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Development and modeling of filled
silicone architectured membranes

M. Rebouah • G. Chagnon • D. Favier

Abstract The main objective of this study is to

generate anisotropic membranes stretched in their

plane able to endure large deformations. In this

perspective, different crenellated membranes were

designed with a filled silicone rubber. The aim of this

work is to build a constitutive equation which

describes the mechanical behavior of such architec-

tured membranes, by means of a simple decompostion

of the strain energy. Since a filled silicone is used to

make the architectured membrane, some non linear

effects influence also the mechanical behavior of the

structure. The main phenomenon is the Mullins effect

and must be taken into account in the modeling. An

equivalent constitutive equation is built for the

architectured membrane by taking into account the

mechanical behavior of the silicone and the geomet-

rical parameters of the crenellated membrane. Firstly,

a constitutive equation is chosen to describe the core of

the membrane. Second, this equation is adapted to the

behavior of the crenels and thirdly a coupling term

describing the interactions between the crenels and the

core of the membrane is developed. The implemen-

tation of the equivalent constitutive equation into a

finite element code is finally validated on experimental

data.

Keywords Architectured material � Silicone rubber �
Stress-softening � Constitutive equation

1 Introduction

Architectured materials take an increasingly important

place in many applications due to their specificities

including mechanical properties [4]. It exists several

types of architectured materials. For instance, some

materials are architectured due to their microstructure

(grain size for metallic materials, polymer chain

design or state of crystallization for example). This

strategy operates at scales between 1 nm and 10 lm.

Architectured materials can also be composed with an

association of several materials (also called hybrid

material). Other materials can be considered as

architectured because of their geometry. These archi-

tectured materials are usually used to build multifunc-

tional materials [1, 3, 5].

[14] developed crenellated membranes with an

unfilled silicone rubber. The main advantage of these

membranes is that they present an anisotropic behav-

ior without any interface in the material. Indeed, the

crenels and their orientations allow to induce and

control the anisotropy. The architectured membranes

can be separated in three parts, the core of the

membrane (the central part) and the upper and lower

lattices of crenels that are on the external surfaces of

the core of the membrane. The silicone used by [14]
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was perfectly hyperelastic but suffered from bad

properties in tearing which makes it difficult to use in

real applications. In this study it is chosen to develop

the same crenellated membranes, with a filled silicone

rubber to improve the resistance of the material. Due

to the fillers, the material presents good tearing

properties although it shows other phenomena like

stress softening or hysteresis.

The goal of this paper is to study the mechanical

behavior of such architectured membranes when they

are stretched in their planes and to develop the

associated constitutive equation. A method to develop

an equivalent model of the core of the membrane and

the crenels is presented. The membrane properties

come from the bulk material, i.e. the filled material. Its

main properties are to support reversible large defor-

mations and to endure stress softening [6, 16] that

induces anisotropy [12]. First, in Sect. 2 the experi-

mental set up and the architectured membranes are

described. Several tests are performed to highlight the

mechanical behavior. In Sect. 3, a theoretical study

presents the constitutive equation developed to build

the strain energy of the architectured membranes. In

Sect. 4, the constitutive equations are implemented

into a Finite Element (FE) code. A comparison

between the FE simulation and a complex experimen-

tal test is proposed. Finally, Sect. 5 presents some

conclusions and perspectives.

2 Materials and methods

The same filled silicone rubber (RTV3428) is used to

manufacture all the architectured membranes pre-

sented in the paper. This material was already used in

previous works and some non linear phenomena as

hysteresis, relaxation [11, 21] and induced anisotropy

[13] were already studied. As illustrated by [21], the

Mullins effect is the prevailing phenomenon so the

experimental results focus on the study of this

phenomenon. The other phenomena are not consid-

ered in a first approach.

