
HAL Id: hal-01480538
https://hal.science/hal-01480538

Submitted on 6 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanical behavior of architectured photosensitive
silicone membranes: Experimental data and numerical

analysis
Guilherme Machado, Arthur Stricher, Grégory Chagnon, Denis Favier

To cite this version:
Guilherme Machado, Arthur Stricher, Grégory Chagnon, Denis Favier. Mechanical behavior of archi-
tectured photosensitive silicone membranes: Experimental data and numerical analysis. Mechanics
of Advanced Materials and Structures, 2016, 24 (6), pp.524-533. �10.1080/15376494.2016.1161096�.
�hal-01480538�

https://hal.science/hal-01480538
https://hal.archives-ouvertes.fr


Mechanical behavior of architectured photosensitive silicone membranes:
experimental data and numerical analysis.

G. Machadoa,b, A. Stricherc, G. Chagnon∗,a,b, D. Faviera,b
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Abstract

The aim of this paper is to provide an experimental and modeling study of an architectured

photosensitive silicone membrane. Mechanical properties are dependent of UV doses used to

alter the local cross-link density, resulting in a direct effect on the macroscopic mechanical

behavior. A series of mechanical tests were carried out to characterize the mechanical behavior

of each phase. Results are presented for various types of loading, including uniaxial, planar

and equibiaxial loading cases, for the UV irradiated and the non-irradiated material. Using

the bulge test with an architectured sample, the global stretchability with minimum boundary

conditions perturbations was investigated. To further explore the unusual properties offered by

silicone graded membranes, finite element analysis of graded architecture was performed to try

to predict the stress-strain response in the bulge test. Soft-to-hard transition is tested and the

macroscopic influence of interface was observed.

Key words: architectured membranes; photosensitive silicone; biocompatible silicone; bulge

test; bi-material hyperelastic solid;

1. Introduction

Facing increasing demands for multifunctional solutions, architectured materials take an in-

creasingly important place in many applications in order to design specific mechanical properties

for a given purpose. Very often the function is not provided by the local property only (grain

size, precipitation, polymer chain design and interchain bonding, state of crystallization), but

by the interplay between the shape, the properties, and possible association of materials [1].
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For instance, some polymers are architectured due to their chain design [2]. Usually, this

strategy operates at scales between 1 nm and 10µm. Architectured silicone materials can also

be composed with an association of materials (also called hybrid material) for example fiber-

reinforced [3] or NiTi-reinforced membranes [4]. Even if such composites are very good can-

didates for biomimetic membranes, this solution involves the integration of different synthetic

materials often associated with local mismatches of mechanical properties and adhesion diffi-

culties. Local mismatches may cause excessive stress concentrations within the structure and

thus premature failure of the composite upon stretching. Thus, one of the challenges of the ar-

chitectured material is in ensuring efficient stress transfer and in avoiding local failure between

regions of different mechanical properties.

Other materials can be considered as architectured because of their geometry. [5] and [6]

developed crenelated membranes with an unfilled and filled silicone rubber. The main advantage

of these membranes is that they present an anisotropic behavior without any interface in the

material. Indeed, the crenels and their orientations allow to induce and control the anisotropy,

but this fact is limited by the out-plane geometry and the process to obtain the reinforced

membrane.

This paper focuses on the mechanical behavior of architectured silicone membranes where

the membrane architecture is controlled by the in-plane intrinsic properties but also by a desired

topology at scale between the microstructure and the application. The concept is to create a

heterogeneous material with locally tuned mechanical properties by changing the local cross-

link density. The approach can be exploited, for example, to create bioinspired membranes that

mimic anisotropic structural properties of soft tissues. In this context, Section 2 presents all

precautions concerning the experimental mechanical testing procedures and strain field mea-

surements techniques. Experimental data and analyzes are presented into two parts. First,

in Section 3, the three deformations modes (uniaxial, planar and equibiaxial tensile tests) for

each phase are independently tested. Second, in Section 4, the bulge test of graded membrane

containing two phases. In Section 5, a finite element analysis (FEA) is carried out using a hy-

perelastic model fitted simultaneously on the three previous tensile tests. Then, the numerical

model was used to try to predict the bimaterial and results are discussed. Finally, Section 6

contains some concluding remarks and outlines some future perspectives.
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2. Testing procedures background and strain field measurements techniques

A series of mechanical tests were carried out to characterize the silicone mechanical behavior

in its soft and hard phases. First, for the three deformations modes: uniaxial, planar (pure

shear) and equibiaxial tensile tests; second, for the bulge test of graded membrane containing

two phases.

