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Introduction

This paper is devoted to study with PDE's methods some asymptotic features of processes described by the dynamics (1.1) 

dZ t = b(Z t )dt + √ 2σ(Z t )dW t for t ∈ (0, +∞), Z 0 = x 0 ∈ R 2 , 1 March 1, 2017 1 
where W t is a 2-dimensional Brownian motion while the matrix σ is degenerate and of Grushin type and the drift b is of Ornstein-Uhlenbeck type, namely

(1.2) σ(x) = 1 0 0 x 1 , b(x) = -αx, α > 0.
The columns of σ in (1.2) satisfy Hörmander condition: X 1 = (1, 0) and [X 1 , X 2 ] = (0, 1) span all R 2 . Hence, we have that [X 1 , X 2 ] = ∂ x 2 .

In particular, we shall investigate: 1) existence and uniqueness of the invariant measure of this process; 2) existence, uniqueness and regularity of the solution for the ergodic problem of the infinitesimal generator L (see (2.1));

3) the asymptotic behaviour as ǫ → 0 of the value function of optimal control problems driven by

(1.3) dX t = φ(X t , Y t , u t )dt + √ 2σ(X t , Y t , u t )dW t , X 0 = x ∈ R n dY t = 1 ǫ b(Y t )dt + √ 2 √ ǫ σ(Y t )dW t , Y 0 = y ∈ R 2 .
The paper is organized as follows: in Section 2 we prove existence and uniqueness of the invariant measure. In Section 3 we establish our main result on perturbation problem, to this end, we introduce the approximated ergodic problems and investigate the regularity of their solutions.

Existence of the invariant measure

We consider the stochastic dynamics (1.1) with coefficients as in (1.2). The main aim of this section is to prove existence and uniqueness of the invariant measure m associated to the process (1.1). To this goal, we use a Liouville property for the infinitesimal generator of (1.1) (see [START_REF] Capuzzo Dolcetta | Cutrì On the Liouville property for the sub-Laplacians[END_REF] for other Liouville properties for Grushin operator in a semilinear framework with a superlinear growth for the zeroth order term).

Let us recall from [START_REF] Bensoussan | Perturbation methods in optimal control[END_REF] that a probability measure m on R 2 is an invariant measure for process (1.1) 

if, for each u 0 ∈ L ∞ (R 2 ), it satisfies R 2 u(x, t)m(x) dx = R 2 u 0 (x)m(x) dx where u(x, t) = E x (u 0 (X t ))
is the solution to the parabolic Cauchy problem

∂ t u + Lu = 0 in (0, +∞) × R 2 , u(x, 0) = u 0 (x) on R 2 where (2.1) L(y, q, Y ) := -tr(σσ T Y ) -b • q ≡ -Y 11 -y 2 1 V 22 -b(y)q
is the infinitesimal generator of process (1.1). For the sake of completeness, let us recall the result in [START_REF] Mannucci | The ergodic problem for some subelliptic operators with unbounded coefficients[END_REF]Example 5.1].

Theorem 2.1 The diffusion process (1.1) admits exactly one invariant probability measure m.

Proof. Under our assumptions it is easy to check that the matrix

A ρ = σ ρ σ T ρ where σ ρ (x) = 1 0 0 0 x 1 ρ is such that A ρ → A in L ∞ and A ρ is locally definite positive. Moreover taking W (x) = 1 12 x 4 1 + 1 2 x 2 2 ,
we have

-tr(A ρ (x)D 2 W (x))) = -2x 2 1 -ρ 2 . -b(x)DW = 1 3 αx 4 1 + αx 2 2 .
Then

L ρ W = -tr(σ ρ σ T ρ D 2 u) + b • Du ≥ 1 is equivalent to the following condition 1 3 αx 4 1 + αx 2 2 ≥ 2x 2 1 + 1 + ρ 2 ,
hence W satisfies

