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Abstract
A set of identical, mobile agents is deployed in a weighted network. Each agent possesses a battery - a

power source allowing to move along network edges. Agent uses its battery proportionally to the distance
traveled. At the beginning, each agent has its initial information. The agents exchange the actually possessed
information when they meet. The agents collaborate in order to perform an efficient convergecast, where
the initial information of all agents must be eventually transmitted to some agent.

The objective of this paper is to investigate what is the minimal value of power, initially available to all
agents, so that convergecast may be achieved. We study the question in the centralized and the distributed
setting. In the distributed setting every agent has to perform an algorithm being unaware of the network.
We give a linear-time centralized algorithm solving the problem for line networks. We give a 2-competitive
distributed algorithm achieving convergecast. The competitive ratio of 2 is proved to be the best possible for
this problem, even if we only consider line networks. We show that already for the case of tree networks the
centralized problem is strongly NP-complete. We give a 2-approximation centralized algorithm for general
graphs.

1 Introduction
The model and the problem

A set of agents is deployed in a network represented by a weighted graph G. An edge weight represents
its length, i.e., the distance between its endpoints along the edge. The agents start at different nodes of
G. Every agent has a battery : a power source allowing it to move in a continuous way along the network
edges. An agent may stop at any point of a network edge (i.e. at any distance from the edge endpoints, up
to the edge weight). Agent’s movements imply using its battery proportionally to the distance traveled. We
assume that all agents move at the same speed that is equal to one, i.e., the values of the distance traveled
and the time spend while travelling are commensurable. At the start of the algorithm, the agents start with
the same amount of power noted P , allowing all agents to travel the same distance P .

Initially, each agent has an individual piece of information. When two (or more) agents are at the same
point of the network at the same time, they automatically detect each other’s presence and they exchange
their information, i.e., each agent transmits all its possessed information to all other agents present at the
point (hence an agent transmits information collected during all previous meetings). The purpose of a
convergecast algorithm is to schedule the movements of the agents, so that the exchanges of the currently
possessed information between the meeting agents eventually result in some agent, not a priori predeter-
mined, containing the union of individual information of all the agents. This task is important, e.g., when
∗Partially supported by NSERC discovery grant and by the Research Chair in Distributed Computing at
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agents have partial information about the topology of the network and the aggregate information can be used
to construct a map of it, or when individual agents hold measurements performed by sensors located at their
initial positions and collected information serves to make some global decision based on all measurements.

Agents try to cooperate so that the convergecast is achieved with the smallest possible agent’s initial
battery power POPT , i.e., minimizing the maximum distance traveled by an agent. We investigate the
problem in two possible settings, centralized and distributed.

In the centralized setting, the problem must be solved by a centralized authority knowing the network
and the initial positions of all the agents. We call strategy a finite sequence of movements executed by the
agents. During each movement, starting at a specific time, an agent walks between two points belonging to
the same network edge. A strategy is a convergecast strategy if the sequence of movements results in one
agent possessing the initial information of every agent. We consider two different versions of the problem
: the decision problem, i.e., deciding if there exists a convergecast strategy using power P (where P is the
input of the problem) and the optimization problem, i.e., computing the smallest amount of power that is
sufficient to achieve convergecast.

In the distributed question, the problem must be approached individually by each agent. Each agent is
unaware of the network, of its position in the network and without the knowledge of positions (or even the
presence) of any other agents. The agents are anonymous, i.e., they must execute the same algorithm. Each
agent has a very simple sensing device allowing it to detect the presence of other agents at its location in the
network. The agent is also aware of the degree of the node at which it is located as well as the port through
which it enters a node, called entry port. We assume that the ports of a d-degree node are represented by
integers 1, 2, . . . d. When two or more agents meet, each of them is aware of the direction from which the
other agent is coming, i.e., the last entry port of each agent. Each agent has memory sufficient to store all
information initially belonging to all agents as well as a small (constant) number of real values. Since the
measure of efficiency in this paper is the battery power (or the maximum distance traveled by an agent, which
is proportional to the battery power used) we do not try to optimize the other resources (e.g. global execution
time, local computation time, memory size of the agents, communication bandwidth, etc.). In particular, we
conservatively suppose that, whenever two agents meet, they automatically exchange the entire information
they possess (rather than the new information only). This information exchange procedure is never explicitly
mentioned in our algorithms, supposing, by default, that it always takes place when a meeting occurs. The
efficiency of a distributed solution is expressed by the competitive ratio, which is the worst-case ratio of
the amount of power necessary to solve the convergecast by the distributed algorithm with respect to the
amount of power computed by the optimal centralized algorithm, which is executed for the same agents’
initial positions.

It is easy to see, that in the optimal centralized solution for the case of the line and the tree, the original
network may be truncated by removing some portions and leaving only the connected part of it containing
all the agents (this way all leaves of the remaining tree contain initial positions of agents). We make this
assumption also in the distributed setting, since no finite competitive ratio is achievable if this condition is
dropped. Indeed, two nearby anonymous agents inside a long line need to travel a long distance to one of its
endpoints to break symmetry in order to meet.

Related work
Rapidly developing network and computer industry fueled the research interest in mobile agents (robots)

computing. Mobile agents are often interpreted as software agents, i.e., programs migrating from host to host
in a network, performing some specific tasks. However, the recent developments in computer technology
bring up specific problems related to physical mobile devices. These include robots or motor vehicles,
various wireless gadgets, or even living mobile agents: humans (e.g. soldiers on the battlefield or emergency
disaster relief personnel) or animals (e.g. birds, swarms of insects).

In many applications the involved mobile agents are small and have to be produced at low cost in massive
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numbers. Consequently, in many papers, the computational power of mobile agents is assumed to be very
limited and feasibility of some important distributed tasks for such collections of agents is investigated.
For example [6] introduced population protocols, modeling wireless sensor networks by extremely limited
finite-state computational devices. The agents of population protocols move according to some mobility
pattern totally out of their control and they interact randomly in pairs. This is called passive mobility,
intended to model, e.g., some unstable environment, like a flow of water, chemical solution, human blood,
wind or unpredictable mobility of agents’ carriers (e.g. vehicles or flocks of birds). On the other hand,
[37] introduced anonymous, oblivious, asynchronous, mobile agents which cannot directly communicate,
but they can occasionally observe the environment. Gathering and convergence [5, 19, 20, 21], as well as
pattern formation [23, 25, 37, 38] were studied for such agents.

Apart from the feasibility questions for such limited agents, the optimization problems related to the
efficient usage of agents’ resources have been also investigated. Energy management of (not necessarily
mobile) computational devices has been a major concern in recent research papers (cf. [1]). Fundamen-
tal techniques proposed to reduce power consumption of computer systems include power-down strategies
(see [1, 8, 30]) and speed scaling (introduced in [39]). Several papers proposed centralized [17, 36, 39] or
distributed [1, 4, 8, 30] algorithms. However, most of this research on power efficiency concerned opti-
mization of overall power used. Similar to our setting, assignment of charges to the system components in
order to minimize the maximal charge has a flavor of another important optimization problem which is load
balancing (cf. [10]).

In wireless sensor and ad hoc networks the power awareness has been often related to the data commu-
nication via efficient routing protocols (e.g. [4, 36]. However in many applications of mobile agents (e.g.
those involving actively mobile, physical agents) the agent’s energy is mostly used for it’s mobility pur-
pose rather than communication, since active moving often requires running some mechanical components,
while communication mostly involves (less energy-prone) electronic devices. Consequently, in most tasks
involving moving agents, like exploration, searching or pattern formation, the distance traveled is the main
optimization criterion (cf. [2, 3, 11, 12, 15, 16, 22, 24, 26, 33]). Single agent exploration of an unknown
environment has been studied for graphs, e.g. [2, 22], or geometric terrains, [12, 16].

While a single agent cannot explore an unknown graph unless pebble (landmark) usage is permitted (see
[13]), a pair of robots is able to explore and map a directed graph of maximal degree d in O(d2n5) time
with high probability (cf. [14]). In the case of a team of collaborating mobile agents, the challenge is to
balance the workload among the agents so that the time to achieve the required goal is minimized. However
this task is often hard (cf. [28]), even in the case of two agents on a tree, [9]. On the other hand, [26] study
the problem of agents exploring a tree showing O(k/ log k) competitive ratio of their distributed algorithm
provided that writing (and reading) at tree nodes is permitted.

Assumptions similar to our paper have been made in [11, 16, 24] where the mobile agents are constrained
to travel a fixed distance to explore an unknown graph, [11, 16], or tree, [24]. In [11, 16] a mobile agent has
to return to its home base to refuel (or recharge its battery) so that the same maximal distance may repeatedly
be traversed. [24] gives an 8-competitive distributed algorithm for a set of agents with the same amount of
power exploring the tree starting at the same node.

The convergecast problem is sometimes viewed as a special case of the data aggregation question (e.g.
[32, 35]) and it has been studied mainly for wireless and sensor networks, where the battery power usage is
an important issue (cf. [31, 7]). Recently [18] considered the online and offline settings of the scheduling
problem when data has to be delivered to mobile clients while they travel within the communication range
of wireless stations. [31] presents a randomized distributed convergecast algorithm for geometric ad-hoc
networks and study the trade-off between the energy used and the latency of convergecast. To the best of our
knowledge, the problem of the present paper, when the mobile agents perform convergecast, by exchanging
the possessed information when meeting, while optimizing the maximal power used by a mobile agent, has
never been investigated.
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Our results
In the case of centralized setting we give a linear-time deterministic algorithm finding an optimal con-

vergecast strategy for line networks. We show that, already for the case of tree networks, the centralized
problem is strongly NP-complete. We give a 2-approximation centralized algorithm for general graphs.

