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Hyperelastic Energy Densities for Soft 
Biological Tissues: A Review

G. Chagnon · M. Rebouah · D. Favier

Abstract Many soft tissues are naturally made of a matrix and fibres that present some priv-
ileged directions. They are known to support large reversible deformations. The mechanical
behaviour of these tissues highlights different phenomena as hysteresis, stress softening or
relaxation. A hyperelastic constitutive equation is typically the basis of the model that de-
scribes the behaviour of the material. The hyperelastic constitutive equation can be isotropic
or anisotropic, it is generally expressed by means of strain components or strain invariants.
This paper proposes a review of these constitutive equations.

1 Introduction

Soft tissues are composed of several layers, each one of these layers has different compo-
sitions. It is considered that four typical tissues exist: epithelial tissue, connective tissue,
muscular tissue and neuronal tissue [156]. For the mechanical studies on soft tissues the
connective tissues are often considered as the most important from a mechanical point of
view [69, 156, 177]. They are composed of cells and of extra cellular matrix. The extra
cellular matrix is composed of ground substance and of three types of fibres: collagen, retic-
ular and elastic fibres. Collagen fibres are often considered as more important than others,
particularly because of their large size, and represent most of the mechanical behaviour.
The reticular fibres, which are thin collagen fibres with different chemical properties, allow
creating ramifications with the collagen fibres. Finally the elastic fibres mainly composed
of elastin present a purely elastic behaviour and are also linked to the collagen fibres. The
elastic properties of soft tissues are mainly due to these fibres. Soft tissues are often able to
support large deformations.
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The first mechanical study of soft tissues started in 1687 with Bernoulli experiments on
gut. The first constitutive equation was proposed in 1690 by Leibniz, before Bernoulli and
Riccati proposed other equations [22]. Since these works, many experimental studies have
been performed. As an illustration, some experimental data can be found, not exhaustively,
in the literature for arteries [209, 262], aortic valve tissues [162], veins [4], vaginal tissues
[196], anterior malleolar ligament [47], muscles [89], human trachea [254], cornea [235],
skin [90] or gallbladder walls [143]... Even if many soft tissues are studied, the largest
database in the literature concerns arteries.

Soft tissues present a complex behaviour with many non-linear phenomena as explained
by different authors [118, 124] as the time dependency [27, 202] or the stress softening
phenomenon [154, 198], i.e., their mechanical behaviour mainly depends on time and on
the maximum deformation previously endured. Most of soft tissues dissipate energy when
loading, nevertheless, the elastic behaviour generally dominates their behaviour and it repre-
sents the asymptotic behaviour when the dissipation diminishes to zero. In this way, in a first
approach, most of the soft tissues are described in the context of hyperelasticity [94, 149,
246]. To take into account the fibrous structure of the soft tissues, anisotropic formalism is
introduced. The diversity among the mechanical characteristics of soft tissues has motivated
a great number of constitutive formulations for the different tissue types. For example, the
reader is referred to [224], wherein the author treats the history of biaxial techniques for soft
planar tissues and the associated constitutive equations.

Anisotropic hyperelasticity can be modeled by using the components of the strain tensor
or by the use of strain invariants. The two formulations permit the development of different
families of anisotropic strain energy densities. Soft tissues are numerous and present differ-
ent tissue architectures that lead to various anisotropy degrees, i.e., difference of mechanical
behaviour in each direction, and different maximum admissible deformation. In this way,
many constitutive equations are proposed to describe the tissues.

The aim of this paper is to propose a review of most of the hyperelastic strain energy
densities commonly used to describe soft tissues. In a first part, the different formalisms that
can be used are recalled. In a second part, the isotropic modelling is described. In a third
part, the anisotropic modelling is presented. The deformation tensor component approach
based on Fung’s formulation is briefly presented, and invariant approaches are detailed. In
a fourth part, the statistical approaches, considering the evolution of the collagen network,
are described. Last, a discussion about the models closes the paper.

2 Mechanical Formulation

2.1 Description of the Deformation

Deformations of a material are classically characterised by right and left Cauchy–Green
tensors defined as C = FT F and B = FFT , where F is the deformation gradient. In the polar
decomposition of F, the principle components of the right or left stretch tensors are called
the stretches and are denoted as λi with i = 1..3. The Green–Lagrange tensor is defined as
E = (C − I)/2, where I is the identity tensor, and its components are denoted as Eij with
i, j = 1...3. Nevertheless, some prefer to use the logarithmic strains ei = ln(λi), instead of a
strain tensor, generalised strains as ei = 1

n
(λn

i −1) [185], or others measures as, for example,
ei = λi

λ2
j
λ2
k

with j �= i and k �= i [86]; all these measures are written in their principal basis.
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Instead of using directly the strain tensors, strain invariants are often preferred as they
have the same values whatever the basis is. From an isotropic point of view, three principal
strain invariants I1, I2 and I3 are defined by

I1 = tr(C), (1)

I2 = 1

2

[
tr(C)2 − tr

(
C2

)]
, (2)

I3 = det(C), (3)

where “tr” is the trace operator, and “det” the determinant operator.
Characteristic directions corresponding to the fibre orientations must be defined. For one

material, one or many material directions (the number of directions is noted q) can be de-
fined according to the architecture of the considered tissue. In the undeformed state, the ith
direction is noted Ni in the initial configuration. The norm of the vector Ni is unit. Due to
material deformation, the fibre orientations are evolving in the deformed state. The current
orientation is defined by

n(i) = FN(i). (4)

Note that n(i) is not a unit vector. Two orientation tensors can be defined, one in the unde-
formed and another in the deformed state:

A(i) = N(i) ⊗ N(i), a(i) = n(i) ⊗ n(i). (5)

The introduction of such directions lead to the definition of new invariants related to each
direction. The invariant formulation of anisotropic constitutive equations is based on the
concept of structural tensors [29, 30, 238, 239, 241, 243].1 The invariant I4 and I5 can be
defined for one direction i as

I
(i)

4 = tr
(
CA(i)

) = N(i) · CN(i), and I
(i)

5 = tr
(
C2A(i)

) = N(i) · C2N(i). (6)

In practice, some prefer to use the cofactor tensor of F, i.e., Cof(F), [120] and to define
J

(i)

5 = tr(Cof(C)A(i)), in order to easily ensure the polyconvexity of the strain energy (see
Sect. 2.3). In the literature, in the case of two fibre directions (1) and (2), a notation I4

and I6 is often used for soft tissues [108] instead of I
(1)

4 and I
(2)

4 (or I5 and I7 instead of
I

(1)

5 and I
(2)

5 ). In this paper, it is preferred to keep only I
(i)

4 notation and to generalise the
notation to n directions. These invariants depend only on one direction but it is possible
to take into account the interaction between different directions, by introducing a coupling
between directions i and j by means of two other invariants:

I
(i,j)

8 = (
N(i) · N(j)

)(
N(i) · CN(j)

)
, and I

(i,j)

9 = (
N(i) · N(j)

)2
. (7)

I
(i,j)

9 is constant during deformation, thus it is not adapted to describe the deformation
of the material but it represents the value of I

(i,j)

8 for zero deformation. Let us denote
Ik as the invariants family (I1, I2, I3, I

(i)

4 , I
(i)

5 , I
(i,j)

8 , I
(i,j)

9 ) and Jk as the invariants family

1Details about the link between structural tensors and a method to link a fictitious isotropic configuration to
render an anisotropic, undeformed reference configuration via an appropriate linear tangent map is given in
[163].

