
HAL Id: hal-01480703
https://hal.science/hal-01480703v1

Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Unsteady granular flows down an inclined plane
Stanislav Parez, Einat Aharonov, Renaud Toussaint

To cite this version:
Stanislav Parez, Einat Aharonov, Renaud Toussaint. Unsteady granular flows down an inclined plane.
Physical Review E , 2016, 93 (042902), �10.1103/PhysRevE.93.042902�. �hal-01480703�

https://hal.science/hal-01480703v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 93, 042902 (2016)

Unsteady granular flows down an inclined plane

Stanislav Parez,1,* Einat Aharonov,1 and Renaud Toussaint2
1Institute of Earth Sciences, Hebrew University, Givat Ram, 91904 Jerusalem, Israel
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The continuum description of granular flows is still a challenge despite their importance in many geophysical
and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on
unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the
flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of
the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than
the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural
hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.
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I. INTRODUCTION

Accelerating and decelerating granular materials control
many geophysical situations, with notable examples being
landslides and geological faults. Understanding their flow
would allow us to predict their energy and total deformation
and estimate the risk of natural hazards. While steady granular
flows are complex but relatively well understood, unsteady
flows, prevailing in nature, still lack a theoretical description.
Many fundamental questions regarding unsteady flows are still
open. Under what conditions does a granular flow reach a
steady state and why? How does the velocity profile evolve?
What controls the time scale on which the flow accelerates
and decelerates? What shear rate and shear stress control the
energy dissipation? In this paper, we answer these questions
for free-surface dry granular flows down a slope.

Our knowledge about granular flows mostly comes from
laboratory experiments and computer simulations. As a result,
three flow regimes have been classified [1–3]: solid, in which
grains interact via long-lasting frictional contacts and deform
slowly; gaseous, in which grains interact through collisions
lasting briefly compared to the deformation time scale; and
liquid, which is a transition between the two previous regimes.
For a flow down a slope, the three regimes can be attained
by changing the slope angle θ [4–6]. If θ is small, no flow
is observed but only an elastic deformation, or the flow
decelerates if it was already set in motion previously. Once
θ exceeds the angle of repose, the flow accelerates. The
increasing rate of collisions eventually leads to a steady flow. If,
however, the slope is steep enough, the flow keeps accelerating
because the energy that grains receive during a free fall
between collisions exceeds the dissipation. Here we study the
liquid regime, in which flow is possible yet not too vigorous.

Steady granular flows have been investigated for more than
half a century, resulting in good knowledge of their rheology
[2,7–10], flow regimes [3–5,11], scaling [12,13], and effects
of boundary conditions [14–16]. On the other hand, unsteady
flows have been discussed much less and have been described
only approximately using depth-averaged models, also known
as shallow water models. Depth-averaged models for granular
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flows arise from the depth-averaged mass and momentum
conservation equations, originally derived by Savage and
Hutter [19]. The resulting equations for mean velocity neglect
spatial variation of velocity inside the moving body. Hence,
the depth-averaged models are less accurate if the shear rate
is large. Flow down a slope or channel flow was studied
by [19–25], including analytical solutions for the evolution
of mean velocity, front position, and thickness. These agree
with experimental measurements [19,21,22,25] as long as the
spatial fluctuations of velocity are small, but don’t provide the
profiles of stress and velocity.

Such profiles of velocity and stress are required to access
energy dissipation and the associated destructive potential
of the flow. In addition, the friction coefficient is known
from physics and geophysics to depend on shear rate or
relative sliding velocity between two surfaces [8–10,15,17,18].
Knowledge of shear rate could thus facilitate development of
theoretical friction models.

Computer simulations allow examination of velocity profile
and flow evolution, which are difficult to study experimentally.
Acceleration down an inclined plane, sometimes followed
by deceleration on a flat plane (landslide geometry), was
addressed in [1,26–33] using the discrete element method
(DEM). Results reveal that the (top) free surface moves
faster than the bottom surface, shearing the mass completely
throughout its thickness. Although the simulations show a long
phase of acceleration and unsteady flow [33], the analytical
solutions for velocity and stress profiles are known only for
the steady flow [4,5,7,9,12,13]. Also, the duration of the
accelerating flow before the steady flow is reached has not
been investigated.