For the distributed setting, we show that the convergecast is possible for tree networks if all agents
have the amount of initial power equal to twice the power necessary to achieve centralized convergecast.
The competitive ratio of 2 is proved to be the best possible for this problem, even if we only consider line
networks.

2 Centralized convergecast on lines
In this section we consider the centralized convergecast problem for lines. We give an optimal, linear-time,
deterministic centralized algorithm, computing the optimal amount of power needed to solve convergecast
for line networks. As the algorithm is quite involved, we start by observing some properties of the optimal
strategies. Already relatively apparent properties permit to design an intuitive decision procedure, verifying
whether a given amount of power is sufficient to perform convergecast. Then we present other ingredients
needed for the linear-time optimization procedure.

We order agents according to their positions on the line. Hence we can assume w.l.o.g., that agent ai,
for 1 ≤ i ≤ n is initially positioned at point Pos[i] of the line of length ` and that Pos[1] = 0 < Pos[2] <
. . . < Pos[n] = `.

2.1 Properties of a convergecast strategy
In this subsection, we show that if we are given a convergecast strategy for some configuration, then we can
always modify it in order to get another convergecast strategy, using the same amount of maximal power for
every agent, satisfying some interesting properties. These observations permit to restrict the search for the
optimal strategy to some smaller and easier to handle subclass of strategies.

Observe that, in order to aggregate the entire information at a single point of the line, every agent ai, for
1 < i < n, must learn either the initial information of agent a1 or an. Therefore, we can partition the set
of agents performing a convergecast strategy into two subsets LR and RL, such that each agent ai ∈ LR
learns the initial information of agent a1 before learning the initial information of agent an (or not learning
at all the information of an). All other agents belong to RL. For any convergecast strategy all the points
visited by agent ai form a real interval containing its initial position Pos[i]. We denote by [bi, fi] the interval
of all points visited by ai ∈ LR and by [fj , bj ] - the points visited by aj ∈ RL.

In the next lemma, we show a necessary and sufficient condition for the existence of a convergecast
strategy. It also shows that any convergecast strategy may be converted to a strategy that we call regular
having particular properties. Firstly, each agent from LR of a regular strategy is initially positioned left to
all agents of RL. Secondly, each agent of regular strategy needs to change its direction at most once. More
precisely, each agent ai ∈ LR first goes back to a point bi ≤ Pos[i], getting there the information from
the previous agent (except a1 that has no information to collect), then it goes forward to a point fi ≥ bi.
Similarly, each agent inRL first goes back to a point bi ≥ Pos[i] and then moves forward to a point fi ≤ bi.
Moreover, we assume that each agent of a regular strategy travels the maximal possible distance, i.e., it
spends all its power.

Lemma 1 There exists a convergecast strategy S for a configuration Pos[1 : n] if and only if there exists
a partition of the agents into two sets LR and RL and if for each agent ai, there exist two points bi, fi of
segment [0, `] such that

1. there exists p such that LR = {ai | i ≤ p} and RL = {ai | i > p},
2. if ai ∈ LR, bi = min{fi−1, Pos[i]} and fi = 2bi + P − Pos[i],
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3. if ai ∈ RL, bi = max{fi+1, Pos[i]} and fi = 2bi − P − Pos[i],
4. max{fi | ai ∈ LR} ≥ min{fi | ai ∈ RL}.
In the following, we only consider regular strategies. Note that a regular strategy is fully determined by

the value of P and by the partition of the agents into the two sets LR and RL. For each agent ai ∈ LR
(resp. ai ∈ RL), we denote fi by ReachLR(i, P ) (resp. ReachRL(i, P )). Observe that ReachLR(i, P ) is
the rightmost point on the line to which the set of i agents at initial positions Pos[1 : i], each having power
P , may transport the union of their initial information. Similarly, ReachRL(i, P ) is the leftmost such point
for agents at positions Pos[i : n].

Lemma 1 permits to construct a linear-time decision procedure verifying if a given amount P of battery
power is sufficient to design a convergecast strategy for a given configuration Pos[1 : n] of agents. We first
compute two lists ReachLR(i, P ), for 1 ≤ i ≤ n and ReachRL(i, P ), for 1 ≤ i ≤ n. Then we scan them
to determine if there exists an index j, such that ReachLR(j, P ) ≥ ReachRL(j + 1, P ). In such a case, we
set LR = {ar | r ≤ j} and RL = {ar | r > j} and we apply Lemma 1 to obtain a convergecast strategy
where agents aj and aj+1 meet and exchange their information which totals to the entire initial information
of the set of agents. If there is no such index j, no convergecast strategy is possible. This implies

Corollary 1 In O(n) time we can decide if a configuration of n agents on the line, each having a given
maximal power P , can perform convergecast.

The remaining lemmas of this subsection bring up observations needed to construct an O(n) algorithm
designing an optimal convergecast strategy.

Note that if the agents are not given enough power, then it can happen that some agent ap may never
learn the information from a1 (resp. from an). In this case, ap cannot belong to LR (resp. RL). We denote
by ActLR(p) the minimum amount of power we have to give the agents to ensure that ap can learn the
information from a1: if p > 0, ActLR(p) = min{P | ReachLR(p − 1, P ) + P ≥ Pos[p]}. Similarly, we
have ActRL(p) = min{P | ReachRL(p+ 1, P )− P ≤ Pos[p]}.

Given a strategy using power P , for each agent p ∈ LR, we have P ≥ ActLR(p) and either
ReachLR(p − 1, P ) ≥ Pos[p], or ReachLR(p − 1, P ) ≤ Pos[p]. In the first case, ReachLR(p, P ) =
Pos[p] + P , while in the second case, ReachLR(p, P ) = 2ReachLR(p− 1, P ) + P − Pos[p].

We define threshold functions THLR(p) and THRL(p) that compute for each index p, the minimal
amount of agents’ power ensuring that agent ap does not go back when ap ∈ LR or ap ∈ RL respectively
(i.e. such that bp = Pos[p]). For each p, let THLR(p) = min{P | ReachLR(p, P ) = Pos[p] + P} and
THRL(p) = min{P | ReachRL(p, P ) = Pos[p]− P}. Clearly, THLR(1) = THRL(n) = 0.

The next lemma illustrates how to compute ReachLR(q, P ) and ReachRL(q, P ) if we know THLR(p)
and THRL(p) for every agent p.

Lemma 2 Consider an amount of power P and an index q. If p = max{p′ ≤ q | THLR(p′) < P}, then
ReachLR(q, P ) = 2q−pPos[p] + (2q−p+1 − 1)P −∑q

i=p+1 2q−iPos[i]. Similarly, if p = min{p′ ≥ q |
THRL(p′) < P}, then ReachRL(q, P ) = 2p−qPos[p]− (2p−q+1 − 1)P −∑p−1

i=q 2i−qPos[i].

Observe that the previous lemma implies that, for each q, the function ReachLR(q, ·) is an increasing,
continuous, piecewise linear function on [ActLR(q),+∞) and that ReachRL(q, ·) is a decreasing, continu-
ous, piecewise linear function on [ActRL(q),+∞).

In the following, we denote SLR(p, q) =
∑q

i=p+1 2q−iPos[i] and SRL(p, q) =
∑p−1

i=q 2i−qPos[i].

Remark 2.1 For every p ≤ q ≤ r, SLR(p, r) = 2r−qSLR(p, q) + SLR(q, r).

We now show that for an optimal convergecast strategy, the last agent of LR and the first agent of RL
meet at some point between their initial positions and that they need to use all the available power to meet.
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Lemma 3 Suppose there exists an optimal convergecast strategy for a configuration Pos[1 : n], where the
maximum power used by an agent is P . Then, there exists an integer 1 ≤ p < n such that Pos[p] <
ReachLR(p, P ) = ReachRL(p+ 1, P ) < Pos[p+ 1].

Moreover, ∀q ≤ p, ActLR(q) < P < THRL(q) and ∀q > p, ActRL(q) < P < THLR(q).

2.2 A linear algorithm to compute the optimal power needed for convergecast
In this section, we prove the following theorem.

Theorem 1 In O(n) time, one can compute the optimal power needed to achieve convergecast on the line.

We first explain how to compute a stack of couples (p, THLR(p)) that we can subsequently use to
calculate ReachLR(p, P ) for any given P . Then, we present a linear algorithm that computes the value
needed to solve convergecast when the last index r ∈ LR is provided: given an index r, we compute the
optimal power needed to solve convergecast assuming that LR = {aq | q ≤ r} and RL = {aq | q > r}.
Finally, we explain how to use techniques introduced for the two previous algorithms in order to compute
the optimal power needed to solve convergecast.

Computing the thresholds values. To describe explicitly the functionReachLR(q, ·), we need to identify
the indexes p such that for every r ∈ [p + 1, q], we have THLR(r) > THLR(p). They correspond to the
breakpoints at which the slopes of the piecewise linear function ReachLR(q, ·) change. Indeed, if we are
given such an index p, then for every P comprised between THLR(p) and min{THLR(r) | p < r ≤ q},
we have ReachLR(q, P ) = 2q−pPos[p] + (2q−p+1 − 1)P − SLR(p, q). We denote by XLR(q) this set of
indexes {p ≤ q | ∀r ∈ [p+ 1, q], THLR(r) > THLR(p)}.

