Internal observability for coupled systems of linear partial differential equations

Pierre Lissy, Enrique Zuazua

To cite this version:

Pierre Lissy, Enrique Zuazua. Internal observability for coupled systems of linear partial differential equations. 2017. hal-01480301v1

HAL Id: hal-01480301
https://hal.science/hal-01480301v1
Preprint submitted on 1 Mar 2017 (v1), last revised 15 Apr 2018 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Internal observability for coupled systems of linear partial differential equations

Pierre Lissy *, Enrique Zuazua ${ }^{\ddagger \S \boldsymbol{\$}}$

March 1, 2017

Abstract

We deal with the internal observability for some coupled systems of partial differential equations with constant or time-dependent coupling terms by means of a reduced number of observed components. We prove new general observability inequalities under some Kalman-like or Silverman-Meadows-like condition. Our proofs combine the observability properties of the underlying scalar equation with algebraic manipulations.

In the more specific case of systems of heat equations with constant coefficients and nondiagonalizable diffusion matrices, we also give a new necessary and sufficient condition for observability in the natural L^{2}-setting. The proof relies on the use of the Lebeau-Robbiano strategy together with a precise study of the cost of controllability for linear ordinary differential equations, and allows to treat the case where each component of the system is observed in a different subdomain.

Keyworlds: partial differential equations; systems; observability inequalities; rank conditions.
MSC: 35E99; 93B07.

1 Introduction

1.1 General presentation of the problem

Let Ω be a smooth bounded domain of $\mathbb{R}^{N}\left(N \in \mathbb{N}^{*}\right)$ or a smooth compact connected Riemannian manifold of dimension $N\left(N \in \mathbb{N}^{*}\right)$, with or without boundary.

We consider the following "scalar" evolution equation

$$
\left\{\begin{array}{l}
\partial_{t} z=P z \text { in }(0, T) \times \Omega, \tag{1.1}\\
z(0)=z^{0},
\end{array}\right.
$$

where P is a linear partial differential operator with domain $D(P) \subset \mathcal{H}=L^{2}(\Omega, \mathbb{K})$ of arbitrary order with time-independent and (possibly) space-dependent coefficients, with $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. The initial datum z^{0} is in \mathcal{H}.

To ensure the well-posedness of the equation, we assume that P is the infinitesimal generator of a strongly continuous semigroup on \mathcal{H}. Moreover we assume, without loss of generality, that $0 \notin \rho(P)$

[^0](this property can be ensured by translating P to $P-\beta I d$ for some $\beta \in \mathbb{K}$ if necessary), so that for every $k \in \mathbb{N}$, one endows $D\left(P^{k}\right)$ with the norm
$$
\|z\|_{D\left(P^{k}\right)}=\left\|P^{k} z\right\|_{L^{2}(\Omega)}
$$

Given an open subset ω of Ω and a positive time $T>0$, this paper is concerned with observability inequalities of the form

$$
\begin{equation*}
\|z(T)\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{T} \int_{\omega}\|z(t, x)\|^{2} d x d t \tag{1.2}
\end{equation*}
$$

More precisely, assuming that this inequality holds for the scalar equation (1.1), i.e. that it holds with a uniform constant $C>0$ for all initial data z_{0}, our goal is to prove new observability inequalities of the same kind for systems of evolution equations coupling scalar equations of the form above, observations being made on a limited number of components of the state.

In the context of finite-dimensional PDEs, the classical Kalman rank condition provides a complete answer to the problem. Our goal here is to combine existing observability inequalities for partial differential equations (PDE) and algebraic techniques to achieve similar results for PDE systems. We emphasize that we do not present here new results on the observability of scalar equations. Rather, our goal is to develop a systematic method, inspired in finite-dimensional theory and employing algebraic manipulations, allowing to transfer the existing observability results on scalar PDE to systems of PDE, observing a limited number of components of the state.

We shall mainly consider two situations: a) The system is constituted by a finite number of copies of the scalar equation (1.1) coupled through a lower order term; b) The system couples, through the principal part, various scalar equations of the form (1.1). Special attention will be devoted to the case of parabolic systems where sharp results will be presented.