2.1 Description of the architectured membrane

The architectured membranes are manufactured

according to the process described by [14], by

injection molding to obtain circular architectured

plane membranes. For that purpose, a specific mold

was used. The mold is composed of two circular

crenellated metallic plates of 16 cm diameter, each

one of these plates comes lock another holey metallic

plate on each side. When the holey plate is locked,

there is a space of 1 mm between the two crenellated

plates. Besides, the two crenellated plates can be

fixed separately in any wished angular position.

Thus, any circular architectured membrane with

different crenels orientations can be molded. Once

the injection is done, the mold filled out of silicone is

put at 70 �C for 4 hours into an oven to accelerate the

vulcanization. Finally, flat membranes ascribed of

geometrical motifs (lattices of parallel crenels) on the

upper and lower external surfaces are obtained. Due to

the geometry of the architectured membranes, several

coordinate systems have to be defined and are

presented in Fig. 1. Two coordinate systems are

defined for the two crenels layers. For the first crenel

the basis denoted R1ðE1;K1; zÞ is defined and for the

second crenel the basis denoted R2ðK2;E2; zÞ. The

vector Ei corresponds to the crenel direction, Ki is an

orthogonal vector in the plane of the membrane, and z

is orthogonal to the plane (x; y) of the membrane. It is

to note that the architectured membranes are charac-

terized by the angle a between the two lattices of the

crenels, thus a is the angle defined by the orientations

E1 and E2. Finally, a global coordinate system is

introduced Rðx; y; zÞ. The vector y matches the bisec-

tor of the orientations of the crenels and x is an

orthogonal vector in the plane of the membrane. For

the following the model is defined in the basis R of the

architectured membrane.

In order to study the influence of the crenel

orientations, five different circular architectured mem-

branes were molded with the same material and same

processing. For each architectured membrane, the

only parameter that changes is the relative orientation

a between the crenels, the geometry of the crenels

stays the same. Finally, architectured membranes with

a ¼ 0�; 45�; 90�; 135� and 180� are manufactured.

Tensile rectangular specimens were cut from the

circular plate samples along the direction y (as

illustrated in Fig. 1) i.e. along the bisector of the

crenels orientations. The initial dimensions of the

tensile samples are L ¼ 60 mm long, l ¼ 21 mm

width and e ¼ 1 mm thick for the core of the

membrane. The crenels on the external surfaces of

the membrane are spaced out of 2 mm and the width

and thickness of each crenel are 1 mm (cf. Fig. 1).
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2.2 Experimental set up

For each architectured tensile test sample, a cyclic

tensile test along the vector y (corresponding to the

bisector of the crenels orientations) was processed. By

means of tension device, the samples underwent a

cyclic tensile test up at three different elongations k,

where k represents the current length of the sample

over its initial length. The first loading unloading cycle

is reached at k ¼ 1:5, the second at k ¼ 2:, and the

third at k ¼ 2:5. After these three cycles a reloading at

k ¼ 2:5 is performed. The measurements are made by

means of a 100 N load cell which is synchronized to a

stereo-dimensional image correlation (SDIC) system.

This technique enables to determine the 3D contour

and the in-plane strain fields of the object surface.

Then the strain fields of the architectured membrane

can be studied at any point of the surfaces. The

specimens present a periodic structure which has to be

repeat at least seven times in the width of the specimen

to concider a continuum model. Due to the crenel

orientations, the section of the specimens is different

for each membrane. Thus, it is proposed to analyze the

results using the nominal tension T to have a more

realistic comparison for all the samples. The nominal

tension is defined as:

T ¼ F

l0

ð1Þ

where F is the applied force and l0 the initial width.

2.3 Experimental results

The results of the tensile tests are presented in the

Fig. 2 for the five different orientations of crenels.

Figure 2a presents the evolution of the transversal

elongation kx during the tensile test in the REV, which

was measured by means of SDIC, in function of the

tensile elongation, i.e. ky. The solid line represents the

theoretical transversal elongation for a tensile test on

an incompressible isotropic material and the dashed

lines represent the experimental transversal elongation

for the membranes with different orientations a. For an

orientation of a ¼ 0�, the transversal elongation

matches perfectly the mechanical behavior of incom-

pressible isotropic material, i.e. kx ¼ 1
ffiffiffi

ky

p . For orien-

tations of a ¼ 45� and a ¼ 90� the curves are

overlapping and present a behavior very close to the

theoretical behavior of an incompressible isotropic

material but with little lower transversal elongations.