3



(I1, I2, I3, I
(i)

4 , J
(i)

5 ). When only one direction is considered, the superscript (i) is omitted in
the remainder of this paper.

The Ik invariants are the mostly used invariants in the literature, although other invari-
ants have been proposed. Some authors [50] propose to use invariants that are zero at zero
deformation. In this way, they introduce the tensor G = HT H, with H = 1

2 (F − FT ). This
motivates the definition of a new class of invariants Ĩk :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ĩ1 = tr(G),

Ĩ2 = tr
(
G2

)
,

Ĩ4 = tr
(
GA(i)

)
,

Ĩ5 = tr
(
G2A(i)

)
.

(8)

Ericksen and Rivlin [70] proposed another formulation, adapted to transversely isotropic
materials only, characterised by a vector N (i.e., only one direction i). This direction often
corresponds to a fibre reinforced direction. Their work was further used by different authors
[3, 52, 54, 55] who proposed to define other invariants (λp,λn, γn, γp,ψγ ), denoted as Crk .
They can be expressed as a function of the Ik invariants:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2
p =

√
I3

I4
,

λ2
n = I4,

γ 2
n = I5

I4
− I4,

γ 2
p = I1 − I5

I4
− 2

√
I3

I4
,

tan 2ψγ =
2λpH + / − γp

√
γ 4

n γ 2
p (4λ2

p + γ 2
p ) − H 2

λpH + / − 2λp

√
γ 4

n γ 2
p (4λ2

p + γ 2
p ) − H 2

,

(9)

with H = (2λ2
n + γ 2

n )(2λ2
p + γ 2

p ) + 2λ4
p − 2I2. The advantage is that these invariants have

a physical meaning. λn is the measure of stretch along N, λp is a measure of the in-plane
transverse dilatation, γn is a measure of the amount of out-of-plane shear, γp is the amount of
shear in the transverse plane, and ψγ is a measure of the coupling among the other invariants.
Criscione et al. [52] criticised these invariants for not being zero for zero deformation, as is
the corresponding strain tensors. They proposed to use the βk invariants:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = ln I3

2
,

β2 = 3 ln I4 − ln I3

4
,

β3 = ln

(
I1I4 − I5

2
√

I3I4
+

√(
I1I4 − I5

2
√

I3I4

)2

− 1

)
,

β4 =
√

I5

I 2
4

− 1,

β5 = I1I4I5 + I1I
3
4 + 2I3I4 − I 2

5 − 2I2I
2
4 − I5I

2
4

(I5 − I 2
4 )

√
I 2

1 I 2
4 + I 2

5 − 2I1I4I5 − 4I3I4

.

(10)
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These invariants also have a physical meaning. β1 is the logarithmic volume strain, β2 spec-
ifies a fibre strain of distortion, β3 specifies the magnitude of cross-fibre, i.e., pure shear
strain, β4 specifies the magnitude of along fibre strain, i.e., simple shear strain and β5 spec-
ifies the orientation of the along fibre shear strain relative to the cross-fibre shear strain.

These last two families of invariants were developed for a one fibre direction material; it
can easily be generalised to q directions but this has not yet been used yet in the literature.
All these invariants are useful. In practice, the Ik are the most used and the other invariants
are not often used for calculations in finite element software. But, as they can be written
by means of the Ik invariants, all the expressions can be deduced from these invariants.
As a consequence in this work, the theoretical development is only presented for the Ik

formulation.

2.2 Strain-Stress Relationships

Living tissues are often considered as incompressible. To use constitutive equations in finite
element codes, a volumetric/isochoric decomposition is used. All the equations are written
using the pure incompressibility hypothesis in order to avoid any non-physical response of
these equations [100], but some details about the consequences of the volumetric-isochoric
choice split is detailed in [227]. Nevertheless, they can be written in a quasi-incompressible
framework by means of the incompressible invariants Īk :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ī1 = I1I
−1/3
3 ,

Ī2 = I2I
−2/3
3 ,

Ī4
(i) = I

(i)

4 I
−1/3
3 ,

Ī5
(i) = I

(i)

5 I
−2/3
3 ,

Ī8
(i,j) = I

(i,j)

8 I
−1/3
3 .

(11)

This formulation is particularly useful for finite element implementation. All the equations
for the elasticity tensor can be seen in different papers [32, 133, 145, 152, 195, 271]. In
this case, a penalty function depending on I3 is used to ensure incompressibility. One can
refer to [62] for a comparison of the different functions classically used. The choice of the
penalty parameter to ensure incompressibility [253] is a critical issue. In this paper, all the
constitutive equations are written in the purely incompressible framework, but all the models
can be established in the quasi-incompressible framework as well.

The second Piola–Kirchhoff stress tensor can be directly calculated by derivation of the
strain energy function W(I1, I2, I

(i)

4 , I
(i)

5 , I
(i,j)

8 , I
(i,j)

9 ), with i, j = 1..q:

S = 2

[

(W,1 + I1W,2)I − W,2C +
q∑

i

W
(i)

,4 N(i) ⊗ N(i)

+
q∑

i

W
(i)

,5

(
N(i) ⊗ CN(i) + N(i)C ⊗ N(i)

)

+
∑

i �=j

W
(i,j)

,8

(
N(i) · N(j)

)(
N(i) ⊗ N(j) + N(j) ⊗ N(i)

)
]

+ pC−1 (12)

where W,k = ∂W
∂Ik

, and p is the hydrostatic pressure. The Eulerian stress tensor, i.e., the
Cauchy stress tensor, is directly obtained by the push-forward operation. To ensure that the
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stress is identically zero in the undeformed configuration, it is required that:

∀i W
(i)

,4 + 2W
(i)

,5 = 0, (13)

for zero deformation [174]. The direct expressions that permit calculation of the stress with
the other invariants basis can be found in [52, 53].

2.3 Stability

The strong ellipticity condition is a mathematical restriction on the constitutive functions.
For three-dimensional problems [267], the strong ellipticity was characterised for compress-
ible isotropic materials in [236], and for incompressible ones in [273]. In this context, the
strong ellipticity was largely studied in the case of transverse isotropy for in plane strains in
[165–168, 170, 240]. The generic condition to verify for the strain energy in the absence of
body forces [150, 167, 168] can be written as:

1

J
FprFqs

∂2W

∂FirFjs

npnqmimj > 0 with m �= 0 and n �= 0, (14)

where m and n are two non-zero vectors. Nevertheless, this condition is always difficult
to verify. Thus, some have proposed another way to tackle the strong ellipticity condition.
It is known that polyconvexity implies ellipticity [173, 228, 232]. As a consequence, the
polyconvexity in the sense of Ball [14, 15] is used, even if it is more restrictive than strong
ellipticity. Of course, some strain energies can be elliptic but not polyconvex. It is important
to note that polyconvexity does not conflict with the possible non-uniqueness of equilibrium
solutions, as it guarantees only the existence of at least one minimizing deformation. Hence,
polyconvexity provides an excellent starting point to formulate strain energy functions that
guarantees both ellipticity and existence of a global minimizer.

Polyconvexity has been studied within the framework of isotropy [23, 244], and the con-
ditions to verify it are well known for every classical isotropic model from the literature
(see for example [97, 98, 180, 204]). Many authors have extended their study to anisotropic
materials [67, 121, 171, 206, 245, 257]. Some have studied the polyconvexity of existing
constitutive equations [64, 104, 106, 186, 267], whereas others have attempted to directly
develop polyconvex constitutive equations.