In particular, if we want to compute THLR(q + 1), we just need to find p = max{r ≤ q |
ReachLR(q, THLR(r)) < Pos[q + 1]}, and then THLR(q + 1) is the value of power P such that
2q−pPos[p] + (2q−p+1 − 1)P − SLR(p, q) = Pos[q + 1]. Moreover, by the choice of p, we have
XLR(q + 1) = {r ∈ XLR(q) | r ≤ p} ∪ {q + 1}.

Using these remarks, the function ThresholdLR, having given an agent index r, returns a stack THLR
containing couples (p, P ) such that p ∈ XLR(r) and P = THLR(p). Note that in the stack THLR, the
elements (p, P ) are sorted along both components, the largest being on the top of the stack.

The algorithm proceeds as follows. Initially, the stack THLR contains only the couple (1, THLR(1)). At
each iteration, given the stack corresponding to the index q, in order to compute the stack for the index q+1,
we first pop out all elements (p, P ) such that ReachLR(q, P ) > Pos[q+ 1]. After that, the integer p needed
to compute THLR(q + 1) is located on the top of the stack. Finally, the couple (q + 1, THLR(q + 1)) is
pushed on the stack before we proceed with the subsequent index q. At the end of the procedure, we return
the stack THLR corresponding to the index r.

The number of stack operations performed during the execution of this function is O(r). However, in
order to obtain a linear number of arithmetic operations, we need to be able to compute 2q−p and SLR(p, q)
in constant time.

In order to compute 2q−p efficiently, we can store the values of 2i, i ∈ [1, n − 1] in an auxiliary
array, that we have precomputed in O(n) time. We cannot precompute all values of SLR(p, q) since this
requires calculating Θ(n2) values. However, from Remark 2.1, we know that SLR(p, q) = SLR(1, q) −
2q−pSLR(1, p). Consequently, it is enough to precompute SLR(1, i) for each i ∈ [2, n]. Since SLR(1, i +
1) = 2SLR(1, i) + Pos[i+ 1], this can be done using O(n) arithmetic operations.
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Function ThresholdLR(array Pos[1 : n] of real; r:integer):stack

THLR = empty_stack;
push (THLR,(1, 0));
for q = 1 to r − 1 do

(p, P ) = pop(THLR) ; /* p = q and P = THLR(p) */
while 2q−p ∗ Pos[p] + (2q−p+1 − 1) ∗ P − SLR(p, q) ≥ Pos[q + 1] do (p, P ) = pop(THLR);
/* while ReachLR(q, P ) ≥ Pos[q + 1] we consider the next element in THLR */
push (THLR,(p, P ));
Q = (2q−p ∗ Pos[p]− Pos[q + 1]− SLR(p, q))/(2q−p+1 − 1);
/* Q is the solution of ReachLR(q, P ) = Pos[q + 1] */
push (THLR,(q + 1, Q));

return (THLR);

Similarly, we can define the function ThresholdRL (array Pos[1 : n] of real,
r:integer):stack that returns a stack THRL containing all pairs (q, THRL(q)) such that for every
p ∈ [r, q − 1], we have THRL(p) > THRL(q).

Computing the optimal power when LR and RL are known. Suppose now that we are given an agent
index r and we want to compute the optimal power needed to solve convergecast when LR = {ap | p ≤ r}
and RL = {aq | q > r}. From Lemma 3, we know that there exists a unique POPT such that
ReachLR(r, POPT ) = ReachRL(r + 1, POPT ).

As previously, by Lemma 2, we know that the value of ReachLR(r, POPT ) depends on p = max{p′ ≤
r | THLR(p′) < POPT }. Similarly,ReachRL(r+1, POPT ) depends on q = max{q′ ≥ r+1 | THRL(q′) <
POPT }. If we are given the values of p and q, then POPT is the value of P such that

2r−pPos[p]− (2r−p+1 − 1)P − SLR(p, r) = 2q−r−1Pos[q]− (2q−r − 1)P − SRL(q, r + 1).

In Algorithm OptimalAtIndex, we first use the previous algorithm to compute the two stacks THLR
and THRL containing respectively {(p, THLR(p)) | p ∈ XLR(r)} and {(q, THLR(q)) | q ∈ XRL(r + 1)}.
Then at each iteration, we consider the two elements (p, PLR) and (q, PRL) that are on top of both stacks. If
PLR ≥ PRL (the other case is symmetric), we check whether ReachLR(r, PLR) ≥ ReachRL(r + 1, PLR).
In this case, we have P > POPT , so we remove (p, PLR) from the stack THLR and we proceed to the next
iteration. If ReachLR(r, PLR) < ReachRL(r + 1, PLR), we know that POPT ≥ PLR ≥ PRL and we can
compute the value of POPT using Lemma 2.

Function OptimalAtIndex(array Pos[1 : n] of real; r:integer):stack

THLR = ThresholdLR(r); THRL = ThresholdRL(r + 1) ;
(p, PLR) = pop(THLR); (q, PRL) = pop(THRL); P = max{PLR, PRL};
/* p = r, PLR = THLR(r), q = r + 1, PRL = THRL(r + 1). */
while 2r−pPos[p] + (2r−p+1 − 1)P − SLR(p, r) ≥ 2q−r−1Pos[q]− (2q−r − 1)P − SRL(q, r + 1) do
/* While ReachLR(r, P ) ≥ ReachRL(r + 1, P ) do */

if PLR ≥ PRL then (p, PLR) = pop(THLR);
else (q, PRL) = pop(THRL);
P = max{PLR, PRL};

POPT = (2q−r−1Pos[q]− SRL(q, r + 1)− 2r−pPos[p] + SLR(p, r))/(2r−p+1 + 2q−r − 2);
/* POPT is the solution of ReachLR(r, POPT ) = ReachRL(r + 1, POPT ) */
return (POPT);

Let YLR(r, P ) denote {(p, THLR(p)) | p ∈ XLR(r) and THLR(p) < P} and YRL(r + 1, P ) =
{(q, THRL(q)) | q ∈ XRL(r + 1) and THRL(q) < P}.
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Remark 2.2 At the end of the execution of the function OptimalAtIndex, THLR and THRL contain re-
spectively YLR(r, POPT ) and YRL(r + 1, POPT ).

Moreover, if initially the two stacks THLR and THRL contain respectively YLR(r, P ) and YRL(r + 1, P )
for some P ≥ POPT , then the value computed by the algorithm is also POPT .

Computing the optimal power for convergecast. We now explain how to compute the optimal amount
of power needed to achieve convergecast using a linear number of operations. The pseudo-code of the of
Algorithm ComputeOptimal is given in Appendix B.

Let P<r be the optimal value needed to solve convergecast when max{s | as ∈ LR} < r, i.e., when
the two agents whose meeting results in merging the entire information are ai and ai+1 for some i < r.
If ReachLR(r, P<r) ≤ ReachRL(r + 1, P<r), then P<r+1 = P<r. However, if ReachLR(r, P<r) >
ReachRL(r+ 1, P<r), then P<r+1 < P<r and P<r+1 is the unique value of P such that ReachLR(r, P ) =
ReachRL(r + 1, P ). This corresponds to the value returned by OptimalAtIndex (Pos, r).

The general idea of Algorithm ComputeOptimal is to iteratively compute the value of P<r. If we
need a linear time algorithm, we cannot call repeatedly the function OptimalAtIndex. However, from
Remark 2.2, in order to compute P<r+1 when P<r+1 ≤ P<r, it is enough to know YLR(r, P<r) and YRL(r+
1, P<r). If we know YLR(r, P<r) and YRL(r+1, P<r), then we can use the same algorithm as in Optimal-
AtIndex in order to compute P<r+1. Moreover, from Remark 2.2, we also get YLR(r, P<r+1) and YRL(r+
1, P<r+1) when we compute P<r+1.

Before proceeding to the next iteration, we need to compute YLR(r+ 1, P<r+1) and YRL(r+ 2, P<r+1)
from YLR(r, P<r+1) and YRL(r + 1, P<r+1). Note that if THLR(r) > P<r+1, then YLR(r + 1, P<r+1) =
YLR(r, P<r+1). If THLR(r) ≤ P<r+1, we can use the same algorithm as in ThresholdLR to compute
YLR(r + 1, P<r+1) = {(p, THLR(p)) | p ∈ XLR(r)} from YLR(r, P<r+1). Consider now YRL(r +
2, P<r+1). If THRL(r + 1) > P<r+1, then (r + 1, THRL(r + 1)) /∈ YRL(r + 1, P<r+1), and YRL(r +
2, P<r+1) = YRL(r+1, P<r+1). If THRL(r+1) ≤ P<r+1, then either Pos[r+1]−P<r+1 ≥ ReachRL(r+
1, P<r+1) if P<r+1 = P<r, or Pos[r + 1] − P<r+1 = ReachRL(r + 1, P<r+1) = ReachLR(r, P<r+1) if
P<r+1 < P<r. In both cases, it implies thatActLR(r+1) ≥ P<r+1. Therefore, by Lemma 3, P<i = P<r+1

for every i ≥ r + 1 and we can return the value of P<r+1.
In Algorithm ComputeOptimal, at each iteration, the stack THLR contains YLR(r, P<r) (except its

top element) and the stack THRL contains YRL(r + 1, P<r) (except its top element). Initially, THLR is empty
and THRL contains O(n) elements. In each iteration, at most one element is pushed into the stack THLR and
no element is pushed into the stack THRL. Consequently, the number of stack operations performed by the
algorithm is linear.

3 Distributed convergecast on trees
A configuration of convergecast on graphs is a couple (G,A) where G is the weighted graph en-
coding the network and A is the set of the starting nodes of the agents. Let D(G,A) =
max∅(X(A{minx∈X,y∈A\X{dG(x, y)}} where dG(x, y) is the distance between x and y in G. Clearly,
we have D(G,A) ≤ 2POPT .

