T, x, y) = g(x, y) on R
n × R

2

where L is the operator defined in (2.1) and

H(x, y, p,X,Z) := min
u∈U

{

−tr(σ̃σ̃TX)− φ̃ · p− 2tr(σ̃σTZ)− f(x, y, u)
}

.

Our aim is to establish that, as ǫ → 0+, the function V ǫ converges
locally uniformly to a function V = V (t, x) (which will be independent
of y) which can be characterized as the unique (viscosity) solution to the
effective Cauchy problem

(3.2)

{

−∂tV +H
(

x,DxV,D
2
xxV

)

+ aV = 0 in (0, T )× R
n

V (T, x) = g(x) on R
n.

The effective Hamiltonian and the effective terminal datum are given by

H(x, p,X) :=

∫

R2

H(x, y, p,X, 0)dm(y)(3.3)

g(x) :=

∫

R2

g(x, y)dm(y)(3.4)

5



and m is the invariant measure established in Theorem 2.1. As a matter of
facts, H(x, p,X) is the ergodic constant λ of the cell problem

(3.5) −tr(σ(y)σT (y)D2w(y))− b(y)Dw(y)+H(x, y, p,X, 0) = λ y ∈ R
2,

(the solution w to this equation is called corrector) while g(x) is the constant
obtained in the long time behaviour of the parabolic Cauchy problem

∂tw
∗ − Lw∗ = 0 in (0,∞)× R

2, w∗(0, y) = g(x, y) on R
2,

(namely g = lim
t→+∞

w∗(t, y)).

The main issues of this setting are: 1) the fast variables evolve in the
whole space, 2) the infinitesimal generator of their operator is degenerate
with unbounded coefficients, 3) the variables y lacks a group structure. In
order to overcome these issues, we shall use the following tools: 1) there
exists a superlinear Lyapunov function, 2) a Liouville type result applies to
operator L, 3) there exists an invariant measure, 4) the cell problem admits
a regular solution (we shall first prove that it is globally Lipschitz continu-
ous and then we make a bootstrap argument) with an at most logarithmic
growth.

In order to prove the existence and the properties of (λ,w) satisfy-
ing (3.5), we introduce the approximated problems

(3.6) δuδ − tr(σ(y)σT (y)D2uδ)− b(y)Duδ = F (y) in R
2,

where δ > 0 and F (y) := −H(x, y, p,X, 0) with (x, p,X) fixed. In the next
subsection we investigate the properties of the approximated correctors uδ;
in the last subsection these properties will be inherited by the corrector w.

3.1 Regularity of the approximated correctors

In this section we shall establish two results on the regularity of uδ in
two different setting for F : a global Lipschitz continuity and a local Hölder
continuity. In our opinion, both these results have their own interest because
we apply two different techniques: the former follows the ones of [5, 10] while
the latter one follows the ones of [8]. However, in the rest of the paper we
shall only need the former one.
Throughout this section we assume

(3.7) |F (y)| ≤ CF (|y|+ 1) ∀y ∈ R
2.

Let us recall from [13, Lemma 3.3] the following result on the growth of uδ;
for the proof, we refer the reader to [13].
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Lemma 3.1 Under assumptions (3.7), there exists a constant C such that

(3.8) |uδ(y)| ≤ C

(

|y|+ 1

δ

)

, y ∈ R
2.

3.1.1 Global Lipschitz continuity of the approximated corrector

Proposition 3.1 Assume b as in (1.2) with α > 1 and that F is Lipschitz
continuous in R

2 with Lipschitz constant L. Let uδ be the unique continuous
solution of (3.6) which satisfies (3.8). Then, for L̄ > L/(α−1), there holds

|uδ(x)− uδ(y)| ≤ L̄|x− y| ∀x, y ∈ R
2, δ > 0.

Proof. The proof follows the same arguments of the proof of [13, Theorem
3.2]. For completeness, we briefly sketch the main steps. For each η > 0, we
introduce the function

Ψ(x, y) = uδ(x)− uδ(y)− L̄|x− y| − η|x|2 − η|y|2.

Our statement is equivalent to the following inequality

(3.9) Ψ(x, y) ≤ 4η

δ
∀x, y ∈ R

2, η ∈ (0, 1).

In order to prove (3.9), we argue by contradiction. Using the Lemma [5,
Lemma 3.2], we follow the same calculation up to equation [13, eq.(3.24)].
By our choice of the matrix σ, we obtain the desired contradiction. 2

Remark 3.1 As in [13], for b(x) = (−α1x1,−α2x2), we obtain the same
result when α1 > 1, α2 > 0 and L̄ > L/l where l = min{α1 − 1, α2}.