The present analytical solution describes granular flows
under simple shear induced by gravity (see Fig. 1). The flow is
uniform in both the lateral and longitudinal directions and the
thickness h is kept constant. As a result, flow properties are
functions of depth y and time t only. Simple shear geometry
is simple enough to allow for an analytical solution yet
describes essential features of many natural flows such as
landslides, avalanches, or geophysical faults. These can often
be approximated as two-dimensional chute flows, or as flow
confined between two walls, with the parallel component of
velocity dominating the other components. Note, however, that
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FIG. 1. Geometry of the studied system depicted on a snapshot
from a DEM simulation. An infinitely-long granular layer accelerates
down a slope inclined at an angle θ . The red envelope for the velocity
vectors v(y,t) denotes the velocity profile predicted by Eq. (11). The
shades of the grains indicate contact stress: The dark grains are most
stressed.

elongation and flattening of the flow (observed for landslides)
is neglected here.

We first review equations describing the rheology of dry
granular flows and derive the velocity field for the flow on an
inclined plane (Sec. II). Then we introduce discrete element
numerical simulations that serve as a test of our analytical
model (Sec. III). Finally, we show that the analytical model
reproduces the kinematics observed in simulations and we
explain why, how, and at what time scale a flow reaches its
final stage, be it steady state for accelerating flows or rest for
decelerating flows (Sec. IV).

II. THEORY

Here we derive analytical forms of velocity, shear rate, and
stress profiles for a granular flow of constant thickness down
an inclined plane. Acceleration of the flow is a result of the
action of gravitational and friction forces

�sρ
∂v

∂t
= �sρg sin θ − ∂τ

∂y
, (1)

where θ is the inclination angle, v(y,t) is the velocity along the
flow direction, τ (y,t) is the shear stress, g is the gravitational
acceleration, ρ is the grain mass density, and �s is the solid
fraction. We assume here that �s is uniform with depth [4]
and constant (a very weak dependence on flow velocity has
been found [1,8,9,15]). As a result, the normal stress N (y,t)
is lithostatic: N = �sρg cos θy.

To form a closed set of equations we need another relation
between τ and v, i.e., a rheological law. We use the observation
that friction in granular materials is shear rate dependent
[8–10,17]. The only local dimensionless quantity for dry
granular flows that contains shear rate is the so-called inertial
number I (y,t),

I = γ̇ d√
N/ρ

, (2)

where d is the grain size and γ̇ (y,t) is the shear rate [the
negative sign is because the y axis is pointing downward

(see Fig. 1)]

γ̇ = −∂v

∂y
. (3)

The friction coefficient μ(y,t) (also dimensionless) can
then be expressed as an expansion in I . The linearized version
of the friction law is

μ ≡ τ

N
= tan θr + βI, (4)

where θr is the dynamic angle of repose and β is another
material parameter (tan θr ≈ 0.35 and β ≈ 0.6 for glass beads
[1]). This type of rheology, in which μ is a function of
I , has been verified for a variety of systems and boundary
conditions [1,8,9,22] and holds as long as plastic processes
are negligible. Since β has been found positive, friction
increases with shear rate under constant normal stress. The
linear approximation (4) is valid for the liquid flow regime
studied here, which corresponds to an inertial number of the
order of 10−3–10−1 [1,9]. For larger inertial numbers, the flow
is collision dominated and eventually becomes turbulent. In
this regime, the linear law breaks down.

The resulting shear stress τ = μN is

τ = tan θr�sρg cos θy + ρβd
√

�sg cos θyγ̇ . (5)

The first term is rate independent and is usually of larger
magnitude. The second term accounts for the increase of shear
stress with shear rate. Consequently, friction force increases
as the flow accelerates.

Taking the spatial derivative of Eq. (1) and using the
constitutive relation (5), we arrive at a single equation
for γ̇ ,

∂γ̇

∂t
= βd

√
1

�s
g cos θ

∂2

∂y2
(
√

yγ̇ ). (6)

This is a nonlinear diffusion equation for γ̇ . Note that a
diffusion equation for shear rate was introduced in Ref. [15]
and used to determine the transient time to obtain steady
Couette flow in a simple shear cell. However, due to the
addition of gravity here, the diffusion coefficient is nonuniform
and thus the diffusion equation (6) is quite different from that
in Ref. [15].

We will solve Eq. (6) along with the following boundary or
initial conditions:

τ (0,t) = 0, (7a)

v(h,t) = 0, (7b)

v(y,0) = v0(y), (7c)

where h is flow thickness. The boundary conditions can be
stated as the top surface of the flow is free of stresses [Eq. 7(a)],
the velocity at the bottom of the flowing mass is zero (the
ground surface is rough) [Eq. 7(b)], and the initial velocity is
v0(y) [Eq. 7(c)].