2.1. Preparation of the silicone specimens

Samples were prepared in the IMP laboratory (Ingénierie des Matériaux Polymères - Villeur-

banne, France), using the polydimethylsiloxane (PDMS) elastomer in addition of an UV-sensitive

photoinhibitor. The membrane was selectively exposed to UV radiation then the cross-linking

of the UV exposed elastomer is inhibited, leading to a softer material than the unexposed zone.

From this point forward, the soft phase denotes the UV exposed material and the hard phase

the unexposed one.

2.2. In-plane tests

In-plane quasi-static experiments were conducted on a Gabo Explorer testing machine with

±25 N and ±500 N load cells for uniaxial tension and planar tension respectively. A 2D digital

image correlation system (DIC) was used during the test to obtain 2D fields at the surface

of plane specimens. The commercial VIC-2D 2009 software package from Correlated solutions

was used to acquire images. The images were recorded at 1 Hz with a Pike F-421B/C CCD

camera with a sensor resolution of Cr = 7.4µm/pixel. The reason for this large sensor format

is the goal to achieve high resolution images with low noise. The 50 mm camera lens was set

to f/22 using a 50 pixels extension ring. Grayscale 8 bit images were captured using a full scan

of 2048 pixels × 2048 pixels. After all, a cross-correlation function was used and displacement

vectors were calculated by correlating square facets (or subsets) of fsize = 21 pixels and grid

spacing Gs = 10 pixels to carry out the correlation process for the undeformed and deformed

images. To achieve a sub-pixel accuracy, optimized 8-tap splines were used for the gray value

interpolation. As the optimization criteria for the subset matching, a zero-normalized squared

difference was adopted, which is insensitive to offset and scale in lighting. For the weighting

function, the Gaussian distribution was selected, as it provides the best compromise between
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spatial and displacement resolution [7]. In uniaxial tensile experiment, the spatial resolution

(the physical size per pixel) was Sr = 15µm. Likewise, for the planar tension Sr = 7µm.

2.3. Out-plane tests

The bulge test was conducted in order to determinate an equibiaxial state of both phases

and also tested the soft-hard bimaterial. A syringe driver was used and the internal pressure is

measured by an AZ-8215 digital manometer. Seeing that the material is partially transparent,

milk was used as hydrostatic fluid to increase the gray contrast for DIC and to avoid internal

reflections. Inflation was sufficient slow to obtain a quasi-static load. Under the assumption of

material isotropy over the circumferential direction, the principal directions of both stretch and

stress tensors at each material particle are known ab initio to be the meridional and circum-

ferential directions of the membrane surface. From this point forward, these directions will be

denoted by the subscripts m and c respectively.

Assuming quasi-static motion, the equilibrium equations for a thin axisymmetric isotropic

membrane, as adopted by Hill [8], can be expressed as

σm =
p

2h κc
(1)

σc =
p

2h κc

(
2− κm

κc

)
(2)

where (σm, σc) are the meridional and circumferential stresses and (κm, κc) are the meridional

and circumferential curvatures. h is the current thickness and p is the time-dependent nor-

mal pressure acting uniformly (dp/dR = 0) over the radius R. As mentioned in [9] and [10]

a remarkable consequence of membrane theory is that it admits equilibrium solutions without

explicitly requiring a constitutive equation, since the equilibrium equations are derived directly

by balancing forces of a deformed element shape. As a consequence, they are valid for all classes

of in-plane isotropic materials.