3.1.2 Local Hölder continuity of the approximated corrector

Proposition 3.2 Assume b as in (1.2) with α > 1, (3.7) and

|F (x)− F (y)| ≤ CF |x− y|γ(Φ(x) + Φ(y)), x, y ∈ R
2, γ ∈ (0, 1], CF > 0

where Φ(x) = x41+x22+M , M ≥ 1. Let uδ be the unique continuous solution
of (3.6) which satisfies (3.8). Then there is a constant C > 0, independent
on δ such that

(3.10) |uδ(x)− uδ(y)| ≤ C|x− y|γ(Φ(x) + Φ(y)), ∀ x, y ∈ R
2.
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Proof. We follow the procedure of [8, Theorem 4.3]. We define the functions
wδ(x, y) = uδ(x)− uδ(y) and g̃(x, y) = CF |x− y|γ(Φ(x) +Φ(y) +A) where
A will be chosen suitably large. If we prove that wδ ≤ g̃ in R

2 then we
obtain (3.10) with a suitable C, since Φ > 1.
We argue by contradiction, we suppose that supR2(wδ − g̃) > 0. From
the linear growth of uδ (see (3.8)) we know that lim|x|+|y|→+∞(wδ(x, y) −
g̃(x, y)) = −∞ hence we have that wδ ≤ g̃ in (R2 ×R

2) \BR for a suitable
ball BR ⊂ R

2×R
2. Let (x̂, ŷ) ∈ BR be maximum point of wδ(x, y)− g̃(x, y):

wδ(x̂, ŷ) − g̃(x̂, ŷ) > 0, x̂ 6= ŷ. At this point we introduce the operator Ξ
defined as:

Ξg(x, y) = tr(Σ(x, y)D2g(x, y)) + 2
∑

i,j

∂2

∂xi∂xj
g(x, y)

where

Σ(x, y) =

(

σ(x)σT (x) σ(x)σT (y)
σ(y)σT (x) σ(y)σT (y)

)

=









1 0 1 0
0 x21 0 x1y1
1 0 1 0
0 x1y1 0 y21









(the matrix σ is defined in (1.2)). This operator is elliptic.
We observe that wδ(x, y) satisfies for any x, y ∈ R

2

δwδ − Ξwδ + αxDxwδ + αyDywδ = F (x)− F (y)

≤ CF |x− y|γ(Φ(x) + Φ(y)).

Hence from the maximum principle we have that
(3.11)
δg̃(x̂, ŷ)−Ξg̃(x̂, ŷ)+αx̂Dxg̃(x̂, ŷ)+αyDy g̃(x̂, ŷ) ≤ CF |x̂− ŷ|γ(Φ(x̂)+Φ(ŷ)).

At this point to find a contradiction we compute

δg̃(x̂, ŷ)− Ξg̃(x̂, ŷ) + αx̂Dxg̃(x̂, ŷ) + αyDy g̃(x̂, ŷ)

directly by the definition of g̃.
Denoting by t = |x− y|2, let us introduce g(x, y) as

g(x, y) = tγ/2(Φ(x) + Φ(y) +A).

We compute now Ξg(x, y) = tr(Σ(x, y)D2g(x, y)). We have

Dxg = γtγ/2−1(x− y)(Φ(x) + Φ(y) +A) + tγ/2DxΦ(x),
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Dyg = γtγ/2−1(y − x)(Φ(x) + Φ(y) +A) + tγ/2DyΦ(y).

D2
xxg = γ(γ − 2)tγ/2−2(x− y)⊗ (x− y)(Φ(x) + Φ(y) +A) +

γtγ/2−1I(Φ(x) + Φ(y) +A) + 2γtγ/2−1(x− y)⊗DxΦ(x) + tγ/2D2
xxΦ(x)

D2
yyg = γ(γ − 2)tγ/2−2(y − x)⊗ (y − x)(Φ(x) + Φ(y) +A) +

γtγ/2−1I(Φ(x) + Φ(y) +A) + 2γtγ/2−1(y − x)⊗DyΦ(y) + tγ/2D2
yyΦ(y)

D2
xyg = −γ(γ − 2)tγ/2−2(x− y)⊗ (x− y)(Φ(x) + Φ(y) +A)−

γtγ/2−1I(Φ(x) + Φ(y) +A) + γtγ/2−1(x− y)⊗ (DyΦ(y)−DxΦ(x)).

Denoting by Aij the 2× 2 minor of Σ we have that

Ξg(x, y) = tr(Σ(x, y)D2g(x, y)) =

tr(A11D
2
xxg +A12(D

2
xyg)

T +A12D
2
xyg +A22D

2
yyg).