1.2 State of the art

There is a large literature on the controllability and observability of systems of partial differential equations. Several techniques have been applied to derive observability inequalities by means of observations done on a reduced number of components of the system in various situations. This paper is mainly devoted to coupled systems and distributed controls.

Although these questions arise naturally for all kind of systems, the problem has been investigated specially in the case of parabolic systems. Here we list some of the existing results and references:

- By means of Carleman estimates [5] addresses the internal control of coupled systems of heat equations with the same diffusion coefficients and constant or time-dependent coupling terms of zero order and [6] gives a generalization to the case of different diffusion coefficients on each equation.
- In [32] the switching control of a scalar heat equation is analyzed. Although the model under consideration is scalar the kind of ideas employed to deal with two alternating (in time) controllers inspires our method to deal with parabolic systems.
- More specific results of internal or boundary controllability in the case of variable coefficients in the one-dimensional case using the moment method are proved in [9], [10], [7] and [13]. These one-dimensional results also allow to deal with some simple geometries like cylinders (see [12]).
- Article [39] analyses coupled systems of two heat equations, or the coupling of different dynamics, e.g. heat and wave equations, and it inspires the first part of the present article. We also refer to [11], where similar ideas are developed for the obtention of decay estimates for partially dissipative hyperbolic systems.
- Articles [24] and [23] (by means of Carleman inequalities), [25], [19] and [20] (using the fictitious control method) deal with the internal control of parabolic systems in higher space dimension, with variable coefficients and lower order coupling terms of order 0 and 1.
- We also refer to [4], [25], [15] , [23] and [16] for results on systems of non-linear (or semi-linear) heat equations.

For further informations on this specific topic, we refer to the survey article [8].
Hyperbolic and dispersive systems have been less studied and the results obtained are of different nature. The following ones are worth mentioning:

- Article [1] deals with the controllability of second order in time cascade or bidiagonal systems under suitable coercivity conditions on the coupling terms, and [3] with a system of two wave equations with one control and asymmetric coupling matrices satisfying some additional technical properties, using multi-energy methods.
- Article [18] is devoted to analyse a cascade system of two wave equations with one control on a compact manifold without boundary, where a necessary and sufficient condition for controllability, in terms of the geometry of the control domain and the coupling region, is proved using microlocal techniques.

These results on abstract wave equations can be combined with the transmutation method (see [36], [33] or [22]) to address abstract heat and Schrödinger equations, under strong (and probably not sharp) geometric restrictions on the coupling and control regions.

Some results in a more abstract setting were also obtained, see notably:

- In [37] abstract periodic groups of isometries with bounded self-adjoint control were considered, with an application to the Schrödinger equation in arbitrary dimension on the torus, under the assumption that the observation time has to be large enough (which is probably of purely technical nature).
- In [21] authors used the Fattorini criterion on compact perturbations of groups of operators to obtain new results on the controllability of a transport equation with a nonlocal term, to a system of coupled wave equations with cascade and non-constant coupling terms and to a system of parabolic equations with a non diagonalisable matrix of diffusion thanks to the transmutation method.
- In [30] a Kalman rank condition of controllability was also proved using the fictitious control method, in the abstract setting of groups of operators with bounded control in the case of constant coupling coefficients, with applications to some systems of wave and Schrödinger equations.

To finish, let us mention [31] concerning the specific study of the Schrödinger equation without using transmutation techniques, in the case of a cascade system of two equations with one control force, thanks to an appropriate Carleman estimate and also [2], where some linear systems of two periodic and one-dimensional non-conservative transport equations with the same speed of propagation, space-time varying coupling matrix and one control are also analyzed, together with some nonlinear variants, thanks to the fictitious control method.

We also refer to the book [17] for the control of networks of $1-d$ wave-like equations, which is closely linked to the topic of control of coupled systems.