The solution is found as a series solution using separation
of variables and superposition of all linearly independent
solutions [34] (let us suppose for now that the spectrum of
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solutions is discrete: n = 0,1, . . .)

γ̇ =
∑

n

pn(t)qn(y), (8)

where

dpn

dt
= Knpn,

d2(
√

yqn)

dy2
= Kn

βd
√

1
�s

g cos θ
qn.

The separation constants Kn are to be determined from the
boundary conditions.

The functions pn are exponentially growing for Kn > 0.
Because we are looking for a solution that is stable, the Kn

are restricted to be nonpositive: K0 = 0 and Kn ≡ −1/Tn < 0
for n > 0, where Tn are positive constants with a dimension of
time. The spatial functions qn have two independent solutions:
the Bessel functions of the first and the second kind, J2/3 and
Y2/3 [35]. For small y, they behave as ∼√

y or ∼1/
√

y. To
satisfy the boundary condition 7(a), we have to exclude the
divergent solution. This leads to the following expansion for
shear rate:

γ̇ =
⎧⎨
⎩

b∗√y + √
h

∑
n bnJ2/3

(
κn

(
y

h

)3/4)
e−t/Tn , θ > θr

√
h

∑
n bnJ2/3

(
κn

(
y

h

)3/4)
e−t/Tn , θ < θr,

(9a)

(9b)

where b∗ and bn are yet undetermined weights, J2/3(z) is a Bessel function of the first kind [35], and κn is a dimensionless
constant related to Tn by

κn = 4

3

(
�sh

3

T 2
n β2d2g cos θ

)1/4

. (10)

Each term in Eq. (9) is a solution of Eq. (6) that satisfies the boundary condition 7(a). If the inclination angle is larger than the
angle of repose θ > θr, the flow accelerates towards a steady state. In that case, we allow for the time-independent solution b∗√y

(the first term), which corresponds to the steady flow shear rate since all other terms vanish after sufficient time. Note that this
term is identical to the Bagnold shear rate profile, found in numerous studies of steady granular flows on an incline [4,5,7]. For
θ < θr the flow decelerates towards rest as γ̇ (t → ∞) → 0. Therefore, the time-independent term is discarded.

The spatial integration of −γ̇ = ∂v
∂y

yields velocity up to an integration constant, which is allowed to be a function of
time. The integration constant is determined from Eq. (1) using the series 9(a) or 9(b) in Eq. (5). This leads to the velocity
formula

v(y,t) =
⎧⎨
⎩

2
3b∗(h3/2 − y3/2) + 16

9 h2 ∑
n

bn

κ2
n

d
dy

[√
yJ2/3

(
κn

(
y

h

)3/4)]
e−t/Tn , θ > θr

−g cos θ (tan θr − tan θ )t + 16
9 h2 ∑

n
bn

κ2
n

d
dy

[√
yJ2/3

(
κn

(
y

h

)3/4)]
e−t/Tn , θ < θr,

(11a)

(11b)

where b∗ is

b∗ =
√

�sg cos θ (tan θ − tan θr)

βd
. (12)

The solution 11(b) is valid as long as v(y,t) > 0. Once the velocity at given depth y decays to zero, the layer becomes locked
due to static friction and v(y) = 0 afterward.

To satisfy the boundary condition 7(b), v(h,t) = 0, for arbitrary weights bn, all terms in Eq. (11) must vanish for y = h. This
constrains the values of κn, and consequently Tn, so as to satisfy

d

dy

[√
yJ2/3

(
κn

(
y

h

)3/4)]∣∣∣∣
y=h

= 0, Tn = 16
√

�s

9κ2
n

h3/2

βd
√

g cos θ
, n = 1,2, . . . ,∞. (13)

In other words, κn are points where the function
√

zJ2/3(z) has an extreme value. Since this function oscillates, we have an infinite
and discrete number of solutions and therefore n is indeed identified with natural numbers. The first few values of κn and Tn/T1

are given in Table I.
Finally, the constants bn are determined from the initial condition (7c) as

bn =

⎧⎪⎨
⎪⎩

−
∫ h

0 (
√

ydv0/dy+b∗y)J2/3(κn(y/h)3/4)dy√
h

∫ h

0 J 2
2/3(κn(y/h)3/4)

√
ydy

, θ > θr

−
∫ h

0
√

ydv0/dyJ2/3(κn(y/h)3/4)dy√
h

∫ h

0 J 2
2/3(κn(y/h)3/4)

√
ydy

, θ < θr.