We consider weighted trees with agents at every leaf. The next theorem states that there exists a 2-
competitive distributed algorithm for the convergecast problem on trees.

Theorem 2 Consider a configuration (T,A) where T is a tree and A contains all the leaves of T . There is
a distributed convergecast algorithm using D(T,A) ≤ 2POPT power per agent.

Sketch of the proof : In order to perform the convergecast, each agent executes Algorithm 1.
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Figure 1: The configuration in the proof of Theorem 3.
set A of

3m agents

. . .

.
.
.

1

2R+ 1 + x
1

2R
+ 1 +

x3m

2R+ 1 + x2

1 1

set B of

m+ 1 agents

1 agent
set C of

a1 a2 am+1

b1

b2

b3m

c

4R+ 1u

Figure 2: Instance of centralized convergecast
problem from an instance of 3-partition in the
proof of Theorem 4.

Algorithm 1: UnknownTree
collecting = true;
while collecting = true do

Wait until there is at most one port unused by the agent incoming at the current node;
if all ports of current node were used by incoming agents then collecting = false;
if the agent has used less power than any other agent present at the node and collecting = true then

Move through the unused incoming port until you meet another agent or reach a node;
else collecting = false;
if the agent is inside an edge then collecting = false;

The agents traverse the leaf edges then edges between nodes at height one and two and so on. When all
the tree is traversed, all the information is collected at the last meeting point. No agent will use more power
than D(T,A) ≤ 2POPT . 2

The following theorem shows that no distributed algorithm may offer a better competitive ratio than 2
even if we only consider line networks.

Theorem 3 Consider any δ > 0, and any value of power P . There exists an integer n and a configuration
Pos[1 : n] of n agents on the line such that there is a convergecast strategy using power P and so that there
is no deterministic distributed strategy allowing the agents to solve convergecast when the amount of power
given to each agent is (2− δ)P .

Sketch of the proof : Let ε = δP/4 and σ = ε/2 = δP/8. Let l = blog(8/δ)c and k = l + 2.
Consider a set of agents positioned on a line as follows (See Figure 1). There is an agent a0 (resp. a2l+1)

on the left (resp. right) end of the line on position s′0 = 0 (resp. sl). For each 1 ≤ i ≤ 2l, there is a set Ai of
k agents on distinct initial positions within a segment [si, s

′
i] of length σ such that for each 1 ≤ i ≤ 2l + 1,

the distance between si and s′i−1 is 2(P − ε). Using Lemma 2, we can show, that if the amount of power
given to each agent is P , then convergecast is achievable.

Suppose now that there exists a distributed strategy S that solves convergecast on the configuration when
the amount of power given to each agent is (2−δ)P . We can show that for each i ∈ [1, l], all agents fromAi
perform the same moves as long as the leftmost agent of Ai has not met any agent from Ai−1. We show by
induction on i ∈ [1, l] that agents in Ai learn the information from a0 before the one from a2l+1 and that no
agent in the set Ai knowing the information from a0 can reach the point si+1 − (2i+2 − 2)ε. If we consider
the agents from Al, we get that no agent from Al−1 can reach sl − (2l+1 − 1)ε ≤ sl − (8/δ − 2)δP/4 =
sl − 2P + δP/2 < sl − 2P + δP having the initial information of a0. Since no agent from the set Al can
reach any point on the left of sl − 2P + δP , it implies that no agent from Al can ever learn the information
from a0 and thus, S is not a distributed convergecast strategy. 2
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4 Centralized convergecast on trees and graphs
We show in this section that for trees the centralized convergecast problem is substantially harder.

Theorem 4 The centralized convergecast decision problem is strongly NP-complete for trees.

Sketch of the proof : We construct a polynomial-time many-one reduction from the 3-Partition problem
which is strongly NP-Complete [27]. The 3-partition problem answers the following question: can a given
multiset S of 3m positive integers xi such that R/4 < xi < R/2 be partitioned into m disjoint sets
S1, S2, . . . , Sm of size three such that for 1 ≤ j ≤ m,

∑
x∈Sj x = R? The instance of the centralized

convergecast problem constructed from an instance of 3-partition is the star depicted in Figure 2. There is
an agent at each leaf and each agent is given power equal to 2R+1. We can assume that in any convergecast
strategy, agents ai first move to the center u, each agent bi moves at distance xi from u and agent c moves at
distance 2R from u. Agents ai, for 1 ≤ i ≤ m, must then collect the information from agents bi and finally
agent am+1 must move to c in order to complete the convergecast. Since agents ai, while reaching u have
the remaining power of 2R and that collecting information from bi and return to node u costs 2xi power, the
instance of convergecast has a solution if and only if the original instance of 3-partition has a solution.

It remains to show that the problem is in NP . Given a strategy S, the certificate of the instance encodes
in chronological order the positions of meetings in which at least one agent learns a new piece of information.
There is a polynomial number of such meetings called useful meetings. We can show that the strategy S ′,
in which agents move via shortest paths to their useful meetings, is a convergecast strategy and uses less
power than S. If a useful meeting occurs on an edge, the certificate encodes the name of a variable di that
represents the exact position inside the edge. Checking that we can assign values to di, such that each agent
moves a distance less than P in S ′, can be done in polynomial time using linear programming. 2

Even if the exact centralized optimization problem is NP-complete, we can obtain a 2-approximation of
the power needed to achieve centralized convergecast in graphs in polynomial time.

Theorem 5 Consider a configuration (G,A). There is a polynomial algorithm computing a convergecast
strategy using D(G,A) ≤ 2POPT power per agent.

Sketch of the proof : The idea of the algorithm is to construct a total order ui on the positions of agents
in the following way. We put in set V an arbitrary agent’s initial position u0. Iteratively, we add to the
set V of already treated agents’ positions a new agent’s position ui, which is at the closest distance from
V along some path Pi. Then agents move in the reverse order, starting with agent at uk−1. Agent at ui
moves following the path Pi. The length of Pi is less than D(G,A). When all agents have moved, agent u1
possesses all the information. 2

5 Conclusion and open problems
It is worth pursuing questions related to information transportation by mobile agents to other communication
problems, for example broadcasting or gossiping. Only some of our techniques on convergecast extend to
these settings (e.g. NP-hardness for trees).

The problem of a single information transfer by mobile agents between two stationary points of the
network is also interesting. In particular, it is an open question whether this problem for tree networks is
still NP-hard or if a polynomial-time algorithm is possible, since our reduction to 3-partition is no longer
valid.

Other related questions may involve agents with unequal power, agents with non-zero visibility, labeled
agents, unreliable agents or networks, etc.
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Appendix

A Proofs of Section 2.1

Before proving Lemma 1, we need an additional lemma.

Lemma 4 Suppose that there exists a convergecast strategy S for a configuration Pos[1 : n] using max-
imum power P . Then there exists a convergecast strategy for the same initial configuration of agents
a1, . . . , an, which uses power P , with the following property

• if ai ∈ LR, bi ≤ Pos[i], bi ≤ fi, and Pos[i] + fi − 2bi ≤ P

• if ai ∈ RL, bi ≥ Pos[i], bi ≥ fi, and 2bi − Pos[i]− fi ≤ P

• ∪ai∈LR[bi, fi] and ∪ai∈RL[fi, bi] are intervals,

• max{fi | ai ∈ LR} ≥ min{fi | ai ∈ RL}.

Proof : First, suppose we are given a partition of the agents into two disjoint sets of agents LR and RL
and values bi, fi for each agent ai satisfying the conditions of the claim. Consider the following strategy:
first, every agent ai ∈ LR ∪ RL moves to bi; subsequently, every agent in LR moves to fi once it learns
the information from a1; then, every agent in RL moves to fi once it learns the information from an.
Let ak be an agent from LR such that fk is maximum. Once ak has moved to fk, it knows the initial
information of all the agents ai such that bi ≤ fk. If fk ≥ `, convergecast is achieved. Otherwise, since
fk = max{fi | ai ∈ LR} ≥ min{fi | ai ∈ RL}, we know that there exists an agent aj ∈ RL such that
fj ≤ fk < bj . When aj reaches fk it knows the initial information of all the agents such that bi ≥ fk and
thus, aj and ak know the initial information of all agents.

Consider now a strategy S that solves the convergecast problem for n agents at initial positions Pos[1 :
n] on a line. For any agent ai ∈ LR (resp. ai ∈ RL), we denote by xi the point where ai learns the
information of a1 (resp. an) and by fi the rightmost (resp. leftmost) point visited by ai after that. Let bi be
the minimum (resp. maximum) of xi and Pos[i]. Since ai uses at most P power, we have |Pos[i]−xi|+|fi−
xi| ≤ P. First suppose that bi = xi, we have (Pos[i]−bi)+(fi−bi) ≤ P and thus Pos[i]+fi−2bi ≤ P if
ai ∈ LR, and 2bi−Pos[i]−fi ≤ P if ai ∈ RL. Now, suppose that bi = Pos[i],we have Pos[i]+fi−2bi =
fi − Pos[i] ≤ P if ai ∈ LR and 2bi − Pos[i]− fi = Pos[i]− fi ≤ P if ai ∈ RL.

Since S is a convergecast strategy, there exists ai ∈ LR and aj ∈ RL such that fi ≥ fj , and con-
sequently, max{fi | ai ∈ LR} ≥ min{fi | ai ∈ RL}. Clearly, if ai ∈ LR, either bi = 0 , or there
exists aj ∈ LR such that bj < bi ≤ fj . Consequently, ∪ai∈LR[bi, fi] is an interval. For similar reasons,
∪ai∈RL[bi, fi] is also an interval. 2

Proof of Lemma 1 : By Lemma 4, we know that there exists a partition of the agents into two sets LR and
RL and that for each agent ai, there exist positions bi, fi satisfying the conditions of Lemma 4.