In the present article, our goal is twofold:

- In Section 2 we present a simple method that can be applied to any first order in time PDE with internal control, giving results of weak observability (in the sense that the observation is made in higher order Sobolev norms) for systems of equations with zero order coupling terms and constant or time-dependent coefficients with a reduced number of observations. Our study partially generalizes the results of [30] to the case of all scalar (notably non-conservative) PDE whose solutions verify (1.1), in a different functional setting. Indeed, the observability inequalities in higher order Sobolev norms proved in the present article would give, by duality, controllability results with low regularity controls, different from those in [30]. As pointed out in [30, Section 4] further work would be required to get similar results with L^{2}-controls.
- In Section 3, we give a necessary and sufficient condition for the internal controllability of systems of heat equations with constant coefficients and zero-order coupling terms, the main difficulties being that the diffusion matrix is not necessarily diagonalizable and the open subsets of observation can be different on each equation, generalizing the result of [6] where only the case of diagonalizable diffusion matrices was investigated with the same observation subset on all components, and also the result of [35] where the authors considered open subsets (or boundary observations) that may be different on each equation, but under the restrictive condition that D was the identity matrix.

2 Weak observability results

2.1 The case of constant matrices

In what follows we consider different system versions of the scalar equation (1.1), with constant coupling matrices. Let $n \in \mathbb{N}^{*}$ be the number of equations and $m \in \mathbb{N}^{*}$ be the number of observed components, with possibly $m<n$.

We will focus on two different situations.

1. The diagonal case with the same operator P on each line (for the sake of simplicity, we denote by P the operator $\operatorname{diag}(P, \ldots, P), P$ being repeated n times):

$$
\begin{cases}\partial_{t} Z & =P Z+A^{*} Z \quad \text { in } \quad(0, T) \times \Omega \tag{2.1}\\ Z(0) & =Z^{0}\end{cases}
$$

with $Z^{0} \in \mathcal{H}^{n}$ and $A^{*} \in \mathcal{M}_{n}(\mathbb{K})$ some coupling matrix with constant coefficients. The observation operator is given by $\mathbb{1}_{\omega} B^{*} Z$, where $B \in \mathcal{M}_{n, m}(\mathbb{K})$.
2. The case where the coupling arises in the principal part:

$$
\begin{cases}\partial_{t} Z & =D^{*} P Z \quad \text { in } \quad(0, \tilde{T}) \times L^{2}(\Omega)^{n} \tag{2.2}\\ Z(0) & =Z^{0}\end{cases}
$$

with $Z^{0} \in \mathcal{H}^{n}$ and a diffusion matrix with constant coefficients $D^{*} \in \mathcal{M}_{n}(\mathbb{K})$, where D is assumed to be diagonalizable with positive eigenvalues (note however that, when P is the generator of a group of operators, the positivity of the eigenvalues of P is not necessary, one may only assume non-zeros eigenvalues). From now on, without loss of generality we assume that $D=D^{*}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathcal{M}_{n}(\mathbb{K})$, where $d_{i}>0(i \in[|1, n|])$, and we introduce the following observation time

$$
\begin{equation*}
\tilde{T}:=\frac{T}{\min _{i} d_{i}} \tag{2.3}
\end{equation*}
$$

Of course, when the observation time T can be taken to be arbitrarily small, \tilde{T} can be taken to be arbitrarily small as well.
The observation operator is given by $\mathbb{1}_{\omega} B^{*} Z$, where $B \in \mathcal{M}_{n, m}(\mathbb{K})$.

We introduce the following notations:

$$
\begin{equation*}
K_{A}:=\left[B|A B| \ldots \mid A^{n-1} B\right] \in \mathcal{M}_{n, n m}(\mathbb{K}) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{D}:=\left[B|D B| \ldots \mid D^{n-1} B\right] \in \mathcal{M}_{n, n m}(\mathbb{K}) \tag{2.5}
\end{equation*}
$$

Remark 1. In systems (2.1) and (2.2), we denote by A^{*}, D^{*} the coupling matrices and B^{*} the matrix observation for the sake of clarity. This leads to the usual Kalman matrices (2.4) and (2.5), often introduced in the context of the dual control problem. The controlled dynamics would be associated to the matrices A, B, D while the system under consideration would correspond to the dual or adjoint one for which the question of observability under discussion in the present paper arises naturally.