At the opposite, for a ¼ 135� and 180�, the transversal

elongations are largely different from the

Fig. 1 Geometry of the architectured membrane, on the left the specimen is presented, on the right the specimen is presented in a cut

version to highlight the three layers
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incompressible isotropic material. Figure 2b illus-

trates the evolution of the nominal tension in function

of the tensile elongation. It is observed that the

orientation a between the crenels strongly influences

the tension in the membrane. The lower orientation

requires the higher tension to deform the architectured

membrane. It is to note that few differences are

observed for a ¼ 135� and a ¼ 180�. The same results

were observed by [14] with an unfilled silicone rubber.

Nevertheless, compared to [14], the bulk material

presents phenomena as hysteresis and Mullins effect

that can also be observed for the crenellated mem-

branes. As for the bulk material, it appears that the

Mullins effect is important and that in comparison the

hysteresis is weaker.

3 Architectured filled silicone membrane

constitutive equation

3.1 General form

Rubber like materials are described by means of a

strain energy densityW. It is proposed to decompose

the strain energy function as the sum of the strain

energies of the core of the membrane Wcore�membrane

and of each crenelWcrenel�1,Wcrenel�2 as:

W¼Wcore�membraneþWcrenel�1þWcrenel�2þWcoupling

ð2Þ

Another term Wcoupling is added in order to represent

the strain energy density of coupling between the

crenels and the membrane. The strain energy densities

should take into account the observed phenomena

during experimental tests. It is proposed in a first

approach to develop a constitutive equation taking into

account only the hyperelasticity and the stress soften-

ing of the architectured membrane.

3.2 Constitutive equation of the bulk material

filled silicone rubber

The filled silicone rubber used in this study presents an

induced anisotropy [11, 13]. [19] developed a consti-

tutive equation written with strain invariants to predict

the behavior of this material. The strain energy density

Wsilicone is additively decomposed into two parts: one

that represents the strain energy of the chains linked to

other chains Wcc and another part that represents the

strain energy of the chains linked to fillerWcf , the total

strain energy density is Wsilicone ¼ Wcc þWcf . [19]

considered that Mullins effect is mainly due to the

presence of fillers. Thus, only Wcf is evolving with the

stress softening. Wcf is represented by a microsphere

model that can record the deformation history of the

material. The 42 spatial initial directions AðiÞ proposed

by [2] are used. The dilatation in each direction are

defined by means of I4
ðiÞ ¼ AðiÞ:CAðiÞ where C is the

right Cauchy Green strain tensor, defined as FFT ,

where F is the deformation gradient. The AðiÞ direc-

tions are transformed in aðiÞ after a deformation by

aðiÞ ¼ FAðiÞ. Finally, the general form of the strain

energy in an incompressible framework is:

(a) (b)

Fig. 2 Evolution of the transversal elongation (a) and nominal tension (b) of the architectured membrane for different crenel

orientations a ¼ 0�; 45�; 90�; 135� and 180�
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Wsilicone ¼ WccðI1; I2Þ þ
X

42

i¼1

xðiÞF ðiÞWðiÞcf ðI
ðiÞ
4 Þ: ð3Þ

where I1, I2 are the first and second strain invariants of

the tensor C, xðiÞ represents the weight of each

direction,FðiÞ is the Mullins effect evolution function.

The [15] strain energy is chosen for Wcc and the strain

energy of each chain W
ðiÞ
cf is defined as:

WðiÞcf ¼
K

2
ln I
ðiÞ
4 ðI

ðiÞ
4 � 1Þ ð4Þ

where K is a material parameter. The form was

modified compared to [19], as the bundle of RTV3428

material used in this paper presents less stress

hardening. The same evolution function as proposed

by [19] is used:

FðiÞ ¼ 1� g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1max � I1

I1max � 3

r

I
ðiÞ
4 max � I

ðiÞ
4

I
ðiÞ
4 max � 1

!