Some Conditions. In case of existing constitutive equations, Walton and Wilber [267] sum-
marised conditions to ensure polyconvexity. For a strain energy depending on I1, I2 and I4,
W(I1, I2, I

(i)

4 ), the conditions are:

W,k > 0 for k = 1,2,4 and (15)

[W,kl] is definite positive. (16)

If the strain energy also depends on I
(i,j)

8 , the following condition should be added:

∂W

∂I
(i,j)

8

≤ ∂W

∂I1
. (17)
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The use of the fifth invariant I
(i)

5 introduces the need to change the other invariants, as I5 is
not a polyconvex function (when used alone). Walton and Wilber [267] used I ∗

k :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

I ∗
1 = 1

2
I1,

I ∗
2 = 1

2
I 2

1 − I2,

I
(i)∗
4 = I

(i)

4 ,

I
(i)∗
5 = I

(i)

5 .

(18)

Here, the condition to verify for I ∗
k is:

⎧
⎪⎨

⎪⎩

W,k > 0 for k = 1,2,4,5,

W,1 + κW,4 ≥ 0 for some κ > 4,

[W,kl] is definite positive.

(19)

As it will be described in next paragraph, many strain energies can be decomposed as
W = Wiso(I1) + Waniso(I4). In this case, some sufficient conditions, but not necessary for
polyconvexity, have been given in [106] for the anisotropic part:

∂Waniso

∂I4
≥ 0 and (20)

∂Waniso

∂I4
+ 2I4

∂2Waniso

∂I 2
4

≥ 0. (21)

These two restrictive conditions mean that the considered directions cannot generate nega-
tive forces when submitted to compression whereas the strong ellipticity can also be verified
in compression. This is an illustration of the constraints generated by the polyconvexity
compared to strong ellipticity.

Development of Specific Constitutive Equations. Some authors have created elementary
strain energies that satisfy polyconvexity. First, Schroder and Neff [228] worked on equa-
tions depending on I1 and I4, and they proved that some functions are polyconvex:

W1 = β1I4, W2 = β2I
2
4 , W3 = β3

I4

I
1/3
3

, and W4 = β4
I 2

4

I
1/3
3

, (22)

where βi are material parameters. Nevertheless, as I5 is not a polyconvex function, some
have proposed [228, 229] the construction of new combinations of invariants in the case of
one reinforced direction that are polyconvex; these invariants are denoted as Ki :

⎧
⎪⎨

⎪⎩

K1 = I5 − I1I4 + I2

(
tr(A)

)1/2
,

K2 = I1 − I4,

K3 = I1I4 − I5.

(23)

These invariants permitted the development of a list of elementary polyconvex energies [66,
231]. The different strain energies are listed in Table 1. Since a combination of polyconvex
energy densities is also polyconvex, it is possible to develop many constitutive equations
that can be adapted to different soft tissues.
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Table 1 Elementary polyconvex functions [66, 231], where βi with i = 5...23 are material parameters

Elementary polyconvex functions

W5 = β5K1 W6 = β6K2
1 W7 = β7K3

1

W8 = β8
K1

I
1/3
3

W9 = β9
K2

1

I
2/3
3

W10 = β10K2

W11 = β11K2
2 W12 = β12

K2

I
1/3
3

W13 = β13
K2

2

I
2/3
3

W14 = β14K3 W15 = β15K2
3 W16 = β16

K3

I
1/3
3

W17 = β17
K2

3

I
2/3
3

W18 = β18
(
I2
1 + I4I1

)
W19 = β19

(
2I2

2 + I2I5 − I1I2I4
)

W20 = β20
(
3I2

1 − I4I1
)

W21 = β21
(
2I2

2 + I1I2I4 − I2I5
)

W22 = β22(3I1 − 2I4) W23 = β23(I2 − 2I5 + 2I1I4)

3 Isotropic Hyperelastic Constitutive Equations

From a macroscopic point of view, soft tissues are an assembly of cells and fibres. According
to the quantity and the orientation of the fibres, the behaviour of soft tissues can be supposed
isotropic or not. According to the application, anisotropic behaviour can be neglected, and
isotropic modelling can be efficient. In this way, many authors decide to use an isotropic
approach to model soft tissues, as for example liver [149] kidney [113], bladder and rec-
tum [33], pelvic floor [193], breast [12, 226], cartilage [144], meniscus [1], ligaments [80],
eardrum [46], arteries [192], brain [127], lungs [234], uterus [95] or skin [142]... Many mod-
els that are used to describe an isotropic approach come from rubber like materials studies.
Some literature reviews have been proposed [34, 258]. Constitutive equations for rubber like
materials were created to represent a strain hardening for deformations of about hundreds of
percent whereas soft tissues often strain harden after some tens of percent. Thus, the func-
tions for rubber like materials may not necessarily apply. Other, more suitable constitutive
equations have been developed especially for soft tissues. The main models are listed in Ta-
ble 2. The main feature for the constitutive equations is the presence of an important change
of slope in the strain-stress curve for moderate deformations. This explains why most of the
equations include an exponential form which allows the description of strong slope changes.
Nevertheless, all constitutive equations stay equivalent to the neo-Hookean model [255, 256]
for small strains. Moreover, most of the constitutive equations are very similar for the I1 part
as it is the exponential form that dominates in the equations. While most of the constitutive
equations are only expressed with the first invariant, the second invariant can be employed
to capture the different states of loading [112]. There exists some limitations to use only the
first invariant [110, 270]. Nevertheless, the choice of using I1, or (I1, I2) mainly depends on
the available experimental data. When experiments are limited to one loading case, it can be
difficult to correctly fit a constitutive equation expressed by means of the two invariants.

4 Anisotropic Hyperelastic Constitutive Equations

Different approaches have been used to describe the anisotropy of soft tissues. The first one
is based on Green–Lagrange components and the second one is based on strain invariants.
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Table 2 Principal isotropic hyperelastic constitutive equations developed for soft tissues, where c1, c2, c3
and c4 are material parameters. (*) The model is known as the generalised neo-Hookean model. (**) As
pointed out by [109] is frequently mistakenly referred to Delfino et al. [56]

Polynomial models

Raghavan and Vorp [210] W = c1(I1 − 3) + c2(I1 − 3)2

Knowles [131, 274] (*) W = c1
2c2

[(
1 + c2

c3
(I1 − 3)

)c3 − 1
]

Exponential model

Demiray [57] (**) W = c1
c2

{
exp

[ c2
2 (I1 − 3)

] − 1
}

Demiray et al. [58] W = c1
c2

{
exp

[ c2
2 (I1 − 3)2] − 1

}

Holmes and Wow [103] W = c0
(
exp

(
c1(I1 − 3)

) + exp
(
c2(I2 − 3)

)) − c0

Arnoux et al. [7, 8] W = c1 exp
(
c2(I1 − 3)

) − c1c2
2 (I2 − 3)

Singh et al. [237] W = c1
2c2

exp
(
c2(I1 − 3) − 1

) + c3
2 (I2 − 3)2

Volokh and Vorp [266] W = c1 − c1 exp
[− c2

c1
(I1 − 3) − c3

c1
(I1 − 3)2]

Tang et al. [251] W = c1(I1 − 3) + c2(I2 − 3) + c3
(
exp

(
c4(I1 − 3)

) − 1
)