L ρ W ≥ 1 in B(0, R 0 ) C , W ≥ 0 in B(0, R 0 ) C , lim |x|→∞ W = ∞
for ρ sufficiently small. Then following the procedure used in [12, Proposition 2.1], using the function W , there exists an unique invariant measure m ρ for the process with diffusion σ ρ , and arguing as in [12, Theorem 2.1 (proof)] and using again the function W we obtain the existence of the invariant measure associated to the process (1.1). For the proof of uniqueness, we refer the reader to [START_REF] Mannucci | The ergodic problem for some subelliptic operators with unbounded coefficients[END_REF]Theorem 2.1].
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Remark 2.1 Lions-Musiela in [START_REF] Lions | Ergodicity of diffusion processes[END_REF] have considered a similar degenerate case but in their paper the elements of the matrix are bounded in R 2 in this way

σ(x) = 1 0 0 x 1 √ 1+x 2 1 .
Remark 2.2 Following [12, Example 5.1] can can obtain similar results of Theorem 2.1 with a more general drift term b:

b i (x) = b i (x i ), b i (x i ) ≤ -C i |x i | 1-β for x i ≥ R b i (x i ) ≥ C i |x i | 1-β for x i ≤ -R for β ≥ 0, R > 0 and suitably chosen C i > 0 (i = 1, 2).
Remark 2.3 As applications of the existence of an invariant measure we obtain, arguing as in [START_REF] Mannucci | The ergodic problem for some subelliptic operators with unbounded coefficients[END_REF] the following results:

lim δ→0 + δu δ (x) = lim t→+∞ u(t, x) = lim t→+∞ v(t, x) t = R 2 f dm,
where m is the invariant measure of and u δ , u and v are the solutions respectively of

δu δ + Lu δ = f (•), in R 2 , u t + Lu = 0 in (0, +∞) × R 2 , u(0, •) = f (•) on R 2 , v t + Lv = f (•) in (0, +∞) × R 2 , v(0, •) = 0 on R 2 ,
and L is defined in (2.1).

3 Asymptotic behaviour for a singular perturbation problem

In this section, we investigate the limit of the value function

V ǫ (t, x, y) := sup u∈U E[ T t f (X s , Y s , u s )ds + e a(t-T ) g(X T )]
where E denotes the expectation, U is the set of progressively measurable processes with values in a compact metric set U and a is a fixed positive parameter and (X t , Y t ) are driven by (1.3) (note that V ǫ depends on ǫ through the coefficients of the dynamics). Throughout this section, we shall assume i) the function f = f (x, y, u) is Lipschitz continuous in (x, y) uniformly in u and, for some

C f > 0, it satisfies |f (x, y, u)| ≤ C f (1 + |x|) ∀(x, y, u) ∈ R n × R 2 × U ;
ii) the function g is continuous in (x, y) and there exits C g such that

|g(x, y)| ≤ C g (1 + |x|) ∀(x, y) ∈ R n × R 2 ;
iii) φ(x, y, u) and σ(x, y, u) are Lipschitz continuous and bounded in (x, y) uniformly on u:

| φ(x, y, u)| ≤ C φ, |σ(x, y, u)| ≤ C σ .
Problems of this type arise from models where the variables Y evolve much faster than the variables X. We refer to [START_REF] Bardi | Convergence by viscosity methods in multiscale financial models with stochastic volatility[END_REF] and [START_REF] Mannucci | Singular perturbations for an elliptic operator in the Heisenberg group[END_REF] for the financial models which inspired this research.