In the following claims, we show that we can modify the sets LR and RL, and the values of bi and fi
for 1 ≤ i ≤ n in order to satisfy the conditions of Lemma 1.

Claim 1 For each ai ∈ LR, we can assume that fi = 2bi + P − Pos[i] and for each ai ∈ RL, we can
assume that fi = 2bi − P − Pos[i].

We prove the claim for ai ∈ LR; the other case is similar. Consider ai ∈ LR such that fi < 2bi + P −
Pos[i]. We replace fi by f ′i = 2bi + P − Pos[i]. Since f ′i > fi and Pos[i] + f ′i − 2bi ≤ P , the conditions
of Lemma 4 are still satisfied and we once again have a convergecast strategy.
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Claim 2 For each ai ∈ LR, we can assume that either bi = max{fj | bj ≤ bi} or bi = Pos[j]. For each
ai ∈ RL, we can assume that either bi = min{fj | bj ≥ bi} or bi = Pos[j].

We prove the claim for LR; the other case is similar. If i = 1, then bi = Pos[i] = 0, and the claim
holds. For each ai ∈ LR, i > 1, let Ai = {aj ∈ LR | bj < bi or bj = bi and j < i} and let Fi = max{fj |
aj ∈ Ai}. By Lemma 4, either bi = 0 and a1 ∈ Ai, or there exists an agent aj ∈ LR such that bj < bi ≤ fj .
In both cases, Ai 6= ∅ and Fi is well-defined. We replace bi by b′i = min{Pos[i], Fi} ≥ bi, and fi by
f ′i = 2b′i + P − Pos[i] ≥ fi. Since [bi, fi] ⊆ ∪aj∈Ai [bj , fj ] ∪ [b′i, f

′
i ], ∪aj∈LR[bj , fj ] is an interval and by

Lemma 4, we once again have a convergecast strategy.

Claim 3 For each ai, aj ∈ LR (resp. ai, aj ∈ RL), we can assume that Pos[i] < Pos[j] implies bi ≤ bj .

We prove the claim for LR; the other case is similar. Suppose this is not the case. Let i be the smallest
index such that ai ∈ LR and such that there exists aj ∈ LR with Pos[i] < Pos[j] and bj < bi. Since
bi > bj ≥ 0, by Lemma 4, there exists ak ∈ LR such that bk < bi ≤ fk. If k < i, then due to the choice of
i, bk ≤ bj , and thus by Claim 2, bj ≥ fk ≥ bi, a contradiction. Thus, there exists aj ∈ LR such that j > i
and bj < bi ≤ fj .

We exchange the roles of ai and aj : we let b′i = bj , f ′i = 2bj +P −Pos[i] ≥ fj , b′j = min{Pos[j], f ′i}
and f ′j = 2b′j + P − Pos[j]. Thus, [b′i, f

′
i ] ∪ [b′j , f

′
j ] = [b′i, f

′
j ]. Moreover, b′i = bj and either f ′j =

Pos[j] +P > Pos[i] +P ≥ fi, or f ′j = 2f ′i +P −Pos[j] = 4bj + 3P − 2Pos[i]−Pos[j]. In the second
case, since fj = 2bj + P − Pos[j] ≥ bi and since Pos[i] ≤ Pos[j], we have f ′j = 2bj + P − Pos[j] +
2bj +P −Pos[i] +P −Pos[i] ≥ 2bi +P −Pos[i] = fi. Consequently, we have [bj , fi] ⊆ [b′i, f

′
j ], and by

Lemma 4, we once again have a convergecast strategy.

Claim 4 If ai ∈ LR and aj ∈ RL, we can assume that j > i.

Suppose there exists an index i such that ai ∈ RL and ai+1 ∈ LR. Let FRL = min{fj | aj ∈
RL, j > i} and FLR = max{fj | aj ∈ LR, j < i}; note that bi = max{FRL, Pos[i]} and bi+1 =
min{FLR, Pos[i+1]}. We exchange the roles of ai and ai+1, i.e., we put ai ∈ LR and ai+1 ∈ RL. Let b′i =
min{FLR, Pos[i]}, b′i+1 = max{FRL, Pos[i+1]}, f ′i = 2b′i+P−Pos[i] and f ′i+1 = 2b′i+1−P−Pos[i+1].

If FRL ≤ Pos[i + 1], then f ′i+1 = Pos[i+ 1] − P ≤ bi+1 ≤ FLR. If FLR ≥ Pos[i], then f ′i =
Pos[i] + P ≥ bi ≥ FRL. In both cases, by Lemma 4, we still have a convergecast strategy.

If FRL ≥ Pos[i+1] and FLR ≤ Pos[i], then f ′i = 2FLR+P−Pos[i] > 2FLR+P−Pos[i+1] = fi+1,
and f ′i+1 = 2FRL − P − Pos[i + 1] < 2FRL − P − Pos[i] = fi. Consequently, by Lemma 4, we once
again have a convergecast strategy. 2

Before proving Lemma 2, we prove that for each p, the functions ReachLR(p, ·) and ReachRL(p, ·) are
piecewise linear.

Lemma 5 For every 1 ≤ p ≤ n, the function ReachLR(p, ·) : P → ReachLR(p, P ) is an increasing,
continuous, piecewise linear function on [ActLR(p),+∞).

For every 1 ≤ p ≤ n, the function ReachRL(p, ·) : P → ReachRL(p, P ) is a decreasing continuous
piecewise linear function on [ActRL(p),+∞).

Proof : We prove the first statement of the lemma by induction on p. For p = 1, ReachLR(1, P ) =
Pos[1] + P and the claim holds. Suppose that ReachLR(p, ·) is a continuous piecewise linear function on
[ActLR(p),+∞) and consider ReachLR(p+ 1, ·).

First note that ActLR(p) < ActLR(p + 1). Since ReachLR(p, ·) is a continuous, increasing function,
there exists a unique P = ActLR(p + 1) such that ReachLR(p, P ) + P = Pos[p + 1] and for every
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P ′ > ActLR(p+ 1), ReachLR(p, P ′) +P ′ > Pos[p+ 1]. Consequently, ReachLR(p+ 1, ·) is well defined
on [ActLR(p+ 1),+∞).

Since ReachLR(p, ·) is a continuous, increasing function, there exists a unique P = THLR(p + 1)
such that ReachLR(p, P ) = Pos[p + 1]. If ActLR(p + 1) ≥ P ≥ THLR(p + 1), ReachLR(p + 1, P ) =
2ReachLR(p, P )+P−Pos[p+1] and thusReachLR(p+1, ·) is an increasing, continuous, piecewise linear
function on [ActLR(p+1), THLR(p+1)]. If P ≥ THLR(p+1),ReachLR(P ) = Pos[p+1]+P and thus,
ReachLR(p + 1, ·) is an increasing, continuous, piecewise linear function on [THLR(p + 1),+∞). Since
2ReachLR(p, THLR(p+1))+THLR(p+1)−Pos[p+1] = Pos[p+1]+THLR(p+1),ReachLR(p+1, ·)
is an increasing, continuous, piecewise linear function on [ActLR(p+ 1),+∞).

One can show the second statement of the lemma using similar arguments. 2

Proof of Lemma 2 : We prove the first claim of the lemma; the other case is similar. We first show by
induction on q − p that if for every i ∈ [p+ 1, q], P ≤ THLR(i), then

ReachLR(q, P ) = 2q−pReachLR(p, P ) + (2q−p − 1)P −
q∑

i=p+1

2q−iPos[i].

Note that since P ≤ THLR(q),ReachLR(q, P ) = 2ReachLR(q−1, P )+P−Pos[q]. Thus if q = p+1,
the claim holds. Suppose now that q > p+ 1. Since q − 1 > p, by induction hypothesis, we have

ReachLR(q − 1, P ) = 2q−1−pReachLR(p, P ) + (2q−1−p − 1)P −
q−1∑
i=p+1

2q−1−iPos[i].

Consequently, we have

ReachLR(q, P ) = 2ReachLR(q − 1, P ) + P − Pos[q]

= 2q−pReachLR(p, P ) + (2q−p − 2)P −
q−1∑
i=p+1

2q−iPos[i] + P − Pos[q].

= 2q−pReachLR(p, P ) + (2q−p − 1)P −
q∑

i=p+1

2q−iPos[i].

In order to prove the lemma, note that if p = max{p′ ≤ q | THLR(p′) < P}, then for each p′ ∈
[p+ 1, q], THLR(p′) ≥ P and ReachLR(p, P ) = Pos[p] + P . Consequently,

ReachLR(q, P ) = 2q−pPos[p] + (2q−p+1 − 1)P −
q∑

i=p+1

2q−iPos[i].

2

Proof of Lemma 3 : Suppose we are given p and consider the partition of the agents into LR = {aq |
q ≤ p} and RL = {aq | q > p}. Consider a convergecast strategy respecting this partition and where
the maximum amount of power P used by an agent is minimized. We first show that ReachLR(p, P ) =
ReachRL(p+ 1, P ).

Let Q = max{ActLR(p), ActRL(p + 1)}. Since ReachLR(p, ·) is an increasing continuous function
on [ActLR(p),+∞) and ReachRL(p + 1, ·) is a decreasing continuous function on [ActRL(p + 1),+∞),
ReachLR(p, ·)−ReachRL(p+ 1, ·) is a continuous increasing function on [Q,+∞).