Recently, Machado et al. [11] presented a methodology to compute the membrane curvature

of the bulge test from 3D-DIC measurements. A very convenient calculation scheme was pro-

posed based on the surface representation in curvilinear coordinates. From that scheme, the

circumferential and meridional curvatures, and also the respective stresses, can be computed. In

[11] authors presented an evaluation scheme for the bulge test based on the determination of the
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surface curvature tensor and the membrane stress tensor. With this method, the circumferential

as well as the meridional stress can be determined at every stage and position of the specimen.

The commercial VIC-3D 7 software package from Correlated solutions was used to acquire

images using two digital Pike cameras described in Section 2.3. Both cameras were set up at

D = 150 mm distance and 35◦ angle to the specimen using 28 mm focal length lenses opened at

f/16. Previous to the test, a good calibration of the 3D-DIC system is required. The following

correlation options were chosen: 8-tap splines were used for the gray value interpolation, zero-

normalized squared difference for the subset matching and the Gaussian distribution for the

weighting function. Square facets of fsize = 15 pixels and grid spacing Gs = 5 pixels to carry

out the correlation process for the undeformed and deformed images. The obtained spatial

resolution is Sr = 15µm.

Note that the spatial resolution (Sr) of the discretized surface depends essentially on camera

sensor resolution (Cr) and on the choice of the grid spacing (Gs) that defines the distance

between the data points on the object. The grid spacing is the distance between the grid points

in pixel. Thus, grid spacing limits the spatial resolution, as each grid point represents one single

data point of the result. The facet size controls the area of the image that is used to track

the displacement between images. The minimal facet size (fsize) is limited by the size and

roughness of the stochastic pattern on the object surface. Each facet must be large enough to

ensure that there is a sufficiently distinctive pattern, with good contrast features, contained in

the area-of-interest used for correlation.

3. Soft and Hard phases: experimental results and analysis

3.1. Uniaxial tension test

Uniaxial tensile tests were performed on small dog-bone shaped specimens. The samples

had an initial gage length l0 = 12 mm, width w0 = 4 mm and thickness h0 = 0.8 mm. During

the test, using an elongation rate of λ̇ = 3.0 × 10−2 s−1, the nominal stress tensor P (First

Piola-Kirchhoff stress tensor) is assumed to be homogeneous within the gauge region as well as

the deformation gradient tensor F. Since the current thickness is not measured, the material

is assumed to be incompressible, i.e., det (F) = 1. A cyclic loading-unloading test was realized

for soft and hard phases, the curves are presented in Fig. 1. In the same figure, the first load
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of both phases are plotted. Different phenomena are highlighted, first a large stress-softening

appears by comparing the two first loading at each strain level. A little hysteresis after the first

cycle is observed. Moreover, few residual elongation is observed for both phases.
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Figure 1: Nominal stress-strain curves resulting from cyclic loading-unloading tensile test at λ̇ = 3.0 × 10−2 s−1

for soft and hard phases.

3.2. Planar tension test

The pure shear strain state was approached by performing planar tension test. The initial

height l0, the constant width w0 and the thickness h0 of samples were 4.5 mm, 40 mm and

0.8 mm, respectively. The width of the specimen used for planar tension test must be at least

ten times greater than its length. These dimensions have as objective to create an experiment

where the specimen is constrained in the lateral direction such that all specimen thinning occurs

in the thickness direction. A cyclic planar loading test was realized for both phases at λ̇ =

1.0 × 10−2 s−1. The results are presented in Fig. 2. Planar tensile response, likewise uniaxial

traction, presents the same phenomena. For the soft phase, the maximum principal stretch

experienced by the planar specimens are smaller if compared with uniaxial tensile test specimens.

In general, this limitation lies in the fact that the planar tensile specimens must be constrained

in the lateral direction without slipping. In this manner, the annoying premature tearing at the

grips is observed. This is the major difficulty in planar tensile tests of thin specimens.
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Figure 2: Nominal stress-strain curves resulting from cyclic loading-unloading planar tension test at λ̇ = 1.0 ×
10−2 s−1 for soft and hard phases.