I
ðiÞ
4 max

I4 max

!4

ð5Þ

where g is a material parameter, I1max, I4
ðiÞ
max and I4max

are respectively the maximum values of I1, I4
ðiÞ for

direction i and I4
ðiÞ for all directions i ¼ 1:::42. The

evolution function cannot be negative since it is

considered that each chain can only endure tension and

no compression. The Cauchy stress tensor is then the

sum of two terms:

rsilicone ¼ rcc þ rcf ð6Þ

rcc is the part of the Cauchy stress that represents the

chains linked to other chains and rcf the part of the

Cauchy stress that represents the chains linked to

fillers. Finally the stress is written as:

rsilicone ¼ �pIþ 2B
oWcc

oI1

þ 2 I1B� B2
� �oWcc

oI2

þ 2
X

42

i¼1

xðiÞF ðiÞoWcf

oI
ðiÞ
4

ðiÞ
FðAðiÞ � AðiÞÞFT

ð7Þ

3.3 Strain energy of the core of the membrane

The core of the membrane is the central part of the

architectured membrane and can be described as the

bulk material. Thus, this part of the structure is simply

represented by the constitutive equation given by

Eq. (7). The model is fitted on the bulk material.

Figure 3 presents a comparison between the simula-

tion of the model and a tensile cyclic test performed on

the filled silicone rubber. The model parameters are:

C1 ¼ 0:065 MPa, C2 ¼ 0:045 MPa, g ¼ 9, K ¼ 0:27

MPa. The first load is well described. Some little errors

are observed for the second loads but the fit is quite

good.

3.4 Strain energy of the crenels

The crenels are processed with the same material as

the core of the membrane, so the mechanical charac-

teristics are the same. During the deformation of the

membrane, it is considered that crenels are only

submitted to tension-compression loading. It is esti-

mated that there is no flexion in the crenels so they are

modeled as bars. To determine the stress of each

crenel, it is proposed to write the Eq. (7) in term of

unidirectional components to represent the uniaxial

extension undergone by the crenels. That means that

rcf should be described only according to the elonga-

tion in the direction Ek, where k represents either the

crenel 1 or the crenel 2. Thus, the behavior of each

crenel can be modeled only by means of the fourth

invariant I4
ðkÞ
c corresponding to the direction Ek, I4

ðkÞ
c

is defined as

I
ðkÞ
4c ¼ Ek:CEk ð8Þ

kEk
represents the elongation in the direction Ek. Thus

the strain energy of each crenel depends only on the

fourth invariant:

Fig. 3 Comparison of the model and experimental data for the

bulk material
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Wcrenel�k ¼ WðI4
ðkÞ
c Þ ð9Þ

The loading state in the crenel can be expressed by

the right Cauchy-Green strain tensor Cc
ðkÞ written in

the basis Rk as:

CðkÞc ¼

k2
Ek

0 0

0
1

kEk

0

0 0
1

kEk

0

B

B

B

B

@

1

C

C

C

C

A

Rk

ð10Þ

As a consequence, the first and second invariants can

be expressed in function of I4c
ðkÞ:

I
ðkÞ
c1 ¼ I

ðkÞ
4c þ

2
ffiffiffiffiffiffiffi

I
ðkÞ
4c

q ð11Þ

I
ðkÞ
c2 ¼

1

2
ðIðkÞc1 Þ

2 � ðIðkÞ4c Þ
2 þ 2

I4c
ðkÞ

� �� �

ð12Þ

The term rcf in Eq. (7) should be modified in order to

be expressed only by means of I4c
ðkÞ. The objective is

to replace the 42 directions by 1 with a new weight xðiÞc

as illustrated in Fig. 4. First, it is necessary to focus on

the first loading curve where the evolution functions

FðiÞ do not evolve and stay equal to 1. To evaluate the

new value of xðiÞc noted ~x in the direction Ek a

comparison of the stress rcf with 42 directions

rcf ¼ 2
X

42

i¼1

xðiÞc FðiÞ
oWcf

oI4

FAðiÞ � AðiÞFT : ð13Þ

and with only the Ek direction is done.