Consider the case whereQ = ActRL(p+1) ≥ ActLR(p) (the other case is similar). SinceReachRL(p+
1, Q) = ReachRL(p + 2, Q) = Pos[p + 1] + Q, ReachLR(p,Q) ≤ Pos[p] + Q < Pos[p + 1] + Q =
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ReachRL(p + 1, Q) and thus, ReachLR(p,Q) − ReachRL(p + 1, Q) < 0. By Lemma 1, there exists Q′

such that ReachLR(p,Q′) − ReachRL(p + 1, Q′) ≥ 0. Consequently, there exists a unique Q < P ≤ Q′

such that ReachLR(p, P ) = ReachRL(p+ 1, P ).
Consider now an optimal convergecast strategy and let P be the maximum amount of power used by

any agent. By Lemma 1 and according to what we have shown above, we know there exists p such that
ReachLR(p, P ) = ReachRL(p+ 1, P ).

Suppose that ReachLR(p, P ) ≤ Pos[p]. In this case, we have ReachRL(p, P ) = Pos[p] − P <
ReachLR(p − 1, P ) since P > ActLR(p). Consequently, according to what we have shown above, there
exists P ′ < P such that ReachRL(p, P ′) ≤ ReachLR(p− 1, P ′) and P is not the optimal value needed to
solve convergecast.

For similar reasons, if ReachRL(p + 1, P ) > Pos[p + 1], P is not the optimal value needed to solve
convergecast.

We now prove that for each q ∈ [1, p], ActLR(q) < P . This follows from the fact that for each aq ∈ LR
such that q > 1, we have ActLR(q) > ActLR(q − 1). Consequently, for each q ∈ [1, p − 1], ActLR(q) >
ActLR(p). Moreover, if ReachLR(p, P ) is defined, then P ≥ ActLR(p). Note that if P = ActLR(p),
then ReachLR(p, P ) = Pos[p] − P and thus, ReachRL(p + 1, P ) ≥ Pos[p + 1] − P > Pos[p] − P ≥
ReachLR(p, P ). This contradicts the first claim of the lemma.

For similar reasons, for each q ∈ [p+ 1, n], ActRL(q) < P .

We now prove that for each q ∈ [1, p], P < THRL(q). Suppose there exists such a q and consider
LR = {ar | r ≤ q − 1} and RL = {ar | r ≥ q}. Since P > ActLR(q), ReachLR(q − 1, P ) >
Pos[q] − P = ReachRL(q, P ) and consequently, from the first claim of the lemma, it implies that there
exists P ′ < P such that ReachLR(q − 1, P ′) > ReachRL(q, P ′). This would imply that P is not the
optimal value needed to solve convergecast.

For similar reasons, for each q ∈ [p+ 1, n], P < THLR(q). 2
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B Algorithm ComputeOptimal

Function ComputeOptimal(array Pos[1 : n] of real):real

THLR = empty_stack; THRL = ThresholdRL(Pos);
(q, PRL) = pop(THRL); POPT = PRL;
/* q = 1, PRL = THRL(1) */
(q, PRL) = pop(THRL); p = 1;PLR = 0;
for r = 1 to n− 1 do

/* POPT = P<r ≥ PLR, PRL */
if 2r−pPos[p] + (2r−p+1 − 1)POPT − SLR(p, r) > 2q−r−1Pos[q]− (2q−r − 1)POPT − SRL(q, r + 1)
then

/* If ReachLR(r, POPT ) > ReachRL(r + 1, POPT ) then POPT is larger than the
value needed to solve convergecast at position r. We apply now
the same algorithm as in function OptimalAtIndex. */

P = max{PLR, PRL};
while 2r−pPos[p] + (2r−p+1 − 1)P − SLR(p, r) ≥ 2q−r−1Pos[q]− (2q−r − 1)P − SRL(q, r + 1)
do

if PLR ≥ PRL then (p, PLR) = pop(THLR);
else (q, PRL) = pop(THRL);
P = max{PLR, PRL};

POPT = (2q−r−1Pos[q]− SRL(q, r + 1)− 2r−pPos[p] + SLR(p, r))/(2r−p+1 + 2q−r − 2);
/* POPT = P<r+1 is the solution of ReachLR(r, POPT ) = ReachRL(r + 1, POPT )

*/

if q = r + 1 then return POPT;
/* In this case, POPT ≥ THRL(r + 1) and thus POPT = P<r = ActLR(r + 1): for

any s > r, P<s = P<r */
if 2r−p ∗ Pos[p] + (2r−p+1 − 1) ∗ POPT − SLR(p, r) ≥ Pos[r + 1] then

/* If ReachLR(r, POPT ) ≥ Pos[r + 1] then THLR(r + 1) ≤ POPT and we update
THLR, using the same algorithm as in function ThresholdLR. */

while 2r−p ∗ Pos[p] + (2r−p+1 − 1) ∗ PLR − SLR(p, r) do (p, PLR) = pop(THLR);
push (THLR,(p, PLR));
PLR = (Pos[r + 1] + SLR(p, r)− 2r−p ∗ Pos[p])/(2r−p+1 − 1);
p = r + 1;
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C Proofs of Section 3

Proof of Theorem 2 : We first prove the following claim.

Claim 5 Consider a configuration (G,A). We have

D(G,A) = max
∅(X(A

{ min
x∈X,y∈A\X

{dG(x, y)}} ≤ 2POPT

Suppose, by contradiction, that there is a partition of A into X and A \X such that for each x ∈ X and
y ∈ A \X the distance between x and y is greater than 2POPT . It means that no agents in X can meet an
agent in A \X with power POPT . This contradicts the fact that there is a convergecast strategy in G using
battery power POPT . Hence, for every partition of A into X and A \ X , there exists agents x ∈ X and
y ∈ A \X that are at distance at most 2POPT . This ends the proof of the claim.

First, we show that if each agent executes Algorithm 1 then, eventually, one agent will possess all the
information. Consider an agent a executing the algorithm. Let Ta(t) be the subtree rooted at the last visited
node and containing all nodes accessible from its current position by shortest paths containing a non-null
part of the last edge traversed. Hence, when a enters a new node u, u is added to Ta. We show by induction
on the number of nodes of Ta that a has the initial information of every agent that started in Ta. For |Ta| = 1,
it is true since a is the only agent that started in Ta. The size of Ta grows only when a enters or exits some
node v. When a enters a new node v, we show that any agent that started at v did not move yet. Assume
by contradiction that there is an agent b that started at v and has moved before the arrival of a. It means
that agents have arrived from all but one edge incident to v. In that case, agent b follows the edge from
which no agent has arrived. Hence, the only possible edge that agent b can follow is the edge taken by
agent a to arrive at v. This leads to a contradiction since agents a and b must have met inside the edge
and agent a would have stopped before reaching v. When an agent a moves from a node v of degree δ,
there were δ − 1 agents: b1, b2, . . . , bδ−1 that have arrived at v. By induction hypothesis, each agent bi, for
1 ≤ i ≤ δ − 1, has collected all the information from agents starting inside the subtree Tbi . Since agent a
moves to the only direction where no agent has arrived, it has the information of every agent that started in
Ta = Tb1 ∪ Tb2 ∪ · · · ∪ Tbδ−1

.
Observe that for each 1 ≤ i ≤ k the tree Tai grows until either ai meet agents that have arrived

from all incoming ports of its position, or another agent aj with more power is chosen to move to an
unexplored direction. In the later case, Tai ⊆ Taj and the tree Taj will grow under the same conditions.
Thus, ∪ki=1Tai will eventually be equal to T . When this happens, either two agents u1, u2 meet at an edge
or δ agents u1, u2, . . . , uδ meet on a node of degree δ. These agents have the entire information since
Tu1 ∪ Tu2 ∪ · · · ∪ Tuδ = T (δ = 2 if the meeting occurs on an edge).

It remains to show that the agents do not use more battery power than D(T,A) . Suppose by contradic-
tion, that an agent a uses battery power P > D(T,A). Let p be the point where agent a has finished the
execution of the algorithm (when the value of collecting becomes false) and let v be the last node visited by
a before reaching p. Consider Ta when a exited v. Agent a is the agent starting in Ta for which the distance
between its initial position and the node v was the closest since it was the agent that has used the least power
when it arrived at v. Thus, the distance between the initial position of an agent in Ta and an agent in G \ Ta
is greater or equal than P . We have D(T,A) < P ≤ D(T,A), a contradiction. By Claim 5, we have that
D(T,A) ≤ 2POPT and the algorithm is 2-competitive. 2

19



Before proving Theorem 3, we first prove two lemmas that we need in our proof of the theorem.

Lemma 6 Consider any ε > 0, an amount of power P , and a set {a0, a1, . . . , ak, ak+1} of k + 2 agents
located at positions Pos[0 : k + 1]. If Pos[k + 1]− ReachLR(0, P ) ≤ P − ε, and if k ≥ log(P/ε), there
exists i ≤ k such that ReachLR(i, P ) ≥ Pos[i+ 1].