Using the explicit derivatives written here above and the definition of Φ we
obtain

Ξg(x, y) = tr(Σ(x, y)D2g(x, y)) =

γ(γ − 2)tγ/2−2(Φ(x) + Φ(y) +A)(x2 − y2)
2(x1 − y1)

2 +

tγ/2(∆GxΦ(x) + ∆GyΦ(y)) + γtγ/2−1(Φ(x) + Φ(y) +A)(x1 − y1)
2 +

+4γtγ/2−1(x1 − y1)(x2 − y2)(x1x2 + y1y2)

where we denoted by ∆Gu(z) := tr(σ(z)σT (z)u(z)), i.e. the horizontal
Grushin Laplacian operator.
We note that, by elementary calculations, it is possible to find a constant
Lα such that

(3.12) −∆GΦ(z) + αzDzΦ(z) ≥ 2αΦ(z) − Lα.
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Now we write the equation

δg(x, y) − Ξg(x, y) + αxDxg + αyDyg = δtγ/2(Φ(x) + Φ(y) +A) +

tγ/2(−∆GxΦ(x) + αxDxΦ+ (−∆GyΦ(y) + αyDyΦ))−
γ(γ − 2)tγ/2−2(Φ(x) + Φ(y) +A)(x2 − y2)

2(x1 − y1)
2

−γtγ/2−1(Φ(x) + Φ(y) +A)(x1 − y1)
2 −

4γtγ/2−1(x1 − y1)(x2 − y2)(x1x2 + y1y2) + αγtγ/2−1(Φ(x) + Φ(y) +A)(x− y)2 ≥
δtγ/2(Φ(x) + Φ(y) +A) +

tγ/2(2α(Φ(x) + Φ(y))− 2Lα)− γtγ/2−1(Φ(x) + Φ(y) +A)(x1 − y1)
2 −

4γtγ/2−1(x1 − y1)(x2 − y2)(x1x2 + y1y2) + αγtγ/2−1(Φ(x) + Φ(y) +A)(x− y)2,

where in the last inequality we used (3.12). Hence by the definition of
t = |x− y|2 we have

δg(x, y) − Ξg(x, y) + αxDxg + αyDyg ≥
δ|x − y|γ(Φ(x) + Φ(y) +A) +

|x− y|γ(2α(Φ(x) + Φ(y))− 2Lα)− γ|x− y|γ−2(Φ(x) + Φ(y) +A)(x1 − y1)
2 −

4γ|x− y|γ−2(x1 − y1)(x2 − y2)(x1x2 + y1y2) +

+αγ|x− y|γ−2I(Φ(x) + Φ(y) +A)(x− y)2.

Recall that g̃(x, y) = CF g(x, y), hence g̃ satisfies:

δg̃(x, y)− Ξg̃(x, y) + αxDxg̃ + αyDy g̃ ≥

CF |x− y|γ
(

2α(Φ(x) + Φ(y))− 2Lα + (δ − γ)(Φ(x) + Φ(y) +A) +

+αγ(Φ(x) + Φ(y) +A)− 4γ(x1x2 + y1y2)

)

.

Hence

δg̃(x, y)− Ξg̃(x, y) + αxDxg + αyDy g̃ ≥

CF |x− y|γ
(

(Φ(x) + Φ(y))(δ + (2α − γ) + γα)) +

A(δ + (α− 1)γ)− 2γ|x1x2 + y1y2| − 2Lα

)

.
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(We used that |(x1 − y1)(x2 − y2)| ≤ 1
2(x− y)2.) Since α > 1 and γ ∈ (0, 1],

δg̃(x, y)− Ξg̃(x, y) + αxDxg + αyDy g̃ ≥

CF |x− y|γ
(

(Φ(x) + Φ(y)) +

γα(Φ(x) + Φ(y)) +A(δ + (α− 1)γ)− 4γ(x1x2 + y1y2)− 2Lα

)

>

CF |x− y|γ(Φ(x) + Φ(y)).

The last inequality is obtained noting that:
1) Since α > 1 we can find Kα > 0 such that αΦ(x)− 4γx1x2 > −Kα.
2) Since α > 1 we can choose A sufficiently large such that A(δ + (α −
1)γ) − 2Lα −Kα > 0.
Hence we obtain a contradiction of (3.11). 2

Remark 3.2 Note that if we consider a drift term of the type: b(y) =
(−α1y1,−α2y2) we can obtain the same result as before taking γ = 1 with
α1 > 1 and α2 > 0. The calculations are tedious and we omit them.

3.2 The convergence result

Theorem 3.1 Assume α > 1 and that, for F (·) = −H(x, ·, p,X, 0)

(3.13) F ,
∂F

∂y2
and

∂2F

∂y22
are bounded Lipschitz continuous functions.