By standard theory (see [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]), the value function V ǫ is the unique (viscosity) solution to the following Cauchy problem

(3.1)      -∂ t V ǫ + H x, y, D x V ǫ , D 2 xx V ǫ , D 2 xy V ǫ √ ǫ + 1 ǫ L(y, D y V ǫ , D yy V ǫ ) + aV ǫ = 0 in (0, T ) × R n × R 2 V ǫ (T, x, y) = g(x, y) on R n × R 2
where L is the operator defined in (2.1) and

H(x, y, p, X, Z) := min u∈U -tr(σσ T X) -φ • p -2tr(σσ T Z) -f (x, y, u) .
Our aim is to establish that, as ǫ → 0 + , the function V ǫ converges locally uniformly to a function V = V (t, x) (which will be independent of y) which can be characterized as the unique (viscosity) solution to the effective Cauchy problem

(3.2) -∂ t V + H x, D x V, D 2 xx V + aV = 0 in (0, T ) × R n V (T, x) = g(x) on R n .
The effective Hamiltonian and the effective terminal datum are given by

H(x, p, X) := R 2 H(x, y, p, X, 0)dm(y) (3.3) g(x) := R 2 g(x, y)dm(y) (3.4)
and m is the invariant measure established in Theorem 2.1. As a matter of facts, H(x, p, X) is the ergodic constant λ of the cell problem (3.5) -tr(σ(y)σ T (y)D 2 w(y)) -b(y)Dw(y) + H(x, y, p, X, 0) = λ y ∈ R 2 , (the solution w to this equation is called corrector) while g(x) is the constant obtained in the long time behaviour of the parabolic Cauchy problem

∂ t w * -Lw * = 0 in (0, ∞) × R 2 , w * (0, y) = g(x, y) on R 2 , (namely g = lim t→+∞ w * (t, y)).
The main issues of this setting are: 1) the fast variables evolve in the whole space, 2) the infinitesimal generator of their operator is degenerate with unbounded coefficients, 3) the variables y lacks a group structure. In order to overcome these issues, we shall use the following tools: 1) there exists a superlinear Lyapunov function, 2) a Liouville type result applies to operator L, 3) there exists an invariant measure, 4) the cell problem admits a regular solution (we shall first prove that it is globally Lipschitz continuous and then we make a bootstrap argument) with an at most logarithmic growth.

In order to prove the existence and the properties of (λ, w) satisfying (3.5), we introduce the approximated problems

(3.6) δu δ -tr(σ(y)σ T (y)D 2 u δ ) -b(y)Du δ = F (y) in R 2 ,
where δ > 0 and F (y) := -H(x, y, p, X, 0) with (x, p, X) fixed. In the next subsection we investigate the properties of the approximated correctors u δ ; in the last subsection these properties will be inherited by the corrector w.

Regularity of the approximated correctors

In this section we shall establish two results on the regularity of u δ in two different setting for F : a global Lipschitz continuity and a local Hölder continuity. In our opinion, both these results have their own interest because we apply two different techniques: the former follows the ones of [START_REF] Crandall | User's guide to viscosity solutions of second-order partial differential equations[END_REF][START_REF] Ishii | Viscosity solution of fully nonlinear Second-Order Elliptic Partial Differential Equations[END_REF] while the latter one follows the ones of [START_REF] Fujita | Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator[END_REF]. However, in the rest of the paper we shall only need the former one. Throughout this section we assume

(3.7) |F (y)| ≤ C F (|y| + 1) ∀y ∈ R 2 .
Let us recall from [13, Lemma 3.3] the following result on the growth of u δ ; for the proof, we refer the reader to [START_REF] Mannucci | Singular perturbations for an elliptic operator in the Heisenberg group[END_REF].

Lemma 3.1 Under assumptions (3.7), there exists a constant C such that

(3.8) |u δ (y)| ≤ C |y| + 1 δ , y ∈ R 2 .
3.1.1 Global Lipschitz continuity of the approximated corrector Proposition 3.1 Assume b as in (1.2) with α > 1 and that F is Lipschitz continuous in R 2 with Lipschitz constant L. Let u δ be the unique continuous solution of (3.6) which satisfies (3.8). Then, for L > L/(α -1), there holds

|u δ (x) -u δ (y)| ≤ L|x -y| ∀x, y ∈ R 2 , δ > 0.
Proof. The proof follows the same arguments of the proof of [13, Theorem 3.2]. For completeness, we briefly sketch the main steps. For each η > 0, we introduce the function