Proof : Suppose, by contradiction, that the lemma does not hold. It means that for each 0 ≤ i ≤ k,
ReachLR(i, P ) < Pos[i+ 1]. Therefore, we have

ReachLR(k, P ) = 2kReachLR(0, P ) + (2k − 1)P − Σk
i=12

k−iPos[i]

= ReachLR(0, P ) + (2k − 1)P − Σk
i=12

k−i(Pos[i]−ReachLR(0, P ))

≥ ReachLR(0, P ) + (2k − 1)P − Σk
i=12

k−i(P − ε)
≥ ReachLR(0, P ) + (2k − 1)P − (2k − 1)(P − ε)
≥ ReachLR(0, P ) + (2k − 1)ε

Consequently, if k ≥ log(P/ε), we have ReachLR(k, P ) ≥ ReachLR(0, P ) + P − ε ≥ Pos[k + 1], a
contradiction. 2

Lemma 7 Consider an amount of power P , a distance d > 0, and a set {a0, a1, . . . , ak} of k agents
located at positions Pos[1 : k]. Let R0 be the closest point from Pos[1] that a0 reached. Assume that
Pos[1]−R0 = d.

Suppose that all the agents execute the same deterministic algorithm and do not know their ini-
tial position, and assume that some agent a ∈ {a1, a2, . . . , ak} meets agent a0 before any agent a′ ∈
{a1, a2, . . . , ak} meets any other agent. Then, a = a1 and when a1 meets a0, for each 1 ≤ i ≤ k, agent ai
is located on Pos[i]− d.

Moreover, if Rmax is the furthest point on the right reached by some agent knowing the initial informa-
tion of agent a0, then Rmax − Pos[k] ≤ P − 2d.

Proof : Since all agents are executing the same deterministic algorithm, let us consider the execution of
the algorithm until some agent reaches agent a0. During this period, all the agents perform exactly the same
moves and thus no agent meets another agent before agent a1 meets a0 at point R0 or on the left of R0.
When agent a1 meets a0, it has moved at least a distance of d. Until this meeting between a0 and a1, every
other agent has also moved a distance of at least d, and is located at distance d to the left of its starting
position. Consequently, no agent can go further than P − 2d to the right of Pos[k]. 2

Proof of Theorem 3 : Let ε = δP/4 and σ = ε/2 = δP/8. Let l = blog(8/δ)c and k = l + 2.
Consider a set of agents positioned on a line as follows (See Figure 1). There is an agent a0 (resp.

a2l+1) on the left (resp. right) end of the line on position s′0 = 0 (resp. sl). For each 1 ≤ i ≤ 2l, there is
a set Ai of k agents that start on distinct positions within a segment [si, s

′
i] of length σ such that for each

1 ≤ i ≤ 2l+1, the distance between si and s′i−1 is 2(P−ε). In other words, for each i, si = (2P−3σ)i−σ
and s′i = (2P − 3σ)i.

First, let us consider the execution of the optimal centralized algorithm for this configuration. We claim
that if the amount of power given to each agent is P , then convergecast is achievable. We show by induction
on i that for every i, ReachLR(ik, P ) ≥ s′i + P − ε = si+1 − P + ε. For i = 0, ReachLR(0, P ) =
Pos[0]+P > P−ε = s1−P+ε. Suppose thatReachLR((i−1)k, P ) ≥ si−P+ε. Consider the agents in
Ai, i.e., the agents aik−j , j ∈ [0, k−1]. Since s′i−ReachLR((i−1)k, P ) ≤ P−ε+σ = P−σ < P , and since
l+1 ≥ log(P/σ), we know by Lemma 6 thatReachLR(k(i−1)+ l+1, P ) ≥ Pos[k(i−1)+ l+2]. Since
k > l+1, it follows thatReachLR(ik, P ) = Pos[ik]+P ≥ si+P = s′i+P−σ ≥ s′i+P−ε. Consequently,
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the induction hypothesis holds. Since ReachLR(2lk, P ) ≥ s2l+1 − P + ε ≥ ReachRL(2lk + 1, P ), P is
sufficient to solve convergecast.

Suppose now that there exists a distributed strategy S that solves convergecast on the configuration when
the amount of power given to each agent is (2 − δ)P . Consider an execution of S. A step in the execution
of S is a moment where two agents meet. Let tli (resp. tri) be the first step where an agent from Ai meets
an agent from Ai′ with i′ < i (resp. i′ > i). Let Ri (resp. Li) be the furthest point on the right (resp. on
the left) reached by any agent from Ai once some agent in Ai has met an agent from Ai′ with i′ < i (resp.
i′ > i). For any 1 ≤ i < j ≤ 2l + 1, let Ai,j = Ai ∪Ai+1 . . . ∪Aj .

We show by induction on t that for each i ∈ [1, l] such that tli ≤ t and for each j ∈ [l + 1, 2l] such that
trj ≤ t, the following holds:

(i) tli < tli′ for each i′ ∈ [i+ 1, l] and trj < trj′ for each j′ ∈ [l + 1, j − 1],

(ii) for each i′ ∈ [i+ 1, l], if tli′ > t then tri′ > t, and for each j′ ∈ [l+ 1, j− 1], if trj′ > t then tlj′ > t

(iii) Ri ≤ si+1 − (2i+2 − 2)ε and Lj ≥ s′j−1 + (22l−1−j − 2)ε,

(iv) no agent in Ai′ , i′ ≥ l meets any agent from A1,l−1 and no agent in Aj′ , j′ ≤ l + 1 meets any agent
from Al+2,2l+1.

Clearly, R0 ≤ s′0 + 2P − δP = 2P − 4ε = s1 − 2ε and L2l+1 ≥ s2l+1 − 2P + δP = s2l + 2ε. Since
all agents in A1,2l execute the same algorithm, they all perform the same moves until either the leftmost
agent of A1 meets a0 (at step tl1), or the rightmost agent of A2l meets a2l+1 (at step tr2l). In the first
case, it shows that tl1 < tli, tri for any i ≥ 2, and by Lemma 7, R1 ≤ s′1 + (2 − δ)P − 2(s1 − R0) ≤
s2 − 2P + 2ε + 2P − 4ε − 2(2ε) = s2 − 6ε. By symmetry, in the second case, tr2l < tri, tli for any
i ≤ 2l − 1 and L2l ≥ s′2l−1 + 6ε. In both cases, the induction hypothesis holds.

Suppose now that the induction hypothesis holds for all t′ < t and let i = max{i′ | tli′ < t} + 1 and
j = min{j′ + 1 | trj′ < t} − 1. Note that by (iv), we have i ≤ l− 1 and j ≥ l+ 2. By (i) and (ii), before
step t, no agent in Ai′ , i ≤ i′ ≤ j has met any other agent from a set Ai′′ , i′ 6= i′′. Thus, since all agents
in Aij execute the same algorithm, they have performed exactly the same moves and they have not met any
other agent before step t. Suppose that an agent from Aij meets another agent at step t. Then, either the
leftmost agent ai from Ai meets an agent ai′ from Ai′ with i′ < i, or the rightmost agent from Aj meets an
agent from Aj′ with j′ > j.

By symmetry, it is enough to consider only one case. In the following, we assume that ai ∈ Ai meets
an agent ai′ ∈ Ai′ with i′ < i at step t. In this case, t = tli and thus tli < tli′ , tri′ for each i < i′ ≤ j;
consequently, (i) and (ii) hold. Moreover, by induction hypothesis, the meeting between ai and ai′ occurs
at a point p ≤ Ri′ ≤ Ri−1 ≤ si − (2i+1 − 2)ε. Suppose first that i < l − 1. By Lemma 7, we have
Ri ≤ s′i + 2P − δP − 2(2i+1 − 2)ε = si+1 − 2P + 2ε + 2P − 4ε − 2i+2ε + 4ε = si+1 − (2i+2 − 2)ε,
and thus (iii) holds. Suppose now that i = l ≥ log(8/δ) − 1. Then R′i ≤ sl − (8/δ − 2)δP/4 =
sl − 2P + δP/2 < sl − 2P + δP . But this is impossible since the initial position of the leftmost agent a of
Al is Pos[lk + 1] ≥ sl and the power available to a is 2P − δP , hence (iv) holds.

Therefore, no agent from A1,l ever meets any agent from Al+1,2l+1 and consequently, S is not a dis-
tributed convergecast strategy. 2

D Proofs of Section 4

We consider the centralized convergecast decision problem formalized as follows.
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Centralized convergecast decision problem
Instance: a weighted graph G, a set of k agents located at nodes of G and a real Pmax.
Question: Is there a strategy solving the convergecast for the agents in graph G in which each agent uses at
most Pmax battery power ?

To prove Theorem 4, we first show that the centralized convergecast decision problem is strongly NP-
hard and then that the problem is in NP.

Lemma 8 The centralized convergecast decision problem is strongly NP-hard for trees.

Proof : We construct a polynomial-time many-one reduction from the following strongly NP-Complete
problem [27].

3-Partition problem
Instance: a multiset S of 3m positive integers xi such that for 1 ≤ i ≤ 3m,R/4 < xi < R/2 with

R =
∑3m
i=1 xi
m .

Question: Can S be partitioned into m disjoint sets S1, S2, . . . , Sm of size three such that for 1 ≤ j ≤ m,∑
x∈Sj x = R?

We construct an instance (G,U) of the centralized convergecast problem from an instance of 3-Partition
as follows. The graphG is a star with 4m+2 leaves and U is the set of leaves ofG. Hence, there are 4m+2
agents each located at a leaf of the star. We consider a partition of the set of agents into three subsets: A, B
and C. The subsetA = {ai | 1 ≤ i ≤ m+1} containsm+1 agents. The leaves containing these agents are
incident to an edge of weight 1. The subset B = {bi | 1 ≤ i ≤ 3m} contains 3m agents. For 1 ≤ i ≤ 3m,
the weight of the edge incident to the leaf containing agent bi is 2R+ 1 + xi. The subset C = {c} contains
one agent. The leaf containing agent c is incident to an edge of weight 4R + 1. Figure 2 depicts the star
obtained. The battery power Pmax allocated to each agent is equal to 2R+ 1. The construction can be done
in polynomial time. We show that the constructed instance of the centralized convergecast problem has a
solution if and only if the original instance of 3-partition has a solution.