Van Dam et al. [261] W = c1
{− 1−c2

c2
3

[
(c3x + 1) exp(−c3x) − 1

] + 1
2 c2x2}

with x = √
c4I1 + (1 − c4)I2 − 3

4.1 Use of Green–Lagrange Tensor Components

The first model using the components of the Green–Lagrange strain tensor were developed
in [118]. It consists in proposing strain energy densities that are summarily decomposed
into contributions of each component with different weights; a review of these models is
proposed in [116]. The first generic form was proposed by Tong and Fung [252]:

W = c

2

(
exp

(
b1E

2
11 + b2E

2
22 + b3

(
E2

12 + E2
21

) + 2b4E12E21

+ b5E
3
11 + b6E

3
22 + b7E

2
11E22 + b8E11E

2
22

)−1)
, (24)

where c and bi , i = 1...8 are material parameters. Three years later, Fung [77] developed a
generic form in two dimensions, the model was next generalised to three dimensions [49].
Later, shear strains were introduced [128], and finally a global formulation was proposed
[116]:

W = c
(
exp(AijklEijEkl) − 1

)
, (25)

where c and Aijkl are material parameters. Different constitutive equations were then devel-
oped and written in cylindrical coordinates (r , θ , z) often used for arteries [138]. Moreover,
the strain energy function can be naturally uncoupled into a dilatational and a distortional
part [11], to facilitate the computational implementation of incompressibility. In the same
way, as in non-Gaussian theory [137], it is possible to take into account the limiting extensi-
bility of the fibres [175]. This exposes the possibility of a constitutive equation that presents
an asymptote even if constitutive equations that include an exponential or an asymptotic
form can be very close [42]. The proposed models are listed in Table 3. The main diffi-
culty of these constitutive equations is that they have a large number of material parameters.

9



Table 3 Anisotropic constitutive equations written with strain tensors components, where Aijkl with
i, j, k, l = 1...3, bi , with i = 1...12, aij , bij , cij with i, j = 1...3 and c are material parameters

Generic Fung functions W = C
2 (expQ − 1)

Tong and Fung [252] Q = AijklEijEkl

Fung et al. [77] Q = b1E2
θθ + b2E2

zz + 2b4EθθEzz

Chuong and Fung [49] Q = b1E2
θθ + b2E2

zz + b3E2
rr + 2b4EθθEzz + 2b5ErrEzz + 2b6EθθErr

Humphrey [116] Q = b1E2
θθ + b2E2

zz + b3E2
rr + 2b4EθθEzz + 2b5ErrEzz

+ 2b6EθθErr + b7E2
θz + b8E2

rz + b9E2
rθ

Costa et al. [51] Q = b1E2
ff

+ b2E2
ss + b3E2

nn + 2b4
( 1

2 (Ef n + Enf )
)2

+ 2b5
( 1

2 (Esn + Ens)
)2 + 2b6

( 1
2 (Ef s + Esf )

)2

Rajagopal et al. [213] Q = b1E2
θθ + b2E2

zz + b3E2
rr + 2b4EθθEzz + 2b5ErrEzz + 2b6EθθErr

+ b7
(
E2

rr + E2
θθ

) + b8
(
E2

θθ + E2
zz

) + b9
(
E2

rr + E2
zz

)

Other exponential functions

Choi and Vito [48] W = b0
[
exp

(
b1E2

11

) + exp
(
b2E2

22

) + exp(2b3E11E22) − 3
]

Kasyanov and Rachev [128] W = b1
(
exp

(
b2E2

zz + b3EzzEθθ + b4E2
θθ + b5E2

zzEθθ + b6EzzE
2
θθ − 1

))

+ (
b7Eθθ exp(b8Eθθ ) + b9Ezz + b10E2

θz

)

Other models

Vaishnav et al. [259] W = b1E2
θθ + b2EθθEzz + b3E2

zz + b4E3
θθ + b5E2

θθEzz + b6EθθE2
zz

+ b7E3
zz

Rajagopal et al. [213] W = b1E11 + b2E22 + b3E33 + b4E11E22 + b5E11E33 + b6E22E33

+ b7E2
11 + b8E2

22 + b9E2
33 + b10E2

12 + b11E2
13 + b12E2

23
Tong and Fung [252] W = 1

2

(
b1E2

11 + b2E2
22 + b3

(
E2

12 + E2
21

) + 2b4E12E21
)

+ [ b5
2 exp

(
b6E2

11 + b7E2
22 + b8

(
E2

12 + E2
21

) + 2b9E12E21

+ b10E3
11 + b11E3

22 + b12E2
11E22 + b13E11E2

22

)−1]

Humphrey [117] W = b1E2
rr + b2E2

θθ + b3E2
zz + 2b4ErrEθθ + 2b5EθθEzz + 2b6ErrEzz

+ b7
(
E2

rθ + E2
θr

) + b8
(
E2

zθ + E2
θz

) + b9
(
E2

zr + E2
rz

)

Takamizawa and Hayashi [249] W = −c ln
(
1 − ( 1

2 b1E2
θθ + 1

2 b2E2
zz + b3EθθEzz + b4EθθEzz

+ b5EθθErr + b6ErrEzz

))

Nash and Hunter [175] W = c11
E2

11
|a11−E11|b11

+ c22
E2

22
|a22−E22|b22

+ c33
E2

33
|a33−E33|b33

+ c12
E2

12
|a12−E12|b12

+ c13
E2

13
|a13−E13|b13

+ c23
E2

23
|a23−E23|b23

Moreover, the parameters of these materials are often difficult to fit as they have no physical
meaning. For example, the strain energy of [259] is discussed in [104] and is not convex,
this can also be the case for Fung functions if the parameters are not well chosen [104]. The
limitations in material parameters are discussed in [71, 269] with respect to polyconvexity.
In this way, developments have been made to ensure polyconvexity with a physical meaning
of the material response [247]. Other conditions also must be respected for viable functions.
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For example, the function defined in [175] requires a limit for each component. As a conse-
quence, the domain limits of the function are well established. The question is different for
[249] as the function is written in terms of the sum of the components in a logarithmic form
and the function can be undefined [104].

4.2 Use of Strain Invariants

Strain energy densities depend on isotropic and anisotropic strain invariants. The use of
I4 and I5 is necessary to recover linear theory [174]. Different cases exist. In a first case,
the strain energy can be split as a sum into different parts as an isotropic and anisotropic
contribution:

W = Wiso(I1, I2) +
∑

i

Waniso
(
I

(i)

4 , I
(i)

5

)
, (26)

or some coupling can be realised between the isotropic and anisotropic parts as Waniso(I1, I2,

I
(i)

4 , I
(i)

5 ). But very few models present a non-additive decomposition between two directions
i and j , i.e., between I

(i)

4 , I
(i)

5 , I
(j)

4 and I
(j)

5 . When Wiso is used, it is often represented by a
classical energy function. We discuss Waniso in the next paragraph. The use of only I4 or I5,
instead of the both of these invariants is questionable as it leads to the same shear modulus
in the direction of and in the direction orthogonal to the reinforced direction [174].

Different model forms can be distinguished such as the polynomial, the power, the expo-
nential and other constitutive equations not of these types.