(14a)

(14b)

In the preceding relation we used Eq. (9) and orthogonality of qn for different n (see the Appendix):∫ 1
0

√
zJ2/3(κnz

3/4)J2/3(κmz3/4)dz ∼ δnm. In Table I we give a few values of bn corresponding to the initial velocity v0 = 0
(flow accelerating from rest) or v0 = 2b∗(h3/2 − y3/2)/3 (flow decelerating from a steady state). While the absolute values of Tn
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and bn depend on the system dimensions, material properties, and inclination angle, their relative values are universal. Note the
rapid decay of Tn and bn with increasing n.

In general, one needs to calculate bn for all n for which the factor exp (−t/Tn) is greater than a desired accuracy. Using these
bn in Eqs. (11) and (9) gives accurate profiles of the velocity and shear rate fields [and also the shear stress field related by
Eq. (5)]. Nevertheless, for a first-order approximation, when we restrict the calculation to the n = 1 term only, the velocity field
Eq. (11) simplifies to

v(y,t) =
{

2
3b∗(h3/2 − y3/2)(1 − e−t/T1 ), θ > θr

−g cos θ (tan θr − tan θ )t + v0(y)e−t/T1 , θ < θr.

(15a)

(15b)

T1 is calculated from Eq. (13) using κ1 from Table I, while b∗ is calculated from Eq. (12). The corresponding shear rate and shear
stress fields can be derived using their definitions (3) and (5).

III. SIMULATIONS

Numerical simulations were used as a benchmark for the
theory derived above. They employ the DEM [36], in which the
Newtonian equations of motion for a set of grains are solved in
discrete steps. Grains are modeled as balls with rotational and
translational degrees of freedom. They interact via viscoelastic
contact forces according to the Hertz-Mindlin contact model
[37,38]

Fn
ij =

√
2E

3(1 − ν2)

√
Rij ξij ξij − γ

√
Rij ξij ξ̇ij ,

F t
ij = min

[
2
√

2E

(2 − ν)(1 + ν)

√
Rij ξijs,μggF

n
ij

]
, (16)

where Fn
ij and F t

ij are normal and shear components of the
contact force between interacting grains i and j , Rij is the
harmonic mean of the grains’ radii, and ξij is the overlap
between the two grains. An elastic modulus E = 1.31×1010 Pa
and Poisson ratio ν = 0.235 were chosen to simulate quartz
grains with density ρ = 2.5×103 kg m−3. Energy dissipation
is governed by the normal damping force (the second term in
Fn

ij ) with damping coefficient γ = 0.8 and by the tangential
friction F t

ij . The restitution coefficient is not constant, but
depends on velocities of colliding grains [37]. The tangential
force is initially elastic, calculated from shear displacement
s on contacts of the grains from the instant the contact
was formed. Once the spring force exceeds the Coulomb
friction criterion, the contact starts sliding with a constant shear
force F t

ij = μggF
n
ij , where the grain-grain friction coefficient

is μgg = 0.5. Note that the grain-grain friction coefficient is

TABLE I. Parameters κn, Tn, and bn used in the expansions
in Eqs. (9) and (11). The ba

n and bd
n given here correspond to

the initial velocity v0 = 0 (for a flow accelerating from rest) and
v0 = 2b∗(h3/2 − y3/2)/3 (for a flow decelerating from a steady state),
respectively. While the absolute values of Tn and bn depend on the
system dimensions, material properties, and inclination angle, their
relative values given below are universal.

n κn Tn/T1 ba
n/b

∗ bd
n/b

∗

1 1.87 1 −1.30 1.30
2 4.99 0.14 0.30 −0.30
3 8.12 0.053 −0.14 0.14

not the same as the macroscopic dynamic friction coefficient
[39,40], which is investigated below and found to be shear rate
dependent.

Grain diameters were randomly drawn from a Gaussian
distribution with both mean value and standard deviation equal
to d. The distribution was however cut, so all diameters fall
within 0.8d–1.2d. Equations of motion were integrated using
the velocity Verlet algorithm [41] with a time step 0.1d

√
ρ/E

small enough to resolve grain-grain collisions.
Periodic boundary conditions were applied in the direction

of the flow, which is equivalent to the constant thickness
boundary condition used in the theory. The width of the
simulation box along the flow direction was 96d (no size
effects due to this scale were observed), while the thickness
of the flow varied among different simulations between
h = 12d and 96d to test the volumetric scaling.

