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Abstract

We describe some experimentations based on the data of the 2017 data
fusion contest (IEEE-IGARSS). These experiments highlights the comple-
mentarity between both deep learning features and normalized differences
index for LTZ estimation

1 Introduction

Data fusion contest are a set of challenges of the remote sensing commu-
nity. The 2017 challenge is about predicting LTZ zones [7] from training
cities to unknown cities.

See http://www.grss-ieee.org/community /technical-committees/data-
fusion/data-fusion-contest/

Provided inputs for doing this prediction include remote sensing im-
ages: landsat 100m images (multiple images per city), sentinel2 100m
images, sentinel2 5m images and openstreetmap information available for
these cities during challenge duration.

However, both these modality are very different and complementary.
In one hand, openstreetmap provides spatially resolved, symbolic and se-
mantic informations about the city but these informations may be biaised
(biais include difference of quality from different annotators, missing anno-
tations, erroneous semantic, erroneous location, semantic misunderstand-
ing between different annotators). On the other hand, remote sensing
images may be low resolution, blurred, distorted by atmospheric events.
Thus, taking advantage of those two modality may lead to better accuracy
than using one modality only - even in a context where only few ground
truth annotations (assumed not noisy) are available.

2 Experiment

We evaluate several pipelines which use raw images, normalized differ-
ences, and osm. Following the rules of the 2017 data fusion contest, we
evaluate the quality of the LTZ estimation by measuring the pixelwise
accuracy. The current experiment are done both on the testing data and



with a leave one city out protocol allowing more deeper evaluation (this
last protocol is: all training cities except one are used to train the model
which is then applied to the excluded city, this operation being done for
all cities).

2.1 raw images

Raw images are used directly as features. For the landsat, we transform
the provided multi date set of images into a mean image (we compute,
for each pixel coordinate, the mean of the value of this pixel in all the
image) and a variance image (we compute, for each pixel coordinate, the
variance of the value of this pixel in all the image). Of course, this variance
should not be interpreted as the real variance in a statistical term as there
are often only two images. however, this is a simple but robust way to
transform a set of value into a fixed number of values that are invariant
from any permutation of the set.

Then, we concatenate all provided bands for both landsat and sentinel
leading to a 27 channels images of each cities.

Then, we perform a 1 pixel classification (we try to add spatial context
but due to the few number of annotated pixels, this result in a dramatic
overfitting). Thus, each pixel is classified based only on the 27 values
providing from the 27 bands (9 sentinel bands and 9 means and 9 variances
for the 9 landsat bands).

2.2 osm

We use pretrained convolutionnal deep learning to extract features from
osm. We use both landuse and building provided rasters and road vector
(we rasterize the road vector on the same grid than the 2 other rasters).
From the landuse, we extract green areas (vegetation, forest, park, ...)
only. All 3 rasters are binarize (value is either 0 or 255) to form a classic
8bit RGB image (Road Green Building for the channel).

We apply a segnet like neural network [1] on these images. More
precisely, we use a vggl6 [6] initialised by imagenet weight up to the
conv3_3 layer following to a simple average deconvolution.

The predominance of the encoding part is due to the fact that images
are 20m resolved against 100m for the images and LTZ annotations.

Also, as the images are known to be biaised, we add a 2x2 pooling
layer after each convolution to make the network robust to error and to
increase context information.

2.3 normalized difference

We also extract well known normalized difference (we will call it ndi)
features from each image. We use NDVI, NDWI, MNDWI, NDBI and
WRI (see [5] for all, [3, 2] for historic description of the first ones).



method berlin | HK | paris | rome | sao paulo | average test
images (lvsall) 2% | 25% | 4% | 22% 43% 38% -
osm (1lvsall) 47% 43% | 59% 33% 21% 36% -
images + osm (1lvsall) | 53% | 51% | 72% | 30% 54% 48% 56%
images + osm 50% | 52% | 73% | 33% 68% 51% 58%
images + ndi + osm 51% | 53% | 73% | 34% 68% 52% -
ndi 4 osm 57% 53% | 67% 48% 52% 54% 57%

Table 1: Results of the leave one city out

2.4 results

Each pipeline is built by extracting a set of feature maps and using svm
(e.g. [4]) to perform pixelwise classification. Precisely liblinear or libsvm
(with linear kernel) have been used: liblinear uses 1vsall and libsvm uses
1vsl which will be the default classifier in the following.

Leave one city out results are detailled in table 1 with average result
and test result when available. In order to penalize, very unstable results
across cities we weight the worse accuracy by a factor 2.

3 Discussion

Even if the challenge have ended with much more high score than the
57% reached by our method, we still think that this method is interesting
for two reason. First, we believe that ndi + osm will be more stable on
new city (neither from train or test - even if testing data where hidden,
feedback from evaluation server may result in a little overfitting on test
data). Then, our pipeline is kind of generic regarding the task (which is
here LTZ estimation but could be another kind of geographic index for
an other utilisation). In addition, the different performed experiments are
interesting, in our opinion.

3.1 osm

OSM only performs poorly but it can be explained by the lack of some
classes: there is no way to predict water from our osm raster. More
deeply, our osm raster is able to be processed by a pretrained network
but is very poor regarding all the osm information and regarding the
information needed to perform correct LTZ estimation (e.g. difference
between middle rise and low rise).

3.2 raw images as features

Raw images do not perform bad whereas it is very hard to understand
how raw images can be used without any kind of normalization. A closer
look to intensity across cities (per class) clearly show that avera intensity
value of different images are not the same (probably due to illumination
variance). However, svim still manadge to understand something into this
feature vector. Currently, we try to investigate this point but we could



not due to liblinear numerical weakness: R-IR-B from sentinel perform
better than sentinel only even on train data which is not acceptable with
svm. Temporal part of landsat seems to be the informative part whereas
we just compute the means/variance of different landsat without taking
into account that its are not equally temporally distant across cities (nul
variance could corresponds to unvariant area or close acquisition).

3.3 ndi

This is one of the reason, we consider ndi. Normalized difference in-
dex are more robust to illumination, thus both raw value of ndi and
means/variance from multiple acquisition are relevant. Very surprisingly,
adding ndi to the other features do not deeply increase the average accu-
racy. Currently, as we rely on 1 vs 1 svi, it is possible that some pair of
classes are separated only by the sign of some band difference. In other
words, the svm seems to have found by itself relevant band differences.
However, using ndi only highly increases stability of the results across
cities. We feel that temporal information is much more stable but remov-
ing variance part leads to ambiguous results. Deep features from both
images or ndi have been considered but lead to dramatic overfitting.

3.4 conclusion

In our opinion, the main result of this work is the important complemen-
tarity between traditionnal normalized difference index and pretrained
deep learning features for adhoc geographic index estimation.
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