4.2.1 Polynomial Development

The most known model for isotropic hyperelasticity is Rivlin’s series [217] that describes
a general form of constitutive equations depending on the first and second invariants. The
generalisation of this model to an anisotropic formulation has been proposed in different
ways. One consists in introducing the anisotropic invariants in the series. First a simple I4

series [123] was proposed:

Waniso =
n∑

k=2

ci(I4 − 1)k, (27)

where ci are material parameters. A linear term cannot be used, i.e., k = 1 in the previous
equation, as it does not ensure zero stress for zero deformation. The term k = 2 corresponds
to the standard reinforcing model [61, 182, 220, 257], not initially proposed for soft tissues.
The complete generalisation of the Rivlin series was proposed in [222]:

W =
∑

klmn

cklmn(I1 − 3)k(I2 − 3)l(I4 − 1)m(I5 − 1)n, (28)

where cklmn are material parameters. A modified formulation was proposed in [111] to be
more convenient for numerical use:

W =
∑

klmn

cklmn(I1 − 3)k
[
(I2 − 3) − 3(I1 − 3)

]l
(I4 − 1)m(I5 − 2I4 + 1)n. (29)

Instead of using I4, one may use
√

I4 which represents the elongation in the considered
direction. This leads to a new series development [115]:

W =
∑

kl

ckl(I1 − 3)k(
√

I4 − 1)l, (30)

11



Table 4 Some constitutive equations based on truncations of the series developments where ci with i = 1...6
are material parameters

I4 forms

Triantafyllidis and Abeyaratne [257] Waniso = c2(I4 − 1)2

Peng et al. [199] Waniso = c2(I4 − 1)2 + c4(I4 − 1)4

Basciano and Kleinstreuer [19] Waniso = c2(I4 − 1)2 + c3(I4 − 1)3 + c4(I4 − 1)4

+ c5(I4 − 1)5 + c6(I4 − 1)6

Basciano and Kleinstreuer [19] Waniso = c6(I4 − 1)6

Lin and Yin [148] W = c1(I1 − 3)(I4 − 1) + c2(I1 − 3)2 + c3(I4 − 1)2

+ c4(I1 − 3) + c5(I4 − 1)

√
I4 forms

Alastrue et al. [4, 6] Waniso = c2(
√

I4 − 1)2

Humphrey [115] W = c1(
√

I4 − 1)2 + c2(
√

I4 − 1)3 + c3(I1 − 3)

+ c4(I1 − 3)(
√

I4 − 1) + c5(I1 − 3)2

I4, I5 forms

Park and Youn [194] Waniso = c3(I4 − 1) + c5(I5 − 1)

Bonet and Burton [31] W = [
c1 + c2(I1 − 3) + c3(I4 − 1)

]
(I4 − 1) − c1

2 (I5 − 1)

Bonet and Burton [31] Waniso = [
c1 + c3(I4 − 1)

]
(I4 − 1) − c1

2 (I5 − 1)

Merodio and Ogden [111, 169, 170] Waniso = c2(I5 − 1)2

Hollingsworth and Wagner [102] Waniso = c2(I5 − I2
4 )

Murphy [174] W = c1(I1 − 3) + c2(2I4 − I5 − 1) + c3(I5 − 1)2

Murphy [174] W = c1(I1 − 3) + c2(2I4 − I5 − 1) + c3(I4 − 1)(I5 − 1)

Murphy [174] W = c1(I1 − 3) + c2(2I4 − I5 − 1) + c3(I4 − 1)2

where ckl are material parameters. It is worth noting that the use of
√

I4 includes, in the
quadratic formulation [6, 35], a model that represents the behaviour of a linear spring.

As other invariants were proposed, a series development based on βk invariants also has
been considered [52]:

W =
∑

klm

Gklmβk
3βl

4β
m
5 , (31)

where Gklm are material parameters.
As for rubber like materials with the Rivlin’s series, the whole series is not used and a

good truncation of the strain energy is essential. According to the considered material and to
the loading states, different developments have been given in the literature. A list of resulting
equations is included in Table 4. It is also important to note that the I4 invariant is often used
whereas the I5 invariant is most often disregarded.

4.2.2 Power Development

Ogden’s [184] isotropic constitutive equation has proved its efficiency to describe complex
behaviour. It is based on elongations and a power law development. For a material with a

12



Table 5 Model based on a power development, where ki , i = 1..6 are material parameters

Power developments

Ghaemi et al. [85] Waniso = C
(
I
k1/2
4 − 1

)k2

Schroder et al. [50, 228, 230] Waniso = k1I
k2
4

Balzani et al. [16, 17] W = k1(I1I4 − I5 − 2)k2

Schroder et al. [230] W = k1(I5 − I1I4 + I2) + k2I
k3
4 + k4(I1I4 − I5) + k5I

k6
4

O’Connell et al. [183] W = k6I4
(
(I5 − I1I4 + I2) − 1

)2

single fibre direction, there is the following generic form [186]:

Waniso = 2μ1

β2

(
I

β/2
4 + 2I

−β/4
4 − 3

)
, (32)

where μ1 and β are material parameters. A generalised form was proposed by not imposing
the same parameters for the two terms [264]

Waniso =
∑

r

(
αr

(
I

βr

4 − 1
) + γr

(
I

−δr
4 − 1

))
, (33)

where αr , βr , γr , δr are material parameters. The same type of formulation is also proposed
using the other invariants. Two general equations are of the form [122]:

W =
∑

klmn

cklmn(I1 − 3)ak (I2 − 3)bl (I4 − 1)cm(I5 − 1)dn and (34)

W =
∑

klmn

cklmn

(
I

ak

1 − 3ak
)(

I
bl

2 − 3bl
)(

I
cm

4 − 1
)(

I
dn

5 − 1
)
, (35)

where cklmn, ak , bl , cm and dn are material parameters. In the same way, other power law
constitutive equations were proposed and are listed in Table 5. Additional forms can be
found in the polyconvex strain energies listed in Table 1. These models represent different
forms that link different invariants.

4.2.3 Exponential Development

A key property of the constitutive equation for soft tissues is the inclusion of an important
strain hardening. This is easily obtained by means of an exponential function of the I4 in-
variant. This approach is largely used in the literature, the first models were proposed in
the 1990s. In the beginning, two fibre directions were introduced to represent the mechan-
ical behaviour of arteries [104]. This was extended to four directions [13, 159] and to n

directions [82] and used for example with 8 directions for cerebral aneurysms [276]. These
models may be used to model the behaviour of a complex tissue such as in different areas of
a soft tissue (as for example the different layers of an artery) [18]. Various formulations are
listed in Table 6.

In order to take into account the ratio of isotropic to anisotropic parts of a heterogeneous
material, a weighting factor has been introduced based on the contributions of I1 and I4

[107]. This represents a measure of dispersion in the fibre orientation. This model leads to
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Table 6 List of exponential constitutive equations, where c1, c2, c3, c4, c5 and κ are material parameters

I4 forms

Humphrey and Yin [114] Waniso = c1
(
exp

(
c2(

√
I4 − 1)2) − 1

)

Weiss et al. [268] Waniso = c1
(
exp(I4 − 1) − I4

)

Ciarletta et al. [50] Waniso = c1
(
exp

(
c2I

c3
4

) − 1
)

Pinsky et al. [201] Waniso = c1
c2

(
exp

(
c2(I4 − 1)

) − c2I4
)

Natali et al. [176] Waniso = c1
c2

{
exp

(
c2(I4 − 1)

) − c2(I4 − 1) − 1
}

Holzapfel et al. [104] Waniso = c1
2c2

[
exp

(
c2(I4 − 1)2) − 1

]

Weiss et al. [268] Waniso = c1
(
exp(I4 − 1)2 − (I4 − 1)2 − 1

)

Peña et al. [196] Waniso = c1
c2

[
exp

(
c2(I4 − 1)

) − c2(I4 − 1) − 1
]