First, assume there exists a solution S1, S2, . . . , Sm for the instance of the 3-partition problem. We
show that the agents can solve the corresponding instance of the centralized convergecast problem using the
following strategy. Agent c moves at distance 2R of the center and for each 1 ≤ i ≤ 3m, agent bi moves
at distance xi from the center. At this point, all these agents have use all their battery power. Each agent in
A moves to the center of the star. For 1 ≤ i ≤ m and each of the three agents bj such that xj ∈ Si, agent
ai moves to meet bj and go back to the center of the star. The cost of this movement is 2

∑
xj∈Si = 2R,

which is exactly the remaining battery power of agent ai. Observe that since agents in A have met all agents
in B, agents in A, located at the center of the star, have the information of all agents except agent c. Agent
Am+1 then moves to meet agent c. Agents am+1 and c have the information of all the agents. Hence, this is
a solution to the instance of the centralized convergecast problem.

Now, assume there is no solution to the instance of 3-partition problem. Suppose by contradiction that
there is a solution to the corresponding instance of the centralized convergecast problem. For the sake of
simplicity, we show first that we can only consider strategy with special properties. A convergecast strategy
in a star is called simple if :

• The strategy starts with a gathering phase in which each agent uses all their available power to move
to the center of the star and then waits until time Pmax. The agent that have used all their power
during this phase are called depleted.

• The agents does not move past depleted agents, i.e., never enters the segment between a leaf and a
depleted agent on the incident edge.
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The following claim shows that we can only consider simple convergecast strategy.

Claim 6 If there is convergecast strategy in a star using powerP then there is a simple convergecast strategy
using less power than P .

Let S be the existing convergecast strategy. We construct a simple strategy S ′ as follows. In S ′, each
agent moves towards the center of the star until it has used all its battery power or has reached the center
of the star. This gathering phase lasts from time 0 to time P . If an agent has reached the center at time t
in strategy S , it executes at time t′ + P in strategy S ′ each movement performed at time t′ ≥ t in strategy
S. However, if a movement of an agent would result in the agent moving past a depleted agent from time
r to r′ in S, then the agent waits at the position of the depleted agent instead of moving from time r to r′.
By construction, S ′ is a simple convergecast strategy. Observe that in strategy S ′, the non-depleted agents
share all their information at the center of the star at time Pmax. Moreover, if two depleted agents meet at
time t in S, they also meet in S ′ at time t′. Since two depleted agents cannot meet, it remains to show that
when a non-depleted agent a meet a depleted agent b at time t in strategy S , they meet at time t+ P in S ′.
The position of agent a is closer to the center in S ′ than in S. Hence, any agent b that meets agent at time t
is at the new position of a in S ′ at time t+ P .

By Claim 6, we can assume that the convergecast strategy is simple. Consider the star G after the
gathering phase of the simple strategy. Each agent in A is at the center of the star. For 1 ≤ i ≤ m + 1, the
agent ai has the remaining power of 2R. For 1 ≤ i ≤ 3m, the agent bi is at distance xj from the center
of the star and agent c is at distance 2R from the center. Since the agents in A are the only agents with
remaining battery power, they must move to collect the information of agents in B ∪ C. We call this phase
the collecting phase. Observe that since agent c is at distance 2R from the center, it is impossible for agents
in A to move this information. Indeed, when an agent reaches c, it has used all its battery power. Hence,
the entire information must be collected at the position of c. In order to collect the information, agents in
A must go to the position of each agent in B and transport the information of these agents to the center.
The total cost to move these information is at least twice the sum of the distances between each agent in
B and the center. This is equal to 2

∑
i=1 3mxi = 2Rm. Then, these information must then be moved to

the position of c. This costs at least 2R. Hence, the total cost in order to collect the information after the
gathering phase is at least 2R(m+ 1). The amount of power available to the agents for the collecting phase
is equal to the minimal amount of power to collect the information, since there arem+1 agents having each
2R power. This means that during the collecting phase, for 1 ≤ j ≤ 3m, agents cannot use more than 2xi
power to collect the information of bi.

Suppose by contradiction that during the collecting phase, more than one agent in A enters an edge f to
collect the information of agent bi at distance xi from the center for some i s.t. 1 ≤ i ≤ 3m. Let w be the
agent that has reached the position of bi. If w comes back to the center, it has used at least 2xi power. Since
at least one other agent has used some power to enter edge f , these agents has used more than 2xi battery
power to collect information of agent bi. If w does not come back to the center then some other agent has to
move the information to the center. If the agent w stops at distance r from the center then at least one other
agents have to go to this position (at distance r from the center) and come back. Thus, the cost is at least
(2xi − r) + 2r > 2xi. In both cases, the agents have used more 2xi power, which leads to a contradiction.
Hence, for each 1 ≤ i ≤ 3m, there is only one agent that collects the information of agent bi and enters the
corresponding edge.

We can assume, without loss of generality, that agent am+1 is the agent that move the information to
c. Observe that am+1 cannot collect information from other nodes since moving to c uses exactly all its
remaining power. Hence, only agents in A′ = A \ {am+1} can collect these information of agents in C. Let
S1, S2, . . . Sm be the partition of S defined by Si = {xj | the information of bj is collected by ai}, for each
1 ≤ i ≤ m. We have 2

∑
x∈Si x ≤ 2R since the agents only have 2R battery power. The power needed to
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collect information of agents in B is 2mR which is exactly equal to the combined power available to agents
inA′. This means that each agent inA′ must use all their power to collect information and 2

∑
x∈Si x = 2R.

Hence, S1, S2, . . . Sm is a solution to the instance of 3-partition, a contradiction. Thus, there is no solution
to the centralized convergecast problem. 2

Lemma 9 The centralized convergecast decision problem is in NP.

Proof : We consider the verifier-based definition of NP . Consider the strategy S of the agents for an
instance of the centralized convergecast problem. We construct the certificate for the instance as follows.
We say that a meeting of two or more agents is useful if at least one of the agents received a new piece of
information during this meeting. Each agent participates in at most k − 1 useful meetings. Hence, there are
at most k(k − 1) useful meetings. The certificate contains the list of all useful meetings in chronological
order. For the i-th meeting, the certificate encodes the identities of the meeting agents and the location of the
meeting: a node xi or an edge (ui, vi) of the graph G. If the meeting has occurred on an edge, the certificate
encodes a variable di. The variable di represents the distance between ui and the meeting point pi. If a
previous meeting of number j has occurred on the same edge, the certificate encodes if di < dj , or di = dj
or di > dj . For each of the meeting agents, the certificate also encodes the node from which it has entered
the edge (ui or vi) just before the meeting and the node from which it exits the edge just after the meeting.
We consider the strategy S ′ defined as follows. For each useful meeting in chronological order, the meeting
agents move to the meeting location following a shortest path from their previous position. If the meeting
occurs on an edge, the meeting agents enter and exit the edge using the node encoded in the certificate. S ′ is
a convergecast strategy since each time an agent has collected a new information in S, it collects the same
information during the corresponding meeting in S ′. Moreover, the agents use at most as much power in S ′
than in S since they move to the same meeting points using shortest paths. The verifier simulates the strategy
S ′ defined by the certificate. The verifier first checks that all the agents possess the entire information at the
end of the algorithm. This can be done in polynomial time. Then, the verifier computes the distance traveled
by each agent. These distances are linear sums of variables di with 1 ≤ i ≤ k(k−1) and a constant. Finding
an assignation of the variables, such that the distance traveled by each agent is less or equal than Pmax, can
be done in polynomial time using linear programming. Thus, the certificate can be verified in polynomial
time. 2

Proof of Theorem 5 : The parameters of algorithm KnownGraph are the graph G and the nodes corre-
sponding to the initial positions of agents (stored in Pos[1 : k]).

Algorithm 2: KnownGraph(a weighted graph G, an array Pos[1:k] of nodes)
strategy=empty_stack;
V:={Pos[1]};
P:=0;
repeat

choose a couple (u, v) ∈ V × (Pos \ V ) such that d(u, v) is minimal;
V := V ∪ {v};
Path := shortest path between u and v;
push(strategy, (v, Path, u));
P = max{P, d(u, v)};

until V = Pos;
repeat

(v, Path, u) = pop(strategy);
agent starting in u moves to v following path Path;

until strategy = empty_stack;
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Let (ui, vi) be the nodes chosen at the i-th iteration of the first loop and let Vi be the value of V at the
end of the i-th iteration. We set u0 = Pos[1] and V0 = {u0}. We show, by induction, that at the start of the
i-th iteration of the second loop, every information is possessed by an agent that started in Vk−i. It is clearly
true for i = 1. Assume by induction that it is true for i. Agent at uk−i move to an agent at vk−i = uk−j
for some j > i, during the i-th iteration of the second loop. After this movement, agent in Vk−(i+1) have all
the information since vi ∈ Vk−(i+1). hence the property is true for i + 1 and so for all i. At the end of the
algorithm, the agent at Pos[1] have all the information since V0 = {Pos[1]}.

Let A be the set of agents. Consider the partition of Pos into the sets Vi−1 and Pos \ Vi−1. We have
d(ui, vi) ≤ D(G,Pos) since (ui, vi) is the couple (u, v) ∈ Vi−1×(Pos\Vi−1) such that d(u, v) is minimal.
Hence, an agent will never move the distance longer than 2POPT by Claim 5. 2
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