3.3. Equibiaxial tension using the bulge test

The equibiaxial tension state is approached by the bulge test. Due to the axial-symmetry

of the experimental configuration the equibiaxiality of the stress and strain is obtained at the

top the inflated sample. The elongation rate was not controlled, but the pressure p is slowly

increased. The stress-strain curve for the central area are presented in Fig. 3 for a cyclic loading.

The response are qualitatively similar to uniaxial loading with hysteresis and stress-softening.
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Figure 3: Nominal stress-strain curves resulting from cyclic loading-unloading equibiaxial test: (a) hard phase;
(b) soft phase.

3.4. Analysis

Table 1 presents a comparative for soft and hard phases for the three different experimental

load cases (uniaxial, plane shear and equibiaxial). It is easily determined from classical isotropic

elasticity theory that, during quasi-linear stages, the ratio of the stress-strain slopes between

uniaxial tension (E) and equibiaxial tension (Ee) is Ee/E = 1/(1 − ν). The ratio Ee/E was

7



determined experimentally to be 2 for both phases. This is compatible with an incompressible

material with Poisson’s ratio ν = 0.5. The Young’s modulus ratio between the two phases (EH/S)

was about 3.5 for uniaxial and equibiaxial states and 2.5 for plane shear. At the beginning of

loading, the stress ratio between phases at λ = 1.1 of strain (P 10%
S ) are closer than stress ratio

at λ = 2.0. The mean stress ratio P̄ calculates over all load history is kept practically constant

for all loading cases.

Table 1: A comparative for soft and hard phases for the three different experimental loading cases.

Parameter Unit Uniaxial Plane shear Equibiaxial

Hard phase elastic modulus EH MPa 2.50 3.50 4.90
Soft phase elastic modulus ES MPa 0.70 1.40 1.40

Elastic modulus ratio EH/S - 3.57 2.50 3.50

Hard stress at 10% P 10%
H MPa 0.24 0.31 0.45

Soft stress at 10% P 10%
S MPa 0.08 0.13 0.13

Hard stress at 100% P 100%
H MPa 1.43 1.67 1.93

Soft stress at 100% P 100%
S MPa 0.61 0.68 0.85

Mean stress ratio P̄ - 2.44 2.44 2.90

4. Bulge test with soft-hard phase sample

The specimen disk effective dimensions are 18.5 mm of radius and 0.4 mm of thickness. The

UV-irradiated zone is concentric circle of 10 mm diameter. Cross-linking of the UV exposed

elastomer is inhibited, leading to softer region than the surrounding unexposed part,as illustrated

in Fig. 4.

The bulge test was chosen to test the bimaterial for two main reasons: stress-concentrations

can be easily access the soft-hard interface is far from boundary conditions; each inflation state

involves a heterogeneous stress-strain state which can be determined analytically. Having said

that, bulge offers a valuable data for modeling benchmark.
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Soft phase

p

3D-DIC

Bulge Test
Hard phase

Figure 4: The photosensitive material sample and the bulge test configuration. (See online version for color
figure.)

Fig. 5a shows the bulge test setup. The experimental image was superposed with the Green-

Lagrange major principal strain field for the maximal load pressure level p = 25 kPa where

R is the normalized radius. It can be seen in the strain map that the isostrain contours are

practically circular, indicating circumferential isotropy of the membrane. Plots of the deformed

soft-hard membrane profiles for each of the seven inflation states can be found in Fig. 5b. The

results presented in the following are mean values obtained over ten random meridians. The soft

phase is in the interval R = [0, 0.27]. The measured interval is represented by a colored box in

plots. At the beginning of the loading, profiles resemble a generally smooth classical dome form.