Granular systems are initiated as layers with random loose
packing, standing on a rough horizontal surface made of glued
grains. Subject to vertical gravitational acceleration, the grains
sediment. By gradually turning the slope on which material
flows, the static angle of repose θsr = 17◦ and the dynamic
angle of repose θr = 14◦ were found. To study acceleration we
used inclination angles θ = 17◦–25◦. The selected range of
angles can accommodate steady flows (see Refs. [4,5,11] for
a phase diagram of flow regimes). Larger inclination angles
lead to unstable acceleration and breakdown of the liquid flow
regime. To study deceleration we turn the slope down to an
angle θ < θr = 14◦.

IV. RESULTS

A. Flow density

The derivation of the flow velocity carried out in Sec. II
relies on the presumption that the solid fraction �s is constant
and uniform throughout the granular layer. In fact, �s is a
weak function of I [1,8,9,15], however, its variation can be
neglected compared to variations of velocity and shear stress.
This point is illustrated in Fig. 2, where we show solid fraction
profiles at a number of time instants during a simulation of
h = 96d = 9.6-m-thick flow. The flow first accelerates on a
17◦ slope starting from rest. After reaching the steady state,
the slope is turned down to 0◦ and the flow decelerates on a
flat plane. The solid fraction at all instants of the simulation
remains the same within its fluctuations, while, as we will see
later, velocity and shear stress vary significantly.
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FIG. 2. Solid fraction profiles recorded in a simulation of an
h = 96d = 9.6-m-thick flow accelerating on a θ = 17◦ slope and
decelerating on a flat plane thereafter. The profiles were taken at times
when the system starts flowing (—), in the middle of the acceleration
stage (· · · ), on reaching the steady flow (− − −), and in the middle
of the deceleration stage (− · ·−). The shown two-dimensional solid
fraction of 0.80 can be mapped to a three-dimensional solid fraction
of 0.54 [27].

B. Stress evolution and flow stability

Here we verify and calibrate the rheological law (4).
Figure 3(a) shows depth-averaged shear and normal stresses
as functions of time. The data were obtained from a DEM
simulation for θ = 17◦ > θr, i.e., the flow accelerates towards
a steady state. While the normal stress is constant and equal to
lithostatic stress N = �sρg cos θy, the shear stress increases
from its minimum value limγ̇→0 τ = tan θr�sρg cos θy [see
Eq. (5)] towards the steady flow value τ = �sρg sin θy, which
can be derived from Eq. (1). Similarly, the friction coefficient
μ = τ/N (not shown) evolves following the evolution of τ .

Figure 3(b) shows the μ(I ) rheology, i.e., the friction
coefficient μ increases linearly with the inertial number I ,
in accordance with Eq. (4). The linear dependence between μ

and I is found for the whole range of angles leading to a stable
flow and for all studied system dimensions, d = 0.001–0.1 m
and h = 12d–96d, indicating a liquidlike regime of the flow.

The rheological parameters θr and β are independent of
depth except for close to the ground surface y = h, so Eq. (4)
holds locally. On the other hand, the parameters are found
to moderately depend on the thickness for thin layers (with
thickness a few times d) due to nonlocal effects [42]. In
addition, β varies with θ . In simulations, increasing θ from
17◦ to 25◦ results in the decrease of β by 40%.

Based on Fig. 3, we can understand why a flow can
reach a steady state. According to Eq. (1), acceleration of
the flow is given by the difference between the driving
gravitational force g sin θ and the resisting friction force
∂τ/∂y. This difference is non-negative only if θ > θr (if the
flow starts from rest, a larger static friction angle θsr needs
to be overcome). As the flow accelerates, γ̇ increases due
to increasing v. In line with Eq. (5), increasing γ̇ leads to

I
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FIG. 3. (a) Depth averaged shear and normal stress evolution
observed in a DEM simulation of the flow with h = 96d = 9.6 m and
θ = 17◦. The normal stress is multiplied by the steady-state friction
coefficient tan 17◦ = 0.31 to match the steady-state shear stress value.
(b) Friction coefficient τ/N as a function of inertial number I for the
same system. Points are simulation data at a series of time instants
during the acceleration. The course of time is indicated by the arrow.
The solid line is a fit to Eq. (4), resulting in tan θr = 0.26 ± 0.01
and β = 1.35 ± 0.08, where the uncertainty of the fit was calculated
based on the deviation among values for different y.

increasing τ and therefore increasing ∂τ/∂y. Eventually, the
friction force ∂τ/∂y balances the gravitational force. At that
moment the acceleration vanishes and the flow reaches a steady
state. From then on, friction and inertial number fluctuate
around their constant steady flow values (I∞ = 0.041 and
μ∞ = 0.31 = tan 17◦ for the system shown in Fig. 3).