Then, the solution V ǫ of (3.1) converges locally uniformly in (0, T )×R
n×R

2

to the unique viscosity solution V of (3.2) where H and g are defined in
(3.3)-(3.4).

Proof. The arguments of the proof are analogous to those of [13, Theorem
2.1]; we only sketch them.

1. Well posedness of problem (3.1) and growth properties of V ǫ.

Proposition 3.3 For any ǫ > 0 there exists a unique continuous vis-
cosity solution V ǫ to problem (3.1) such that

|V ǫ(t, x, y)| ≤ C0(1 + |x|), ∀(t, x, y) ∈ (0, T ) ×R
n × R

2

for some positive constant C0 independent on ǫ. In particular {V ǫ}ǫ
is a family of locally equibounded functions.
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Proof. The proof is the same as [13, Proposition 2.1]. 2

2. The cell problem.
Let us consider the sequence of solutions of the approximated cell prob-
lem (3.6) {uδ}δ . Using the Proposition 3.1 we can define (at least for
a subsequence) the lim

δ→0
(uδ(y)− uδ(0)) := w(y) and using the Lemma

3.1 lim
δ→0

−δuδ(0) =: λ.

Thanks to Proposition 3.1 w is a global Lipschitz function and using
the stability properties of viscosity solutions (w, λ) is a solution of the
ergodic problem (3.5).
Moreover:

Proposition 3.4 The constant λ = −
∫

R2 H(x, y, p,X, 0)dm(y) (m is
the invariant measure founded in Theorem 2.1) is the unique constant
such that the cell problem 3.5 admits a solution w with an at most
linear growth at infinity. Moreover w is globally Lipschitz continuous,
satisfies

(3.14) |w(y) − w(0)| ≤ C
[

1 + log(y41 + y22 + 1)
]

∀y ∈ R
2

and it is unique up to an additive constant within the function with
an at most linear growth at infinity.

Proof. We refer the reader to Remark 2.3 to characterize λ.
Estimate (3.14) follows from an analogous estimate for uδ that can
be proved as in [13, Lemma 3.4] taking as supersolution of (3.6) the
function g(y1, y2) = C1 log(y

4
1 + y22) which satisfies

δg − tr(σσtD2g) + αyDg ≥ C1

(

2y61 − 10y21y
2
2

(y41 + y22)
2

+ α
4y41 + y22
y41 + y22

)

≥ F (y),

for y ∈ R
2 \ BR, with suitable C1 and R sufficiently large. Hence

repeating the same argument as in [13, Lemma 3.4] we get the result.
2

3. C2-regularity of the corrector.

Proposition 3.5 Let w be the solution of the cell problem (3.5) founded

in Proposition 3.4. Then w ∈ C2,β
loc (R

2), for some β ∈ (0, 1).

12



Proof. In this proof, β denotes a constant which may change from
line to line. The corrector w solves

(3.15) −tr(σ(y)σT (y)D2w(y)) + αyDw(y) = G(y)

with G(y) := λ−H(x, y, p̄, X̄, 0). First let us get the global Lipschitz

continuity of ∂w
∂y2

and ∂2w
∂y2

2

. Deriving equation (3.15) with respect to

y2 (remark that this is possible because G is regular enough thanks to
(3.13)) we obtain that the function u := ∂w

∂y2
is bounded by Proposi-

tion 3.1 and it solves in the sense of distributions

(3.16) −tr(σσTD2u) + αyDu+ αu =
∂G

∂y2
.

From Proposition 3.1 and [13, Lemma 3.5], we get that ∂w
∂y2

is glob-

ally Lipschitz continuous in R
2. Deriving again equation (3.16) with

respect to y2 we obtain that the function ∂2w
∂y2

2

is globally Lipschitz

continuous in R
2.

Using the global Lipschitz continuity of ∂w
∂y2

and Proposition 3.1

in (3.15), we infer: ∂2w
∂y2

1

∈ L∞
loc. Again, by the Lipschitz continuity of

∂w
∂y2

, we obtain ∆w ∈ L∞
loc; by standard elliptic theory, Dw ∈ C0,β

loc .

Using the global Lipschitz continuity of ∂2w
∂y2

2

in (3.15), we get ∂2w
∂y2

1

∈
C0,β
loc . Again, by the Lipschitz continuity of ∂2w

∂y2
2

, we have ∆w ∈ C0,β
loc .

Applying standard theory, we accomplish the proof. 2

4. Conclusion.
We adapt the classical perturbed test function method (see [1, 6, 9])
to prove the convergence. To this end, we argue as in [13, Theorem
2.1] using the Liouville property for L, the regularity of the corrector
and the existence of a Lyapunov function (W (y) = y21 + y22).

2
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