rcf�crenel ¼ 2 ~xFðkÞc

oWcfc

oI
ðkÞ
4c

FEk � EkFT ð14Þ

This comparison allows to deduce the value of the

weight for one direction. A value of ~x ¼ 0; 21 is

obtained for the first loading curves to coincide as

illustrated in Fig. 5. The parameter used for the

representation is K ¼ 1:07 MPa but the value of ~x is

independent of K. In Eq. (14) Wcfc is the strain energy

for only one direction, i.e. for a crenel, which is

identical as the strain energy of the core of the

membrane given in Eq. (4).

For the second loading curves, the evolution

function FðiÞ must be considered. It was described as

the product of three terms (cf Eq. (5)). The third term

of the product is useless since with only one direction

I
ðkÞ
4 max ¼ I4 max, there is no influence of the other

directions on the considered one. In tension, the first

invariant can be expressed by means of the fourth

invariant (cf. Eq. (11)), that means that I1c and I4c are

no longer independent variables. Thus the evolution

function can only be expressed by way of I
ðkÞ
4c or I

ðkÞ
1c . It

is chosen to express it in function of I
ðkÞ
4c . The evolution

function is adapted as:

FðkÞc ¼ 1� gv
I
ðkÞ
4c max � I

ðkÞ
4c

I
ðkÞ
4c max � 1

!2

ð15Þ

A new parameter v is introduced to represent the

transformation of 42 directions to 1. Figure 5

Fig. 4 Representation of a eighth of the 42 directions of Bazant

and Oh; replacement of these directions by only one direction

for tensile test adapted to one direction for the crenel

Fig. 5 Cauchy stress for the directional part of the Cauchy

stress with 1 direction for ~x ¼ 0:21 and v ¼ 0:5 or v ¼ 1, and

with 42 directions
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highlights the role of the intensity v of the crenels

evolution function for a value of K ¼ 1:07 MPa and

g ¼ 9. v has an important role in the form of the

second loading curve. It must be a value of 0.5 to limit

important slope discontinuities and to represent a

behavior closer to the microsphere formulation. As for

~x, the determination of v is independent of the value of

the material parameter K and g. Thus, the strain energy

of the crenel is defined as:

Wcrenel�k ¼ WccðI4
ðkÞ
c Þ þ ~xFðkÞc Wcf ðI4

ðkÞ
c Þ ð16Þ

Finally, the contribution of the crenel in the membrane

stress is defined as:

rcrenelðkÞ ¼ 2C1 I
ðkÞ
4c �

1
ffiffiffiffiffiffiffi

I
ðkÞ
4c

q

0

B

@

1

C

A

0

B

@

þ2C2

ffiffiffiffiffiffiffi

I
ðkÞ
4c

q

� 1

I
ðkÞ
4c

!

þ2 ~xFoWcf

oI
ðkÞ
4c

!

eðkÞn �eðkÞn

ð17Þ

where e
ðkÞ
n represents the normed instantaneous direc-

tion of the crenels such as eðkÞ ¼ FEk and

e
ðkÞ
n ¼ eðkÞ= eðkÞ

�

�

�

�. To determine the tension, a param-

eter b must be introduced to quantify the proportion of

crenels. In fact the crenels have the same height as the

core of the membrane but also recover a third of the

surface of the membrane (see Sect. 2), that means that

b ¼ 1
3
.