We also introduce the following notations

$$
\begin{equation*}
\|\varphi\|_{\mathcal{H}_{n, m}(\omega)}^{2}:=\sum_{k=0}^{n-1} \int_{0}^{T} \int_{\omega}\left\|\left(\partial_{t}-P\right)^{k} \varphi(t, x)\right\|^{2} d x d t \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\varphi\|_{\mathcal{I}_{n, m}(\omega)}^{2}:=\sum_{k=0}^{n-1} \int_{0}^{\tilde{T}} \int_{\omega}\left\|\partial_{t}^{(k)} P^{n-1-k} \varphi(t, x)\right\|^{2} d x d t \tag{2.7}
\end{equation*}
$$

One has the following result:
Theorem 1. Assume that the scalar equation (1.1) verifies the observability inequality (1.2). Then,

- System (2.1) is observable in time T in norm $\mathcal{H}_{n, m}(\omega)$ in the sense that there exists $C>0$ such that for every $Z^{0} \in D\left(P^{n-1}\right)$, the solution Z of (2.1) verifies

$$
\begin{equation*}
\|Z(T)\|_{L^{2}(\Omega)}^{2} \leqslant C\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2} \tag{2.8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{rank} K_{A}=n \tag{2.9}
\end{equation*}
$$

- System (2.2) is observable in time \tilde{T} in norm $\mathcal{I}_{n, m}$ in the sense that there exists $C>0$ such that for every $Z^{0} \in D\left(P^{n-1}\right)$, the solution Z of (2.2) verifies

$$
\begin{equation*}
\|Z(\tilde{T})\|_{D\left(P^{n-1}\right)}^{2} \leqslant C\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2} \tag{2.10}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{rank} K_{D}=n \tag{2.11}
\end{equation*}
$$

Remark 2. Several remarks are in order:

- Inequality (2.10) implies, in particular,

$$
\|Z(\tilde{T})\|_{L^{2}(\Omega)}^{2} \leqslant C\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2} .
$$

- Theorem 1 provides observability inequalities in weaker norms than the usual L^{2}-one. These inequalities may be improved in some cases, in particular for analytic semigroups. This issue will be addressed in Section 3 for systems of heat equations.
- All the above results apply for second (or higher) order in time conservative systems under some minor modifications explained afterwards.
- The hypothesis that D is diagonalizable is crucial in our proof of the second point Theorem 1. Indeed, the first step of our proof is devoted to proving the following observability inequality on the system (2.2):

$$
\|Z(\tilde{T})\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{\tilde{T}} \int_{\omega}\|Z(t, x)\|^{2} d x d t
$$

the observation being done in all of the components of the state.
However, unless D is diagonalizable, one cannot simply deduce this inequality from (1.2) and this kind of inequality may even be hard to obtain. For example, in [23], systems of heat equations with (time and space-varying) zero-order coupling terms are treated by means of Carleman estimates, but the proof only works under the condition that the Jordan blocks of D are of size less that 4 (which seems to be a purely technical condition that until now has not been removed).
In Section 3 we describe how to deal with a general constant diffusion matrix D^{*}, constant coupling matrix A^{*} and constant observation matrix B^{*}, using the Lebeau-Robbiano strategy (see [29] and [26]). This argument may hardly be adapted to treat more general cases (different diffusion operators in the various equations entering in the system, different lower order potentials, etc.) due to the specific arguments of the proof.

- The time of observation \tilde{T} comes from an easy rescaling argument in time allowing to use the observability inequality (1.2) for the initial problem (1.1). This issue is irrelevant if (1.2) holds in arbitrary small time since then \tilde{T} can be taken to be arbitrarily small as well.
- In the case where D is diagonal (and not only diagonalizable), the Kalman condition (2.11) may be rewritten in a more explicit way. Assume that $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and $d_{i} \neq 0$ for every $i \in[|1, n|]$. Let us decompose $B:=\left(b_{i j}\right)_{i \in[|1, n|], j \in[|1, m|]}$. For $i \in[|1, m|]$, set

$$
B_{i}:=\left(\begin{array}{cccc}
b_{1 i} & 0 & \ldots & 0 \\
0 & b_{2 i} & \ldots & 0 \\
\vdots & & & \\
0 & \ldots & 0 & b_{n i}
\end{array}\right) \in \mathcal{M}_{n, m}(\mathbb{K})
$$

and $\widehat{B}=\left(B_{1}|\ldots| B_{m}\right) \in \mathcal{M}_{n, n m}(\mathbb{K})$. Then, it is easy to check that there exists a permutation matrix $\sigma \in G L_{n}(\mathbb{R})$ such that