Ψ(x, y) = u δ (x) -u δ (y) -L|x -y| -η|x| 2 -η|y| 2 .
Our statement is equivalent to the following inequality

(3.9) Ψ(x, y) ≤ 4η δ ∀x, y ∈ R 2 , η ∈ (0, 1).
In order to prove (3.9), we argue by contradiction. Using the Lemma [5, Lemma 3.2], we follow the same calculation up to equation [13, eq.(3.24)]. By our choice of the matrix σ, we obtain the desired contradiction. 2

Remark 3.1 As in [START_REF] Mannucci | Singular perturbations for an elliptic operator in the Heisenberg group[END_REF], for b(x) = (-α 1 x 1 , -α 2 x 2 ), we obtain the same result when α 1 > 1, α 2 > 0 and L > L/l where l = min{α 1 -1, α 2 }. 

|F (x) -F (y)| ≤ C F |x -y| γ (Φ(x) + Φ(y)), x, y ∈ R 2 , γ ∈ (0, 1], C F > 0 where Φ(x) = x 4 1 +x 2 2 +M , M ≥ 1.
Let u δ be the unique continuous solution of (3.6) which satisfies (3.8). Then there is a constant C > 0, independent on δ such that

(3.10) |u δ (x) -u δ (y)| ≤ C|x -y| γ (Φ(x) + Φ(y)), ∀ x, y ∈ R 2 .
Proof. We follow the procedure of [START_REF] Fujita | Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator[END_REF]Theorem 4.3]. We define the functions w δ (x, y) = u δ (x) -u δ (y) and g(x, y) = C F |x -y| γ (Φ(x) + Φ(y) + A) where A will be chosen suitably large. If we prove that w δ ≤ g in R 2 then we obtain (3.10) with a suitable C, since Φ > 1.

We argue by contradiction, we suppose that sup R 2 (w δ -g) > 0. From the linear growth of u δ (see (3.8)) we know that lim |x|+|y|→+∞ (w δ (x, y)g(x, y)) = -∞ hence we have that

w δ ≤ g in (R 2 × R 2 ) \ B R for a suitable B R ⊂ R 2 × R 2 .
Let (x, ŷ) ∈ B R be maximum point of w δ (x, y)-g(x, y): w δ (x, ŷ) -g(x, ŷ) > 0, x = ŷ. At this point we introduce the operator Ξ defined as:

Ξg(x, y) = tr(Σ(x, y)D 2 g(x, y)) + 2 i,j ∂ 2 ∂x i ∂x j g(x, y)
where

Σ(x, y) = σ(x)σ T (x) σ(x)σ T (y) σ(y)σ T (x) σ(y)σ T (y) =     1 0 1 0 0 x 2 1 0 x 1 y 1 1 0 1 0 0 x 1 y 1 0 y 2 1     (the matrix σ is defined in (1.2)
). This operator is elliptic. We observe that w δ (x, y) satisfies for any x, y ∈ R 2

δw δ -Ξw δ + αxD x w δ + αyD y w δ = F (x) -F (y) ≤ C F |x -y| γ (Φ(x) + Φ(y)).
Hence from the maximum principle we have that (3.11) δg(x, ŷ) -Ξg(x, ŷ) + αxD x g(x, ŷ) + αyD y g(x, ŷ) ≤ C F |x -ŷ| γ (Φ(x) + Φ(ŷ)).

At this point to find a contradiction we compute δg(x, ŷ) -Ξg(x, ŷ) + αxD x g(x, ŷ) + αyD y g(x, ŷ) directly by the definition of g. Denoting by t = |x -y| 2 , let us introduce g(x, y) as g(x, y) = t γ/2 (Φ(x) + Φ(y) + A).