3.5 Coupling strain energy

It is proposed to develop this term to take into account

the coupling effect between the crenels and the core of

the membrane. The coupling strain energy term has to

take into account the shear induced by the crenels on

the external faces of the core of the membrane, i.e.

along the two directions E1 and E2. The coupling term

can be taken into account in different ways. [20]

developed a strain energy coupling between orthotro-

pic directions composed by the product of terms

isotropic (i.e. I1) and anisotropic (here I
ð1Þ
4c and I

ð2Þ
4c ).

[17], [9] and [18] defined also a constitutive equation

by using two other invariants that take into account the

shear in the material to model living tissues as heart or

annulus fibrosus of the intervertebral disc. In each

case, it is proposed to develop a coupling term by

using the eighth and ninth invariants. This approach is

considered here:

Wcoupling ¼ WðI8; I9Þ ð18Þ

By adaptation of invariants developed by [22], we

used:

I8 ¼
1

2
C : ðE1 � E2Þ þ C : ðE2 � E1ð ÞÞ ð19Þ

I9 ¼ E1:E2 ð20Þ

Finally a new strain energy density is proposed:

Wcoupling ¼ C8ðaÞ
Z

lnð1þ abs I8 � I9Þj jdI8 ð21Þ

where C8ðaÞ represents a material parameter which

depends on the orientation a between the crenels to be

adapted to every membrane. It represents the torsion

stiffness of the core of the membrane according to the

initial orientation of the crenels. The coupling Cauchy

stress is deduced:

rcoupling ¼ C8ðaÞ lnð1þ abs I8 � I9j jÞFðE1 � E2

þ E2 � E1ÞFT ð22Þ

A quadratic evolution of the parameter with the angle

is chosen:

C8ðaÞ ¼ aa2 ð23Þ

where a is a material parameter.

4 Numerical study

The equivalent model, i.e. Eqs. (7–17–22), was

implemented into a Finite Element (FE) code (Abaqus

2002) via an UMAT. Details about implementation

can be read in [8, 10] and [19]. To validate the model,

it is proposed to compare FE simulations to the

experimental data of the architectured membranes.

The equivalent model simplifies the FE calculus by not

representing the details of the geometry of the

crenellated membrane. Indeed the crenels add a lot

of complexity and increase the number of needed

elements in the meshes, so by means of the equivalent

model it is now possible to sketch a simple geometry (a

rectangular plate) and to deduce the behavior of real

crenellated plate.
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4.1 Validation of the model with experimental

data without coupling

According to the experimental results presented in the

first part, a comparison of the analytical simulations of the

equivalent model is realized for each angle a ¼
0�; 45�; 90�; 135� and 180�. The results are presented

in Fig. 6. The values of the mechanical parameters used

for the simulations are those of the bulk material and are

the same as presented in Sect. 3.3. In a first approach,

the coupling term is not taken into account. It is

observed that for a ¼ 0� and a ¼ 180� a good match

between the model and the experimental results is

obtained. Nevertheless for every other values of a the

model does not match perfectly with the experimental

data, a little difference is observed for a ¼ 45� and

a ¼ 135� and a more important difference is observed

for a ¼ 90�. These differences can be explained by the

shear stresses between the core of the membrane and

the crenels that were neglected in this first approach.

As no angle variation are observed for 0 and 180�,
there is no shear stress. It explains why the compar-

isons between experimental data and analytical cal-

culus are much better for these two orientations.

4.2 Validation of the model with experimental

data with the coupling term

4.2.1 Tensile tests

In this part, the coupling term is no longer neglected

and the results of the analytical simulation are

Fig. 6 Comparison of experimental tests (black full lines) and the model (red dotted lines) of architectured membranes for different

orientations of the crenels neglecting the shear between the crenels and the core of the membrane. (Color figure online)

8



compared to the experimental data as illustrated in

Fig. 7. The only parameter fitted with the equivalent

model is the parameter a for the quadratic function

(Eq. (23)) which describes the evolution of the

coupling term with the angle, a value of a ¼ 0:028

MPa is obtained. It is observed that the use of the

coupling term allows to have a better matching with

the experimental results for each orientation of the

crenels. The coupling term permits to take into

account the amount of energy used to change the

angle between the two crenels. It is important to note

that by taking into account the coupling term, good

comparison between experimental data and analytical

results are obtained. The coupling term is thus a very

important term and should not be neglected.