Note that for the Coulomb friction law, i.e., β = 0, shear
stress is independent of velocity [see Eq. (5)] and thus constant
with time. Such a system would accelerate unstably with
uniform and constant acceleration g cos θ (tan θ − tan θr) > 0
and would not reach steady flow apart from the special case
θ = θr.

C. Flow velocity

Figures 4 and 5 show velocity for a flow accelerating from
rest (top) and decelerating from a steady state (bottom). The
theoretical prediction (11) (dashed lines), in which we neglect
all terms with n > 3, is tested against the DEM simulation
results (solid lines).

Figure 4 shows velocity profiles at discrete time instants.
The flow is nonuniform, shearing the mass throughout its
thickness. If θ > θr the flow accelerates, eventually reaching
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FIG. 4. Velocity profiles at various time instants during (a)
acceleration down a slope of θ = 17◦ and (b) deceleration on a flat
plane θ = 0◦. The times at which profiles were recorded increase
with the line thickness [from left to right in (a) and from right to
left in (b)]. The solid lines are simulation results, while the dashed
lines are analytical predictions of Eq. (11) for the granular flow with
h = 96d = 9.6 m and the angle of repose θr = 14◦. In the case of the
accelerating flow (a), the time T1 characterizes the time required to
reach the steady flow. The error bars indicate uncertainties of velocity
profiles associated with different initial configurations.

the steady state. The steady flow profile (magenta line) is given
by the first term in Eq. 11(a) and is consistent with the Bagnold
rheology studied in previous works [4,5,7,12,13].

If θ < θr, the flow decelerates. For the given flow param-
eters (h = 96d = 9.6 m, g = 9.8 ms−2, and θ = 17◦), the
deceleration rate is approximately uniform and constant, as the
first term in Eq. 11(b) dominates the evolution. Once velocity
at a given depth y decays to zero, the layer becomes locked
due to static friction and v(y) = 0 thereafter. Since deeper
layers have lower velocity, they stop first. Consequently, the
flow becomes increasingly limited, confined to a gradually
thinning layer near the top surface.

Figure 5 shows complementary plots of velocity evolution
at a number of different depths. If θ > θr, the velocity
approaches the steady flow velocity as a series of exponentially
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(a)

(b)
y = 0.3 m
y = 3.3 m
y = 5.7 m
y = 8.1 m
y = 9.3 m

θ > θ r 

θ < θ r 

FIG. 5. Velocity evolution during (a) acceleration down a slope
of θ = 17◦ and (b) deceleration on a flat plane θ = 0◦. Each line is
velocity at a depth y = 0.3–9.3 m, where the depth increases from the
upper line towards the lower line, inside the h = 96d = 9.6-m-thick
flow. The solid lines are simulation results, while the dashed lines
are analytical predictions of Eq. (11). Note that deceleration (b)
is not the reversed evolution of acceleration (a). The error bars
indicate uncertainties of velocity associated with different initial
configurations.

decaying functions with characteristic times Tn. By time T1

(=33 s for the system in the figure) all terms in the series in
Eq. (11) with n > 1 vanish (see Table I for relative values of Tn)
and the n = 1 term dominates the time evolution. Acceleration
decays as ∼ exp(−t/T1) and velocity increases approximately
as ∼1 − exp(−t/T1).

If θ < θr, velocity decays towards zero. For the case θ = 0
shown in Fig. 5(b), the deceleration is considerably faster
compared to the acceleration down a slope of θ = 17◦ shown
in Fig. 5(a), due to the presence of −g tan θrt in Eq. 11(b).
The leading n = 1 term in the series in Eq. 11(b) satisfies
t 
 T1 and can be expanded linearly as ∼1 − t/T1. The
remaining terms in the series can be neglected because of
small exp(−t/Tn) and/or bn. As a consequence, the velocity
decreases approximately linearly with time.
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The overall fit between the theory and the simulations is
very good, lending confidence to the theory. However, there is a
noticeable deviation between the simulation and the theoretical
curves in Figs. 4 and 5, mostly near the bottom surface. This
deviation does not result from a time fluctuation or statistical
uncertainty, as shown by error bars presenting the variability
from different initial configurations. In the acceleration phase
[Figs. 4(a) and 5(a)] the deviation is due to a difference in
boundary conditions. In simulations, the motion of the deepest
flowing grains, subject to largest shear and normal stresses, is
intermittent and alternates between stick and slip stages. This
is not perfectly consistent with the no-slip boundary condition
used in the theory for brevity of analytical calculations. For
the deceleration phase [Figs. 4(b) and 5(b)] the simulation
velocity profiles have exponentially decaying tails penetrating
beyond the stop depth. This feature was explained by Kamrin
and Koval [43] to be a nonlocal effect (not included in the
present rheological law), in which the flow above the stop
depth induces a limited flow in deeper layers despite shear
stress being lower than the yield stress.