I1, I4 forms

Holzapfel et al. [105] Waniso = c1(I4 − 1) exp
(
c2(I4 − 1)2)

Gasser et al. [83] W = c1
2c2

[exp
{
c2

[
κI1 + (1 − 3κ)I4 − 1

]2} − 1]
Holzapfel et al. [107] W = c1

2c2

{
exp

(
c2

(
(1 − κ)(I1 − 3)2 + κ(I4 − 1)2) − 1

)}

May-Newman and Yin [161, 162] W = c0
(
exp

(
c1(I1 − 3)2 + c2(

√
I4 − 1)4) − 1

)

Rubin and Bodner [221] W = c1
2c2

(
exp

(
c2

(
c5(I1 − 3) + c3

c4
(
√

I4 − 1)2c4
)) − 1

)

Lin and Yin [148] W = c1
(
exp

(
c2(I1 − 3)2 + c3(I1 − 3)(I4 − 1) + c4(I4 − 1)2) − 1

)

Doyle et al. [64]
W = c1

(
exp

(
c2(I1 − 3)2 + c3(I1 − 3)(I4 − 1) + c4(I4 − 1)2

+ c5(I1 − 3) + c6(I4 − 1)
) − 1

)

Fung et al. [78]
W = c1

(
exp

(
c2(I1 − 3)2 + c3(I1 − 3)(I4 − 1) + c4(I4 − 1)2) − 1

)

+ c5(I1 − 3)2 + c6(I4 − 1)2 + c7(I1 − 3)(I4 − 1)

I4, I5 forms

Masson et al. [160] Waniso = C1
2C2

(
exp

{
C2(I4 − 1)2} − 1

) + C3
2C4

(
exp

{
C4(I5 − 1)2} − 1

)

the creation of different constitutive equations which are also listed in Table 6. Recently, a
general form of an energy function was devised [197] in order to summarise a large number
of constitutive equations:

W = γ

aη

[
exp

(
η(I1 − 3)a

) − f1(I1, a)
] + ci

bdi

[
exp

(
di

(
I

(i)

4 − I 0
4

)b) − g
(
I

(i)

4 , I 0
4 , b

)]
. (36)

The choice of the functions f1 and g allows for the wide generalization of many different
models. Also, γ , η, a, b, ci , di and I 0

4 are material parameters, and I 0
4 represents the thresh-

old to reach for the fibre to become active. Some authors [68, 75] have proposed in a way
similar as to what is done in the case of isotropy [96] a constitutive equation for the stress,
the energy being obtained by integration:

σ(λ) = A

(
exp

(
B

λ2 − 1

2

)
− 1

)
, (37)
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Table 7 Other models written in invariants, where ci with i = 1...7 are material parameters

General forms

Horgan and Saccomandi [111] W,4 = − c1+c2(I4−1)

c3+c4(I4−1)+c5(I4−1)2+c6(I5−2I4+1)

Horgan and Saccomandi [111] W,4 = − c1+c2(I4−1)
c3+c4(I4−1)

Ruter and Stein [222] W = c2
(
cosh(I4 − 1) − 1

)

Horgan and Saccomandi [111] W = −c2c3
(
I4 − 1 + c3 ln(1 − I4−1

c3
)
)

Ogden and Saccomandi [187] W = − c2
2 c3 ln

(
1 − (I4−1)2

c3

)

Horgan and Saccomandi [111] W = − c2
n c3 ln

(
1 − (I4−1)n

c3

)

Dorfmann et al. [63] Wan = c2
[
1 − c3 tanh

( I4−1
c4

)][
exp

(
c5(I4 − 1)2) − 1

]

Markert et al. [157] W = c1
c2

(
I
c2/2
4 − 1

) − c1 ln
(
I

1/2
4

)

Limbert and Middleton [146] W = 2c5
√

I4 + c6 ln(I4)

Calvo et al. [38] W = 2c5
√

I4 + c6 ln(I4) + c7

Demirkoparan et al. [59, 60] W = 2
3

( I4
c2

1
+ 2 c1√

I4
− 3

)

Horgan and Saccomandi [111] W = −c1c2 log
(
1 − (I5−1)2

c2

)

Lurding et al. [153] W = c1(I1 − 3) + c2(I1 − 3)(I4 − 1) + c3(I2
4 − I5)

+ c4(
√

I4 − 1)2 + c5 ln(I4)

Chui et al. [153] W = c1 ln(1 − T ) + c5(I1 − 3)2 + c6(I4 − 1)2 + c7(I1 − 3)(I4 − 1)

with T = c2(I1 − 3)2 + c3(I4 − 1)2 + c4(I1 − 3)(I4 − 1)

Other invariants

Lu and Zhang [151] W = c2 exp
(
c1(

√
I4 − 1)2) + 1

2 c3(β1 − 1) + 1
2 c4(β2 − 2)

where A and B are material parameters.
Even if this approach was initially developed and used for arteries [43, 205, 260], it is

also often used for different living tissues, as for example human cornea [190], erythro-
cytes [130], the mitral valve [203], trachea [155, 254], cornea [139, 179], collagen [125],
abdominal muscle [101].

4.2.4 Some Other Models

Other ideas have been developed for rubber like materials, as for example the Gent [84]
model which presents a large strain hardening with only two parameters. Its specific form
gives it a particular interest for some tissues. This model was generalised to anisotropy in two
ways [111]. Other different forms can be proposed with a logarithmic or a tangent function.
A list of constitutive equations is given in Table 7. There are two ideas in these models.
One is to describe the behaviour at moderate deformation. Thus, functions that provide for a
weak slope are used; these models are principally used before the activation of muscles, i.e.,
when the material is very soft. When the material becomes stiffer, a function that models
a large strain hardening is necessary. In this way, different functions were introduced to
capture very important changes of slopes.
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4.2.5 Coupling Influence

Different coupling can be taken into account in the constitutive equation, for example, the
shear between the fibres and the matrix, and the interaction between the fibres.

Fibre Shear. In this case, the soft tissue is considered as a composite material, the strain
energy is decomposed into three additive parts W = Wm + Wf + Wf m [199], where the
three terms are the strain energy of the matrix, of the fibres and of the interactions between
fibres and matrix, respectively. Moreover, the deformation gradient of the fibres F can be
decomposed into a uniaxial extension tensor Ff and a shear deformation Fs , as F = FsFf

[52]. The decomposition of the strain energy function into different parts allows, for different
loading states, the consideration of constitutive equations which are specific for the strain
endured by the fibre, the matrix and the interface. This leads to the construction of different
function forms [92]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Wm = 1

2
c1f (I4)(I1 − 3),

Wf = c1g1(I4)

(
I5 − I 2

4

I4

)
,

Wf m = c1g2(I4)

(
I1 − I5 + 2

√
I4

I4

)
.

(38)

Another basic form also has been proposed [199]:

Wf m = g2(I4)

[
I4

I3
(I5 − I1I4 + I2) − 1

]2

, (39)

where f , g1 and g2 are functions to define and c1 is a material parameter. The first function
corresponds a generalisation of the neo-Hookean model [93]. Few functions for f , g1 and
g2 have so far been proposed, the first being based on exponential functions [40, 91, 92].

Interaction Between Fibres. Few models are proposed to take into account the influence
of the coupling between different fibre directions. Different techniques can be used.