We compute now Ξg(x, y) = tr(Σ(x, y)D 2 g(x, y)). We have

D x g = γt γ/2-1 (x -y)(Φ(x) + Φ(y) + A) + t γ/2 D x Φ(x), D y g = γt γ/2-1 (y -x)(Φ(x) + Φ(y) + A) + t γ/2 D y Φ(y). D 2 xx g = γ(γ -2)t γ/2-2 (x -y) ⊗ (x -y)(Φ(x) + Φ(y) + A) + γt γ/2-1 I(Φ(x) + Φ(y) + A) + 2γt γ/2-1 (x -y) ⊗ D x Φ(x) + t γ/2 D 2 xx Φ(x) D 2 yy g = γ(γ -2)t γ/2-2 (y -x) ⊗ (y -x)(Φ(x) + Φ(y) + A) + γt γ/2-1 I(Φ(x) + Φ(y) + A) + 2γt γ/2-1 (y -x) ⊗ D y Φ(y) + t γ/2 D 2 yy Φ(y) D 2 xy g = -γ(γ -2)t γ/2-2 (x -y) ⊗ (x -y)(Φ(x) + Φ(y) + A) - γt γ/2-1 I(Φ(x) + Φ(y) + A) + γt γ/2-1 (x -y) ⊗ (D y Φ(y) -D x Φ(x)).
Denoting by A ij the 2 × 2 minor of Σ we have that

Ξg(x, y) = tr(Σ(x, y)D 2 g(x, y)) = tr(A 11 D 2 xx g + A 12 (D 2 xy g) T + A 12 D 2 xy g + A 22 D 2 yy g).
Using the explicit derivatives written here above and the definition of Φ we obtain

Ξg(x, y) = tr(Σ(x, y)D 2 g(x, y)) = γ(γ -2)t γ/2-2 (Φ(x) + Φ(y) + A)(x 2 -y 2 ) 2 (x 1 -y 1 ) 2 + t γ/2 (∆ Gx Φ(x) + ∆ Gy Φ(y)) + γt γ/2-1 (Φ(x) + Φ(y) + A)(x 1 -y 1 ) 2 + +4γt γ/2-1 (x 1 -y 1 )(x 2 -y 2 )(x 1 x 2 + y 1 y 2 )
where we denoted by ∆ G u(z) := tr(σ(z)σ T (z)u(z)), i.e. the horizontal Grushin Laplacian operator. We note that, by elementary calculations, it is possible to find a constant L α such that

(3.12) -∆ G Φ(z) + αzD z Φ(z) ≥ 2αΦ(z) -L α .
Now we write the equation δg(x, y) -Ξg(x, y) + αxD x g + αyD y g = δt γ/2 (Φ(x) + Φ(y) + A) +

t γ/2 (-∆ Gx Φ(x) + αxD x Φ + (-∆ Gy Φ(y) + αyD y Φ)) - γ(γ -2)t γ/2-2 (Φ(x) + Φ(y) + A)(x 2 -y 2 ) 2 (x 1 -y 1 ) 2 -γt γ/2-1 (Φ(x) + Φ(y) + A)(x 1 -y 1 ) 2 - 4γt γ/2-1 (x 1 -y 1 )(x 2 -y 2 )(x 1 x 2 + y 1 y 2 ) + αγt γ/2-1 (Φ(x) + Φ(y) + A)(x -y) 2 ≥ δt γ/2 (Φ(x) + Φ(y) + A) + t γ/2 (2α(Φ(x) + Φ(y)) -2L α ) -γt γ/2-1 (Φ(x) + Φ(y) + A)(x 1 -y 1 ) 2 - 4γt γ/2-1 (x 1 -y 1 )(x 2 -y 2 )(x 1 x 2 + y 1 y 2 ) + αγt γ/2-1 (Φ(x) + Φ(y) + A)(x -y) 2 ,
where in the last inequality we used (3.12). Hence by the definition of t = |x -y| 2 we have