Increasing pressure, the deformed membrane develops a nipple geometry at the R = [0, 0.27]

interval.
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Figure 5: Bulge test setup using 3D-DIC technique. (a) Experimental image superposed with the Green-Lagrange
major principal strain field (meridional strain); (b) Profiles of the inflated membrane composed by soft and hard
phases for different pressure loads. (See online version for color figure.)
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Inflations were performed from 1 kPa to a maximum pressure of 25 kPa, therefore, for clar-

ity, three levels were chosen to present the results: 6, 15 and 25 kPa. These inflations yielded

principal stretches at the pole of about 1.16, 1.43 and 2.21 respectively. Fig. 6 presents principal

stretches values (λm, λc) obtained from 3D-DIC system. Save the pole (R = 0) and the clamped

boundary (R = 1), all material points involve a heterogeneous strain state. As expected, the cir-

cumferential stretch λc tends to one, i.e., a pure planar stretching behavior towards the clamped

boundary (R → 1). However, most of the hard phase deformation is on the circumferential

direction since λc is less than 1.2 even for the maximal pressure level.
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Figure 6: The strain distribution of a deformed foil vs. normalized radius of the circular membrane. (a) meridional
direction λm; (b) circumferential direction λc.

Principal curvatures (κm, κc) and principal stresses (σm, σc) were computed as explained in

[11]. Fig. 7 shows the experimental curves. With respect to principal curvature distributions,

note that equibiaxial membrane deformations near the membrane pole (R = 0) are associated

with an approximately spherical geometry, i.e., κm ≈ κc. The small difference may be explained

by the fact that the umbilical point may not lie exactly on the Z direction axis. Note that for

all pressure levels, the meridional curvature κm presents an inflection point representing changes

from convex to concave curvature on the soft-hard interface (R = 0.27).

With regard to the stress plots in Figs. 7c and 7d, the stress state can be assumed to be

equibiaxial at the pole (R = 0). Both stresses, σm and σc, experience an increasingly upward

turn for R 6 0.27 when pressure increases. Two inflections points can be observed around

R = 0.27 and R = 0.36 in all directions for all pressure loads.
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Figure 7: Distributions of principal direction of experimental fields corresponding to three different inflation states:
(a) meridional curvature κm; (b) circumferential curvature κc; (c) meridional Cauchy stress σm; (c) circumferential
Cauchy stress σc.

5. Finite element simulations

In the previous section, bulge test was used to obtain stress and strain fields for a non-

homogeneous material. Stress were calculated without explicitly specifying a constitutive rela-

tion for the material. The aim of this section is to compare these results with usual finite element

analysis using the classical Mooney-Rivlin hyperelastic constitutive equation. Stress-softening

and hysteresis are not regarded, thus only the first loading behavior was investigated.

5.1. Hyperelastic fitting using the Mooney-Rivlin hyperelastic model

Assuming an incompressible isotropic hyperelastic material behavior, the two parameters

Mooney-Rivlin model is expressed as

W
(
Ī1, Ī2

)
= C10

(
Ī1 − 3

)
+ C01

(
Ī2 − 3

)
(3)
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where C10 and C01 are material parameters that must be identified. Ī1 and Ī2 are the first and

second strain invariants of the the isochoric elastic response. Due to its mathematical simplicity

as well as its prediction accuracy in the range of moderately large strains, Mooney-Rivlin model

has been widely employed in the description of the behavior of rubbery materials. It is known

that different deformation modes are required to obtain the parameters that define the stress-

strain relationship accurately. Uniaxial, planar and equibiaxial data acquired in Section 3 are

simultaneously involved in a least square minimization in order to extract the sets of material

parameters for each material phase. Table 2 summarizes the two sets of C10 and C01 parameters.

Table 2: Fitted parameters (in MPa) of the Mooney-Rivlin constitutive equation for soft and hard phases.

Parameters hard soft

C10 0.35 0.18
C01 0.10 0.01

Fig. 8 shows the stress-strain curves of the first loading experimental data and the Mooney-

Rivlin model fitting for each deformation mode. The adopted fitting procedure allows a material

model description that is valid for a general deformation state. As expected, the model shows a

good agreement with uniaxial and planar tensile tests data up to 100% of strain, i.e., λ = 2.0.

Moreover, the Mooney-Rivlin model starts to fail to account strains larger than λ = 1.3 for the

equibiaxial tensile test, in particular for the hard phase. Nevertheless, as pointed out in [12],

there are very few hyperelastic constitutive models able to simultaneously simulate both the

multi-dimensional data with an unique set of material parameters.