In order to take into account different directions and to not limit the problem to one
direction fibre, it is also possible to couple invariants from different directions [228], the
following invariant expression has been proposed:

α2I
(1)2
4 + 2λ(1 − α)I

(1)

4 I
(2)

4 + (1 − α)2I
(2)2
4 with α ∈ [0,1]. (40)

α represents a material parameter. This expression takes into account the deformation in two
directions with only one invariant. Nevertheless, this has not yet been used in constitutive
equations.

Instead of employing an additive decomposition of the strain energy to account for the
different directions, a function that represents a coupling between the invariants of different
directions [102] can be used [242]:

W = c1

c2

[
exp

(
c2

(
I

(1)

4 + I
(2)

4 − 2
)) − c2

(
I

(1)

4 + I
(2)

4

) + 2c2 − 1
]
. (41)
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A generalised weighted expression of the constitutive equation also has been developed [67,
121]:

W = 1

4

∑

r

μr

[
1

αr

(
exp

(
αr

(∑

i

γiI
(i)

4 − 1

))
− 1

)

+ 1

βr

(
exp

(
βr

(∑

i

γiJ
(i)

5 − 1

))
− 1

)]
. (42)

Even if the model was developed for pneumatic membranes, such representations that have
proposed multiplicative terms between the I4 invariants of each direction instead of an ad-
ditive decomposition can be used for soft tissues [215]:

W = c
(1)

1

(
I

(1)

4 − 1
)β1 + c

(1)

2

(
I

(1)

5 − 1
)β2 + c

(2)

1

(
I

(2)

4 − 1
)γ1

+ c
(2)

2

(
I

(2)

5 − 1
)γ2 + c(1)

c (I1 − 3)δ1
(
I

(1)

4 − 1
)δ1

+ c(2)
c (I1 − 3)δ2

(
I

(2)

4 − 1
)δ2 + c(1,2)

c

(
I

(1)

4 − 1
)η(

I
(2)

4 − 1
)η

. (43)

This strain energy introduces coupling between the different directions, but the additive de-
composition of the constitutive equation allows one to fit separately the different parameters
c

(j)

i , δi and βi .

Use of I8 and I9. As proposed in the first part of this paper, coupling terms including I
(i,j)

8

and I
(i,j)

9 can be used. Thus such terms have been added to the strain energy in order to
model esophageal tissues [177]:

W = c1

c3
exp

[
c3(I1 − 3)

] + c2

c5
exp

[
c5(I2 − 3)

]

+ c4

c2
7

{
exp

[
c7

(
I

(1)

4 − 1
)] − c7

(
I

(1)

4 − 1
) − 1

}

+ c6

c2
8

{
exp

[
c8

(
I

(2)

4 − 1
)] − c8

(
I

(2)

4 − 1
) − 1

} + c9

[
I

(1,2)

8 − I
(1,2)

9

]2
, (44)

where ci with i = 1...9 are material parameters. For annulus fibrous tissues, the influence of
the interaction between the layers has been modelled [178] with an energy term taking into
account I

(1)

4 , I
(2)

4 and I
(1,2)

8 :

W = c1

2c2

(
exp

(
c2

(
I

(1,2)

8

(I
(1)

4 I
(2)

4 I
(1,2)

9 )1/2
−

√
I

(1,2)

9

)2)
− 1

)
. (45)

A similar form of exponential model (cf. Table 6) has been proposed to include the effect of
I8 [88]:

W = c1

c2

[
exp

(
c2

(I
(1,2)

8 )2

I
(1,2)

9

)
− 1

]
. (46)

These models are not often employed, but there exist some for composite materials that can
be used [200, 214]. In comparison with other models, these approaches take into account the
shear strain in the material whereas the first models couple the deformations of the different
fibres.
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5 Statistical Approaches

In this part, some statistical approaches that tend to encompass the physics of soft tissues
physics are detailed. They come from the study of the collagen network and use a change
of scale method [45, 181]. A collagen molecule is defined by its length, its stiffness and
its helical structure. Some studies are motivated by approaches developed for rubber like
material [21, 73, 129]. Unlike polymer chains in rubber which are uncorrelated in nature,
collagen chains in biological tissues are classified as correlated chains from a statistical point
of view. Rubber chains resemble a random walk whereas biological chains often present
privileged oriented directions. It this way, different theories are considered to represent the
chains, as for example wormlike chains with a slight varying curvature [132], or sinusoidal,
zig-zag or circular helix representations [75, 126, 140].

Nevertheless, to develop models which rest on statistical approaches, some hypotheses
are needed. A distribution function f of the orientation of the fibres is used to represent the
material. The unit vector a0 oriented in the direction of a certain amount of fibres having a
spatial orientation distribution f is defined in terms of two spherical angles, denoted as φ

and ψ :

a0 = sinφ cosψe1 + sinφ sinψe2 + sinφe3, (47)

with φ ∈ [0,π ] and ψ ∈ [0,2π ] and ei is the usual rectangular Cartesian basis. The dis-
tribution function is required to satisfy some elementary properties [191]. By symmetry
requirements f (a0) = f (−a0). The quantity f (a0) sinφdφdψ represents the number of fi-
bres with an orientation in the range [(φ,φ + dφ), (ψ,ψ + dψ)]. By considering the unit
sphere S around a material point, the following property is deduced:

1

4π

∫

S

f (a0)dS = 1

4π

∫ π

0

∫ 2π

0
f (a0) sinφdφdψ = 1. (48)

A constant distribution leads to isotropy [10].
The strain energy of the soft tissue can then be deduced by integration of the elementary

fibre energy in each direction w(I4(a0)) by:

W = 1

4π

∫

S

f (a0)w
(
I4(a0)

)
dS. (49)

Finally, the stress is determined by derivation:

S = 1

2π

∫

S

f (a0)
∂w(I4(a0))

∂C
dS. (50)

The evaluation of the stress depends on different parameters: the distribution function and
the energy of a single fibre. Different considerations have been proposed in the literature.
For the distribution function, the principal propositions are: beta distribution [2, 37, 218,
225], log-logistic distribution [277], Gaussian distribution [24, 44, 65, 141, 223, 272], von
Mises distribution [5, 83, 87, 191, 211, 263] or the Bingham distribution [6]. The forms
of the distribution are listed in Table 8. The choice of the functions is also a key point.
Different functions can be chosen to describe the mechanical behaviour of a collagen fibre;
the simple linear behaviour [10], or the phenomenological laws of the exponential Fung type
[5, 24, 125, 211, 225, 263] or a logarithmic function [277] or a polynomial function [74,
248], other functions [119, 207] or worm-like chain forms [5, 6, 25, 26, 36, 81, 135, 136,
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Table 8 Some distribution functions used in statistical approaches, where ε0, b, σ , M and I are statistical
parameters

Distribution functions

Beta distribution β(η, γ ) = Γ (η)Γ (γ )
Γ (η+γ )

with Γ (x) = ∫ ∞
0 tx−1 exp(−t)dt

Log-logistic distribution f (ε) = k
b

(ε−ε0/b)k−1

[1+(ε−ε0/b)k ]2 with ε = √
I4 − 1

Gaussian distribution f (φ) = 1
σ
√

2π
exp

(−−(φ−M)2

2σ2

)

Normalized von Mises distribution f (φ) = 4
I

√
b

2π
exp

[
b(cos 2φ + 1)

]
with I = 2√

π

∫ √
2b

0 exp
(−t2)

dt

Bingham distribution f (r,A) = [
K(A)

]−1 exp
(
rT · Ar

)
A is a symmetric matrix, r a vector

and K(A) a normalized constant

Table 9 Some fibre functions used in statistical approaches where k1, k2, r0, L, K , Wr , γm and m are
material parameters