4.2.2 Bulge test

It is proposed to test the constitutive equation in a

complex loading FE calculation. A circular architec-

tured membrane of 180 mm diameter with an orien-

tation a ¼ 45� is simulated for a numerical bulge test.

An experimental cyclic bulge test is also performed on

this membrane. The strain state is controlled by

pressure, thus the first cycle is reached for a pressure

p ¼ 1:49 kPa, the second for p ¼ 3:48 kPa, the third

p ¼ 5:31 kPa and finally p ¼ 7:31 kPa for the fourth

loading. It is proposed to compare the results obtained

along a radius of the circular plate. This path is defined

to take into account the different biaxial loading states

reached during a bulge test. As presented in Fig. 8a,

Fig. 7 Comparison of experimental tests (black full lines) and the model (red dotted lines) of architectured membranes for different

orientations of the crenels with coupling. (Color figure online)
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the start point is the center of the plate which is close to

an equibiaxial point (the equibiaxial point is only

reached for an isotropic material) and the second point

is at the fixing of the plate, it corresponds to pure shear

[12]. Figure 8b represents the biaxility ratio along the

path, defined as l ¼ lnðkminÞ=lnðkmaxÞ (where kmin

and kmax are the minimum and maximum in-plane

principal elongations) for a pressure level p = 1.49

kPa. It is observed that the biaxiality ratio varies a lot

between the two extremal loading points. Thus, this

test permits to verify the robustness of the model on

very different biaxial strain states. As observed in

Fig. 9, the logarithmic strain reached lasting the bulge

test are not very important. Due to the geometry of the

sample, it is not possible to reach a more important

deformation state. For higher deformation levels, the

crenels of the membranes do not allowed a 3D

reconstruction of the image. Indeed, for high level of

deformation some areas of the sample are not observed

by the two cameras of the SDIC system, thus the

reconstruction is impossible.

To highlight the stress softening, the mechanical

behavior of the crenellated membrane is studied for

the same pressure level for the different cycles

performed during the test. Data were studied each

time that the pressure level reached the values of 1.49

and 3.48 kPa during the test as highlighted in Fig. 10.

The study of the different loads for the first pressure

level is denoted as Ca, and four different load histories

are considered ð1Ca; 2Ca; 3Ca; 4CaÞ. In the same way,

the study of the second pressure level is denoted as Cb,

in this case three different load histories are considered

ð1Cb; 2Cb; 3Cb; Þ.
The results obtained for the first and the second

pressure levels are illustrated and compared to FE

simulation in Fig. 11. The figure highlights that the

maximal in plane elongation kmax and the minimal in

plane elongation kmin are approximately the same for

the experimental results and for the FE simulations for

the two pressure levels studied. Nevertheless, for a

pressure level of 1.49 kPa ðCaÞ, it is observed that kmax

is more important for the fourth load ð4CaÞ than for the

first load ð1CaÞ, this is due to the Mullins effect. For

kmin the behavior is identical for the different loadings

since the maximal deformations are endured by

direction 1 and thus the stress softening is more

important for this direction.

For a pressure level of 3.48 kPa ðCbÞ; kmax is a few

superior for the third cycle ð3CbÞ than for the first

loading ð1CbÞ and kmin is equal for the three different

histories. As for the previous pressure level this can be

explained by the Mullins effect endured by the

material. Moreover, for these two pressure levels, it

can be assumed that the direction of the material in the

third direction, i.e. along the thickness, is modified

between the different loadings (but it cannot be studied

with SDIC measurements). Since the material is

considered incompressible, if the material does not

endured deformation due to the Mullins effect along

direction 2 it supposed that the third direction endured

deformations to respect the volume conservation.