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
H A R D 1 s t l o a d

S O F T  1 s t  l o a d

H A R D  M R

S O F T M R

N
om

in
al

st
re

ss
(M

P
a)

�

(a)

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
H A R D 1 s t l o a d

S O F T  1 s t  l o a d

H A R D  M R

S O F T M R

N
om

in
al

st
re

ss
(M

P
a)

�

(b)

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

H A R D 1 s t l o a d

 S O F T  1 s t  l o a d

 H A R D  M R

S O F T M R

N
om

in
al

st
re

ss
(M

P
a)

�

(c)

Figure 8: Experimental data for soft and hard phases and the hyperelastic fitting using the Mooney-Rivlin (MR)
hyperelastic model: (a) Uniaxial (b) Planar and (c) equibiaxial tensile tests.

5.2. Experimental and numerical comparison of bulge test results

The non-homogeneous bulge test was simulated by an axisymmetric using Abaqus commer-

cial finite element code. Continuum eight-node biquadratic hybrid fully integrated elements
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(CAX8H) were used. Based on the result of the mesh sensitivity study, the optimal global

element size for membrane mesh was h = 35µm. At the soft-hard interface, a non-adaptive

h-refinement was used to improve mesh quality employing a mesh size gradient used only on the

R direction, resulting an element edge size about h/6 over the interface neighborhood. Over the

membrane thickness, 30 Gauss integration points were used.

Results of FEA using the Mooney-Rivlin model are superposed with the experimental fields

(principal stretches and principal stresses) in Fig. 9. Two pressure levels were chosen to present

the results: 6 and 25 kPa. All numerical predictions follow qualitatively the trends of the

experimental data. It is possible to observe a discontinuity in the model response at R = 0.27

even if the an h-refinement was used in this zone.

Considering the principal stresses plot in Figs. 9c and 9d, numerical simulations do not

correspond well with experimental ones in both load cases. This result can be related to the

limitations of the Mooney-Rivlin model to fit complex stress-strain states at large strain levels.

Fig. 10a presents the FEA errors (em, ec) with respect to principal stresses over the bulge

profile in both deformed configurations. Using a confidence interval of 95%, the mean error are

êm = 31%, êc = 30% for the lower pressure level; and êm = 35%, êm = 29% for the highest

pressure level. Regardless of the soft-hard interface, stress discrepancies are independent of the

deformation level. This fact is also observed in Fig. 10b where the deviations of the stress ratio

σm/σc are very close for both load levels.
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Figure 9: Principal stretches (λm, λc) and Cauchy stress (σm, σc) confronted with the finite element analysis
(FEA), corresponding to 6 kPa and 25 kPa inflation states.
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Figure 10: (a) FEA errors with respect to principal stresses in both deformed configurations; (b) Principal stress
ratio (σm/σc) confronted with the finite element results (FEA).
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5.3. Modeling analysis

Presented results show the limitations of the classical finite element method to tackle het-

erogeneous systems with moderate modulus mismatch across the material interface undergoing

large strains, with an incompressible non-linear hyperelastic material behavior. Results reveals

that a more sophisticate representation of the soft-hard interface must be taken into account by

numerical modeling. For example, [13] proposed an extension of the generalized finite element

method to tackle heterogeneous systems with non-linear hyperelastic materials. However, it

must be recognized that outside the context of this study. Independently of the numerical treat-

ment, a more detailed knowledge of the influence the material interface on the macroscopical

mechanical behavior is necessary. For this, considering the Mooney-Rivlin model in Eq. 3 in

terms of the principal stretches

σm = 2

{
C10

[
(λm)2 −

(
1

λmλc

)2
]

+ C01

[(
1

λmλc

)2

− (λm)2
]}

(4)

σc = 2

{
C10

[
(λc)

2 −
(

1

λmλc

)2
]

+ C01

[(
1

λmλc

)2

− (λc)
2

]}
. (5)

Replacing the measured principal stretches in Eqs. 4 and 5 and the previous identified parameters

C10 and C01 for the different phases, one obtains the local Mooney-Rivlin (MR) principal stresses

calculated directly from the experimental local strain states. Regardless the interface zone,

Figs. 11a and 11b shows a good agreement between the experimental (Exp) and Mooney-Rivlin

(MR) stresses for both inflation states.