Energy functions

Holzapfel et al. function w = k1
k2

[
exp

(
k2(I4 − 1)2) − 1

]

Logarithmic function w = c
(
ε − log(ε + 1)

)
for ε > 0 with ε = √

I4 − 1

Polynomial function w = 1
2 K

[
γ + ∑M

m=2
γm
m

( γ
γm

)m]

Worm-like chain w = nkθL
4A

[
2

r2
i

L2 + 1
1−ri /L

− ri
L

− ln(I2
4 r2

0 )

4r0L

[
4 r0

L
+ 1

[1−r0/L]2 − 1
] − Wr

]

with ri = √
I4r0 and Wr = 2

r2
0

L2 + 1
1−r0/L

− r0
L

164, 216, 218] which are a particularisation of the eight-chain model [9] to the transversely
isotropic case. For some models, a parameter should be introduced in the fibre concentration
factor to control collagen fibre alignment along a preferred orientation [87]. The different
constitutive equations are listed in Table 9. The reader can refer to [28] to determine which
strain energy is used for each tissue.

The main difficulty of the different constitutive equations is that they need a numerical
integration that is always time consuming [28, 211]. The integration of the fibre contribu-
tion is mainly realised over a referential unit sphere [134, 172]. Some prefer to use a finite
number of directions, the constitutive equation is thus modified as follows:

1

4π

∫

S

(·)dS =
m∑

i=1

wi(·)i . (51)

Different choices exist, as the 42 directions of Bazant and Oh [20] and by Menzel [164],
or the 184 directions of Alastrue et al. [5], for example. The only different approach to
those mentioned above is that proposed by [74] who used only six initial directions without
employing an integration. Even if statistical approaches have more complex equations than
phenomenological ones, some of these models have been implemented in finite element
codes [5, 81, 135, 136, 164, 275].
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6 Discussion

The main difficulty is not to find the better constitutive equation but to have suitable exper-
imental data. In fact, the difficulty is often that there is a large dispersion in experimental
data due to the dispersion between the different specimens. Moreover, it is often difficult
to impose different loading conditions on similar specimens. Thus the errors are often large
and the number of loading conditions is often limited. As a consequence, one can wonder
if the key point is to obtain the best fit for a very specific experimental database, or if the
most important point is to represent globally the mechanical behaviour keeping in mind the
physics of soft tissues.

As it was shown in the previous paragraphs, the number of constitutive equations that can
be used to describe soft tissues non-linear elasticity is very impressive. Moreover, there exist
other approaches, not presented in this paper, which involve a new class of elastic solids with
implicit elasticity [212] that can also describe the strain limiting characteristics of soft tissues
[76]. These theories are also elastic as they do not dissipate energies even though they are
written in terms of strain rate and stress rate. But in this paper, we only focus on hyperelastic
energy functions. These functions are expressed in terms of strain tensor components or
strain invariants. The main difference between the two approaches discussed here is that
the invariants formulation permits one to split the energy function into additive isotropic
and anisotropic parts, even if, some constitutive equations written in invariants also link
these two parts. The first constitutive equations introduced for soft tissues were isotropic.
Although, for some applications, an isotropic constitutive equation is used to describe the
mechanical behaviour for different soft tissues, the use of such simplified models is, in many
cases, misleading and inappropriate as most soft tissues have a fibre structure that must
be taken into account. To represent this structure, many constitutive equations are based
on privileged directions that correspond to physical fibre orientations. In the modelling,
characteristic directions are defined and they are represented by an angle that defines the
orientation of the fibre compared to a specific direction. This angle can be considered as a
parameter that is used to fit as well as possible the experimental data. Thus, the model is
not used to mimic the physical soft tissue but it is used as a phenomenological equation to
describe properly experimental data. This is not, in our opinion, a good choice, and it may
mean that the energy function is not well chosen. The angle between the fibres should not
be an adjustable parameter but must be imposed by the soft tissue structure.

An important issue in modelling concerns the stretching resistance of fibres. Many au-
thors consider that the fibre must reach a threshold before opposing a stress. In this way,
a threshold parameter can be introduced in all the suitable constitutive equations presented
in this review. For the phenomenological model, it consist in replacing (I4 −1) by (I4 − I 0

4 ),

or (
√

I4 − 1) by (
√

I4 −
√

I 0
4 ) in the constitutive equations. I 0

4 corresponds to the needed
deformation to generate stress, see for example [38, 107, 197, 219]. The advantage of such
approaches is that there is a material parameter that controls the beginning of material stiff-
ening. Nevertheless, a main difficulty is that it strongly depends on the zero state of the
experimental data. Moreover, this zero state is often different between post-mortem and
in-vivo specimens, and can depend on the experimenter.

Anisotropic strain energy functions are difficult to fit, as it is difficult to separate the con-
tribution between the matrix and the fibres, and to distinguish the different parts of the strain
energy. Nevertheless, some strategies based on dissociating isotropic and anisotropic parts
can be used [94]. To avoid such representations, physical approaches attempt to represent
the repartition of fibres in space, but two difficulties must be considered; the knowledge of
the distribution function of the fibres in space and the mechanical properties of a single fibre.
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Fig. 1 Organisation of the
constitutive equations in the
paper

The choice of the best strain energy function is always a difficult point in the modelling
process. A summary of the constitutive equations is presented in Fig. 1. In practise, the in-
variants I2 and I5 are often neglected. Their contribution is always difficult to determine
[115] but it can be useful [72]. Moreover, these invariants are not independent from I1 and
I4 in uniaxial loading tests. In this case, it is important to have also biaxial loadings to fit
constitutive equations [224]. Moreover, in vivo experimental data [233] would be a benefit
to obtain a good experimental fit, but there is little such data in the literature as compared to
post-mortem experimental data. The constitutive equation choice will depend on the partic-
ular soft tissues under study and the conclusions will strongly depend on the experimental
data that is chosen. Nevertheless, some comparisons between anisotropic strain energies
have been realised in particular cases, see, for example, [41, 79, 104, 116, 117, 265].

In practice, a strategic point is the choice of a constitutive equation that is implemented
in a finite element code to describe loading conditions that are very far from uniaxial or
biaxial loadings. In this case, it is important to choose a constitutive equation that can be
fitted with few experimental data that do not simulate non-physical response for any loading.
Generally, it is better to limit the number of invariants and material parameters. Moreover,
the simplest functions are often the best as they stand the least probability of creating non-
physical responses even if their fitting is not the best.

7 Conclusion

This paper has listed many different constitutive equations that have been developed for soft
tissues. The number of constitutive equations to represent the contribution due to hyperelas-
ticity is extensive due to the number of soft tissues and the experimental data dispersion. The
paper has listed first, isotropic constitutive equations, and next anisotropic ones, and these
were classed in different categories; those written with strain tensor components, those writ-
ten in terms of the invariants, and those based on statistical modelling.
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Despite all the difficulties encountered in the modelling of the isotropic or anisotropic
hyperelastic behaviour of soft tissue, these constitutive equations must be considered as
only the basis of a more complex constitutive equation. Generalized equations should take
into account other phenomena such as the activation of muscle [39, 158, 188, 189, 250] or
the viscoelasticity of the tissues [27, 99, 105, 147, 208] or stress softening [154, 195], for
example. Nevertheless, the hyperelasticity representation should remain as the starting point
in a modelling program and should be described as well as possible before introducing other
effects.
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