Nevertheless, all these simulations prove that the

(a) (b)

α

Fig. 8 a representation of the studied path on the bulge test [13]. b Biaxility ratio along the path
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equivalent model is able to well describe the strain

states in a complex structure calculation i.e. for non

uniaxial loading states whereas the model was devel-

oped by means of uniaxial data.

4.3 Discussion

4.3.1 About the model

For this equivalent model, it is important to note that

five different mechanical parameters exist. Four of

them describe the behavior of the bulk material, and

are fitted on a classic tensile test sample. The fifth

parameter a of Eq. (23) is the only one fitted on the

crenellated membranes tensile tests.

Then, by means of a theoretical analysis the

influence of each part of the constitutive equation is

evaluated for the different orientations of the crenels.

The behaviors of the core of the membrane, of the

crenels and of the coupling term are presented in

Fig. 12. For a ¼ 0�, there is no coupling but the

crenels represent 40 % of the stress. For a ¼ 45�, there

is an influence of each part of the constitutive

equation, whereas for a ¼ 90�, the influence of the

crenels becomes less important. For a ¼ 135�, the

influence of the crenels becomes almost equal to zero

and the coupling term tends to zero that means that the

crenels can quasi be neglected. Finally for a ¼ 180� it

is observed that the crenels and the coupling do not

have any influence on the behavior of the crenellated

membrane, the core of the membrane endures all.

4.3.2 Extension of the model

As exposed in literature [7], it is to note that soft

tissues can be considered as architectured materials.

The presence of collagen [10], into the matrix of the

tissues creates an initial anisotropy in this natural

material. The reinforcement of fibers induces different

anisotropic behavior which depends on the orientation

of the fibers. The equivalent model presented here can

perfectly be adapted to soft tissue. The reinforcement

of fibers corresponds to the crenel and the core of the

membrane corresponds to the matrix. In an aim to

create biomimetic membranes that can present behav-

ior similar to soft tissues, the use of crenellated

membranes is extrapolated. Living tissues are often

Fig. 9 Comparison of the maximal logarithmic strain field of a experimental tests and b FE simulation with coupling for bulge test,

a ¼ 45�.

Fig. 10 Representation of the two pressure levels studied for

the bulge test
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characterized by a very different behavior into the two

planar orthogonal directions which correspond to the

tensile direction x and y for crenellated membrane (i.e.

tension for a and 180� � a). In this way, Fig. 13

presents some simulations for two orientations of the

crenels. The Fig. 13a presents exactly the behavior of

(a) (b)

Fig. 11 Comparison of experimental tests and FE simulation with coupling for bulge test on a sample with an angle a ¼ 45�.

Fig. 12 Influence of each term of tension for different values of a.
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the developed membranes ðb ¼ 1
3
Þ. The anisotropy

already important presents a difference of stiffness

about 30 %. Moreover, Fig. 13b presents simulations

for b ¼ 2
3
, that means that the thickness of the crenels is

now of 2 mm. In this case, the difference of stiffness is

about 2. That means that it is possible to generate a

membrane with two directions with very different

mechanical behaviors. In order to come closer from

soft tissues it would be necessary to use a silicone

rubber that presents a more important strain hardening.

5 Conclusion

Filled silicone crenellated membranes were molded

for different orientations of the crenels. According to

literature, and previous works, an existing model of

filled silicone rubber was used. This model was

adapted to the crenels and a coupling term was

developed. Thus, every parts of the crenellated

membrane can be evaluated. The constitutive equation

obtained was implemented into a finite element code

via an Umat. Several experimental tests were per-

formed to validate the model. It was proved that the

coupling term could not be neglected during cyclic

tensile tests for different orientations of the crenels.

Finally, a bulge test was performed to test the

robustness of the model. Even if the deformations

reached are not very important for silicone rubber, it is

observed that a good comparison between FE simu-

lation and experimental results is obtained. By means

of the equivalent model, complex structures can be

easily simulated with one parameter more than the

material parameters of the bulk material. Finally, the

crenellated architectured membranes could be used in

a biomimetic approach to be adapted to soft tissues.
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