In other to determinate the macroscopic influence of the soft-to-hard transition the parame-

ters C10 and C01 were evaluated using the Eqs. 4 and 5 using the the measured principal stretches

and the experimental stresses obtained by Eqs. 1 and 2, using the different directions and dif-

ferent load levels experimental information. The same ratios C10/C01 of soft and hard phases

from previous identification (Table 2) were kept. Thus, one obtains a description of the spatial

distribution of these parameters, as presented in Fig. 12a. It is possible to observe that the

soft-to-hard transition transition is almost symmetric with respect the position R = 0.27 and

the material parameters gradient extends over the R = [0.21, 0.38] interval.

The Mooney-Rivlin (MR) stresses in Eqs. 4 and 5 were recalculated, but now using the

functions C10(R) and C01(R), fitted on experimental results using a sigmoid function. Results
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are plotted in Figs. 11c and 11d and a good agreement is observed even in the soft-to-hard

transition. Fig. 12b presents the distribution of errors with respect to principal stresses, when a

material parameter gradient is used to describe the soft-to-hard transition. Using a confidence

interval of 95%, the mean error are êm = 7%, êc = 6% for the lower pressure level; and êm = 6%,

êm = 3% for the highest pressure level.
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Figure 11: Distributions of experimental (Exp) and Mooney-Rivlin (MR) calculated directly from the experimental
local strain states corresponding to 6 kPa and 25 kPa inflation states. (a) and (b): principal stresses (σm, σc)
obtained using a single parameter set; (b) and (c) principal stresses (σm, σc) using a material parameters gradient
over the R = [0.21, 0.38] interval.
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Figure 12: (a) Mooney-Rivlin parameters gradient obtained using the the experimental local stress-strain states.
(b) Errors with respect to principal stresses in both deformed configurations using the Mooney-Rivlin with a
material parameters gradient over the R = [0.21, 0.38] interval.

Finally, keeping in mind the experimental spatial resolution of 15µm, the phase transition is

estimated to be about 3.15 mm, i.e., 17% total sample radius. Within the tested loading range,

the size of soft-to-hard transition can be assumed independent of the stress-strain level.

6. Conclusions

Results show the mechanical behavior of photosensitive silicone membranes with a variable

set of mechanical properties within the same material. With a reversible in-plane stretchability

up to 200%, the soft-to-hard transition was expressed by a factor 3.57 in the Young’s modulus

within a single continuous silicone membrane combined with a mean stress factor about 2.5

times.

The approach was tested using the bulge test and the presented results using a bimaterial

are distinct from previous investigations of the classic circular homogeneous membrane inflation

problem. The mechanical response of the soft-hard interface was observed by inflections on

the principal curvatures fields along the meridional and circumferential directions. Analysis of

the stress distribution throughout the meridional-section of the membrane revealed low stress

peaks at soft-to-hard transition. The results demonstrate that under high strains levels no

macroscopic damage was detected. The local cross-linking control eliminates the interfaces

between different materials, leading to heterogeneous membrane with efficient stress transfer

throughout the structure.
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The numerical investigation provided information on the respective contributions of each

material phase on its effective behavior under the inflation. Therefore, presented results show the

limitations of the classical finite element method to tackle heterogeneous systems with moderate

modulus mismatch across the material interface undergoing large strains, with an incompressible

non-linear hyperelastic material behavior. Using the experimental local stress-strains values, it

was possible to characterize the macroscopic influence of the soft-to-hard interface with spatial

resolution of 15µm. Later, a more sophisticated numerical strategy can be used to describe

the soft-hard interface and then the graded membrane global behavior, based on the presented

results. Further work to create, test and optimize more complex architectures, is ongoing using

the experimental approaches described in the present paper.
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