δg(x, y) -Ξg(x, y) + αxD x g + αyD y g ≥ δ|x -y| γ (Φ(x) + Φ(y) + A) + |x -y| γ (2α(Φ(x) + Φ(y)) -2L α ) -γ|x -y| γ-2 (Φ(x) + Φ(y) + A)(x 1 -y 1 ) 2 - 4γ|x -y| γ-2 (x 1 -y 1 )(x 2 -y 2 )(x 1 x 2 + y 1 y 2 ) + +αγ|x -y| γ-2 I(Φ(x) + Φ(y) + A)(x -y) 2 .
Recall that g(x, y) = C F g(x, y), hence g satisfies:

δg(x, y) -Ξg(x, y) + αxD x g + αyD y g ≥ C F |x -y| γ 2α(Φ(x) + Φ(y)) -2L α + (δ -γ)(Φ(x) + Φ(y) + A) + +αγ(Φ(x) + Φ(y) + A) -4γ(x 1 x 2 + y 1 y 2 ) . Hence δg(x, y) -Ξg(x, y) + αxD x g + αyD y g ≥ C F |x -y| γ (Φ(x) + Φ(y))(δ + (2α -γ) + γα)) + A(δ + (α -1)γ) -2γ|x 1 x 2 + y 1 y 2 | -2L α . (We used that |(x 1 -y 1 )(x 2 -y 2 )| ≤ 1 2 (x -y) 2 .
) Since α > 1 and γ ∈ (0, 1], δg(x, y) -Ξg(x, y) + αxD x g + αyD y g ≥

C F |x -y| γ (Φ(x) + Φ(y)) + γα(Φ(x) + Φ(y)) + A(δ + (α -1)γ) -4γ(x 1 x 2 + y 1 y 2 ) -2L α > C F |x -y| γ (Φ(x) + Φ(y)).
The last inequality is obtained noting that: 1) Since α > 1 we can find K α > 0 such that αΦ(x) -4γx 1 x 2 > -K α .

2) Since α > 1 we can choose A sufficiently large such that A(δ

+ (α - 1)γ) -2L α -K α > 0.
Hence we obtain a contradiction of (3.11).

2

Remark 3.2 Note that if we consider a drift term of the type: b(y) = (-α 1 y 1 , -α 2 y 2 ) we can obtain the same result as before taking γ = 1 with α 1 > 1 and α 2 > 0. The calculations are tedious and we omit them. 

The convergence result

|V ǫ (t, x, y)| ≤ C 0 (1 + |x|), ∀(t, x, y) ∈ (0, T ) × R n × R 2
for some positive constant C 0 independent on ǫ. In particular {V ǫ } ǫ is a family of locally equibounded functions.

Proof. The proof is the same as [13, Proposition 2.1]. , we have ∆w ∈ C 0,β loc . Applying standard theory, we accomplish the proof. 2

Conclusion.

We adapt the classical perturbed test function method (see [START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF][START_REF] Evans | the perturbed test-function method for viscosity solutions of nonlinear PDE[END_REF][START_REF] Ghilli | Viscosity methods for large deviations estimates of multi scale stochastic processes[END_REF]) to prove the convergence. To this end, we argue as in [13, Theorem 2.1] using the Liouville property for L, the regularity of the corrector and the existence of a Lyapunov function (W (y) = y 2 1 + y 2 2 ). 2

3. 1 . 2

 12 Local Hölder continuity of the approximated corrector Proposition 3.2 Assume b as in (1.2) with α > 1, (3.7) and

Theorem 3 . 1 Proposition 3 . 3

 3133 Assume α > 1 and that, for F (•) = -H(x, •, p, X, continuous functions.Then, the solution V ǫ of (3.1) converges locally uniformly in (0, T )×R n ×R 2 to the unique viscosity solution V of (3.2) where H and g are defined in(3.3)-(3.4).Proof. The arguments of the proof are analogous to those of [13, Theorem 2.1]; we only sketch them.1. Well posedness of problem (3.1) and growth properties of V ǫ . For any ǫ > 0 there exists a unique continuous viscosity solution V ǫ to problem (3.1) such that

2 2 .