Perhaps counterintuitively, deceleration is not the reversed
time evolution of acceleration. The difference between the
θ > θr and θ < θr solutions originates from the existence of
a time-independent term in the expansion (8). For θ > θr,
the time-independent term is allowed and is identical to the
steady shear rate profile b∗√y reached after the remaining
exponentially decaying terms vanish. For θ < θr, the time-
independent term vanishes as there is not a strong enough
driving force to maintain steady flow.

D. Transient time and its scaling

During acceleration, velocity approaches the steady flow
profile as a series of exponentially decaying functions with
characteristic times Tn [see Eq. (11)]. According to Eq. (13),
the relative magnitudes Tn/Tm = κ2

m/κ2
n are universal, inde-

pendent of flow dimensions or inclination angle, since the
κn are constants equal to points of extrema of the function√

zJ2/3(z). Because T1 is sufficiently larger than the other
Tn (see Table I), it dominates the time evolution after the
very initial period. Therefore, T1 is an appropriate scale of the
duration of the acceleration stage.

In Fig. 6 (points) we plot the transient time T1 obtained by
fitting ∼ exp(−t/T1) to simulation data for v(y,t) − v(y,t →
∞). The simulations were run for various values of h, d,
and θ . Results are compared to the analytical prediction
(solid line) given by Eq. (13) and the expected scaling T1 ∼
h3/2/βd

√
g cos θ is recovered. Thus, T1 increases with flow

thickness as ∼h3/2 and decreases with grain diameter as ∼d−1,
i.e., in the same way as the steady flow velocity. The scaling
with θ is more complex than ∼1/

√
cos θ because β also varies

with θ . The decrease of β by 40% was found on increasing
θ from 17◦ to 25◦ in our simulations. In addition, T1 is not
expected to vary significantly with mechanical characteristics
of grains, such as restitution coefficient, grain-grain friction
coefficient, or elastic modulus, as these were shown to have a
small influence on the flow rheology [9].
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100
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T
1

[s
]

Eq. (13)

FIG. 6. Scaling of T1, the characteristic acceleration time scale,
with flow thickness h, average grain size d , and inclination angle
θ . Points are simulation results for systems with h = 12d–96d , d =
0.1 m, and θ = 17◦ (squares); h = 48d , 70d , or 96d , d = 0.1–1 m,
and θ = 17◦ (circles); and h = 48d , d = 0.1 or 1 m, and θ = 18◦–25◦

(triangles). The solid line is the analytical prediction (13).

V. CONCLUSION

While significant progress has been made in the continuum
description of steady granular flows over the past decade,
unsteady flows have been much less discussed, despite their
importance in geophysical and industrial processes. In this
work we solved the kinematics of a granular flow of constant
thickness on an inclined plane. We analytically derived
velocity and stress fields for both accelerating flows, when the
slope angle θ is larger than the angle of repose θr (but still is
shallow enough to reach a steady state), and decelerating flows,
in the opposite case. We compared the analytical derivation to
two-dimensional DEM simulations of flow down inclines.

Similarly to steady flows, we found that friction resistance
is an approximately linearly increasing function of shear rate.
For θ > θr the shear rate increases as the flow accelerates until
the resisting friction force balances the originally prevailing
gravitational force. At that moment the net force is zero and the
flow reaches a steady state. The velocity was found to increase
towards the steady flow velocity profile v∞(y) (consistent with
the Bagnold scaling) approximately as

v(y,t) ≈ v∞(y)(1 − e−t/T1 )

for accelerating flow. The transient time T1, which char-
acterizes the duration of the acceleration, was found (both
analytically and in DEM simulations) to be controlled by
granular layer thickness h, grain size d, slope angle θ ,
gravitational acceleration g, solid fraction �s, and rheological
parameter β,

T1 = 0.5
√

�s
h3/2

βd
√

g cos θ
.

For θ < θr the flow decelerates. Deceleration is not a
reverse time image of acceleration, since it includes an extra
deceleration rate −g cos θ (tan θr − tan θ ) that is not present
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during acceleration. As a result, the deceleration stage is faster
than that of acceleration for a given flow. During deceleration,
a first-order approximation of the velocity, as it decays from
the initial velocity v0, was shown to be

v(y,t) ≈ v0(y)e−t/T1 − g cos θ (tan θr − tan θ )t.