 2 The cell problem. Let us consider the sequence of solutions of the approximated cell problem (3.6) {u δ } δ . Using the Proposition 3.1 we can define (at least for a subsequence) the lim δ→0 (u δ (y) -u δ (0)) := w(y) and using the Lemma 3.1 lim δ→0 -δu δ (0) =: λ.

Proposition 3 . 5 w ∂y 2 2 . 2 . 2 2 1 ∈ 2 2 1 ∈

 35222121 Let w be the solution of the cell problem (3.5) founded in Proposition 3.4. Then w ∈ C 2,β loc (R 2 ), for some β ∈ (0, 1).Proof. In this proof, β denotes a constant which may change from line to line. The corrector w solves (3.15) -tr(σ(y)σ T (y)D 2 w(y)) + αyDw(y) = G(y) with G(y) := λ -H(x, y, p, X, 0). First let us get the global Lipschitz continuity of ∂w ∂y 2 and ∂ 2 Deriving equation (3.15) with respect to y 2 (remark that this is possible because G is regular enough thanks to (3.13)) we obtain that the function u := ∂w ∂y 2 is bounded by Proposition 3.1 and it solves in the sense of distributions (3.16) -tr(σσ T D 2 u) + αyDu + αu = ∂G ∂y From Proposition 3.1 and [13, Lemma 3.5], we get that ∂w ∂y 2 is globally Lipschitz continuous in R 2 . Deriving again equation (3.16) with respect to y 2 we obtain that the function ∂ 2 w ∂y is globally Lipschitz continuous in R 2 . Using the global Lipschitz continuity of ∂w ∂y 2 and Proposition 3.1 in (3.15), we infer: ∂ 2 w ∂y 2 L ∞ loc . Again, by the Lipschitz continuity of ∂w ∂y 2 , we obtain ∆w ∈ L ∞ loc ; by standard elliptic theory, Dw ∈ C 0,β loc . Using the global Lipschitz continuity of ∂ 2 w ∂y in (3.15), we get ∂ 2 w ∂y 2 C 0,β loc . Again, by the Lipschitz continuity of ∂ 2 w ∂y 2 2

  The constant λ = -R 2 H(x, y, p, X, 0)dm(y) (m is the invariant measure founded in Theorem 2.1) is the unique constant such that the cell problem 3.5 admits a solution w with an at most linear growth at infinity. Moreover w is globally Lipschitz continuous, satisfies

	Thanks to Proposition 3.1 w is a global Lipschitz function and using
	the stability properties of viscosity solutions (w, λ) is a solution of the
	ergodic problem (3.5).		
	Moreover:		
	Proposition 3.4 (3.14) |w(y) -w(0)| ≤ C 1 + log(y 4 1 + y 2 2 + 1)	∀y ∈ R 2
	Estimate (3.14) follows from an analogous estimate for u δ that can
	be proved as in [13, Lemma 3.4] taking as supersolution of (3.6) the
	function g(y 1 , y 2 ) = C 1 log(y 4 1 + y 2 2 ) which satisfies	
	δg -tr(σσ t D 2 g) + αyDg ≥ C 1	2y 6 1 -10y 2 1 y 2 2 (y 4 1 + y 2 2 ) 2 + α	4y 4 1 + y 2 2 y 4 1 + y 2

and it is unique up to an additive constant within the function with an at most linear growth at infinity. Proof. We refer the reader to Remark 2.3 to characterize λ.

2

≥ F (y), for y ∈ R 2 \ B R , with suitable C 1 and R sufficiently large. Hence repeating the same argument as in

[START_REF] Mannucci | Singular perturbations for an elliptic operator in the Heisenberg group[END_REF] Lemma 3.4] 

we get the result. 2

3. C 2 -regularity of the corrector.
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