Discrete element method simulations showed that the first-
order approximations of the transient velocity fields provide a
good fit, except for the very initial stage when fast decaying
corrections are important. To solve the velocity field (and the
related shear rate and shear stress fields) more accurately,
Eqs. (11)–(14) were used.

Several insights are gained from the present theoretical
analysis regarding the transient time T1 to reach steady state
in gravity driven flows on an incline.

(i) The transient time increases with flow thickness as
∼h3/2. This is a weaker dependence compared to ∼h2 found
for Couette flow in a simple shear cell [15].

(ii) The transient time depends inversely on β. This implies
that the less shear strengthening the flow is (i.e., smaller β),
the longer it takes the flow to reach a steady state. For slopes
exceeding θr the flow will never reach a steady state if stress
is independent of shear rate (i.e., if β = 0).

(iii) It is possible to assess the transient times in natural
systems, e.g., landslides: Assuming θ = 35◦, d = 1 cm, and
�s = 0.6, the time scales are expected to be of the order of
T1 = 0.7, 23, and 720 s for flowing layers of thickness of
h = 0.1, 1, and 10 m, respectively. For this calculation we
used β = 0.6 from granular experiments with glass beads [1].
Clearly, the transient time is sensitive to the thickness of the
flow. For the 10-m-thick flow the transient time is several
minutes, which exceeds the duration of flows on natural slopes.
It was thus predicted that thick landslides do not reach steady
flow.

(iv) Acceleration and declaration are not symmetrical:
Acceleration to steady flow takes longer than it takes to
stop the same flow. In addition, the geometry of acceleration
and deceleration is not symmetrical: While flow accelerates
eventually through the depth of the layer, stopping occurs
from the bottom upward, so that flow becomes confined to
an increasingly thinning layer near the top, while the bottom
grains have already stopped.

These results will hopefully prove useful for understanding
and predicting natural and industrial flows.
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APPENDIX: ORTHOGONALITY RELATIONS

Here we show that the functions

qn(y) = J2/3

(
κn

(
y

h

)3/4)
, n = 1, . . . ,∞ (A1)

form an orthogonal system relative to the scalar product
(a,b) = ∫ h

0 ab
√

ydy. This in turn allows us to derive Eq. (14).
The functions qn are solutions of Eq. (8),

d2(
√

yqn)

dy2
= − 9κ2

n

16h3/2
qn, (A2)

which satisfy the following boundary conditions, correspond-
ing to the boundary conditions 7(a) and 7(b):

lim
y→0

√
yqn(y) = 0,

d(
√

yqn)

dy
(h) = 0. (A3)

In the following we evaluate the integral
∫ h

0
d2(

√
yqi )

dy2 qj
√

ydy

in two ways. First, we use Eq. (A2),

∫ h

0

d2(
√

yqi)

dy2
qj

√
ydy = − 9κ2

i

16h3/2

∫ h

0
qiqj

√
ydy. (A4)

Second, we apply a double integration by parts

∫ h

0

d2(
√

yqi)

dy2
qj

√
ydy =

∫ h

0

√
yqi

d2(
√

yqj )

dy2
dy

= − 9κ2
j

16h3/2

∫ h

0
qiqj

√
ydy, (A5)

where the surface terms vanish because of the boundary
conditions (A3). Since κi �= κj for i �= j , a comparison of
Eqs. (A4) and (A5) implies orthogonality of the functions qn,

∫ h

0
qiqj

√
ydy = δij

∫ h

0
q2

j

√
ydy, (A6)

where δij is the Kronecker delta.

Initial condition for shear rate

The solution for shear rate γ̇ [Eq. (9)] is a linear combina-
tion of qn functions with weights bn that need to be determined
from the initial condition

γ̇ (y,t = 0) = −dv0

dy
, (A7)

corresponding to Eq. 7(c). Multiplying Eq. (9) for t = 0 by
bi

√
y and integrating over the range of y ∈ (0,h) leads, after

some rearrangement, to

bi =

⎧⎪⎨
⎪⎩

−
∫ h

0 (
√

ydv0/dy+b∗y)qidy√
h

∫ h

0 q2
i

√
ydy

, θ > θr

−
∫ h

0
√

ydv0/dyqidy√
h

∫ h

0 q2
i

√
ydy

, θ < θr,

(A8a)

(A8b)

where the sum was reduced to a single term due to Eq. (A6).
The last equation is identical to Eq. (14).
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