$$
K_{D}=\sigma \operatorname{Vander}\left(d_{1}, \ldots, d_{n}\right) \widehat{B}
$$

where $\operatorname{Vander}\left(d_{1}, \ldots, d_{n}\right)$ is the Vandermonde matrix of size n associated to d_{1}, \ldots, d_{n}. Hence, for K_{D} to be of maximal rank n, all the d_{i} need to be distinct and \widehat{B} has to be of maximal rank, which means that for every $i \in[1, n \mid]$, there exists $j \in[|1, m|]$ such that $b_{i j \neq 0}$. In the case $m=1$ and $b_{i 1} \neq 0$ for all $i \in[|1, n|]$, the dual statement would yield a result of simultaneous controllability.

Proof of the first point of Theorem 1. Let us first consider system (2.1) and prove the inverse part of the equivalence. We assume that the Kalman rank condition (2.9) is verified. First of all, let us establish the following observability inequality on the solutions of (2.1):

$$
\begin{equation*}
\|Z(T)\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{T} \int_{\omega}\|Z(t, x)\|^{2} d x d t \tag{2.12}
\end{equation*}
$$

Indeed, if Z verifies (2.1), then $\tilde{Z}:=\exp \left(-t A^{*}\right) Z$ verifies

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{Z}=P \tilde{Z} \quad \text { in } \quad(0, T) \times L^{2}(\Omega)^{n} \tag{2.13}\\
\tilde{Z}(0)=Z^{0}
\end{array}\right.
$$

Hence, applying inequality (1.2) on each line of system (2.13), we obtain that

$$
\|\tilde{Z}(T)\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{T} \int_{\omega}\|\tilde{Z}(t, x)\|^{2} d x d t
$$

Inequality (2.12) is then easily deduced by remarking that

$$
C_{1}\left\|\tilde{Z}(t, x)^{2}\right\| \leqslant\left\|Z(t, x)^{2}\right\| \leqslant C_{2}\left\|\tilde{Z}(t, x)^{2}\right\|
$$

for some constants C_{1} and C_{2} independent of t and x (but depending on T).
Remark 3. In the case of higher-order in time conservative systems, one easily verifies that the same strategy (based on the use of the change of variables $\tilde{Z}:=\exp \left(-t A^{*}\right) Z$) cannot be used in order to prove (2.12). However, in this case, since the coupling matrix A can be seen as a compact perturbation of the principal operator P, the above argument can be replaced by a compactnessuniqueness argument. We refer to [30, Section 3.1] for more details.

Now, let us consider $\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2}$. Using (2.6), the fact that B has constant coefficients and equation (2.1), we deduce that

$$
\begin{equation*}
\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2}=\sum_{k=0}^{n-1} \int_{0}^{T} \int_{\omega}\left\|B^{*} A^{* k} Z(t, x)\right\|^{2} d x d t \tag{2.14}
\end{equation*}
$$

Since (2.9) is verified, the following map

$$
z=\left(z_{1}, \ldots z_{n}\right) \in \mathbb{R}^{n} \mapsto \sum_{k=0}^{n-1}\left\|B^{*} A^{* k} z\right\|^{2}
$$

defines a norm on \mathbb{R}^{n}, equivalent to the euclidean norm $z \mapsto\|z\|^{2}$. Hence, we obtain, using (2.14), that

$$
\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2} \geqslant C \int_{0}^{T} \int_{\omega}\|Z(t, x)\|^{2} d x d t
$$

which enables us to deduce (2.8) thanks to (2.12).
The fact that (2.8) implies (2.9) is classical and can be handled for example by using the strategy of [5, Sections $3.1 \& 3.2]$: we first prove the result for $m=1$ by transforming (2.1) in the Brunovsky canonical form and we treat the general case $m>1$ by transforming (2.1) into a block triangular system where each diagonal block is in the Brunovsky canonical form.

Proof of the second point of Theorem 1. Let us now consider system (2.2) and prove the inverse part of the equivalence. We assume that the Kalman rank condition (2.11) is verified.

First of all, let us prove the following observability inequality on the solutions of (2.2):

$$
\begin{equation*}
\|Z(\tilde{T})\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{\tilde{T}} \int_{\omega}\|Z(t, x)\|^{2} d x d t \tag{2.15}
\end{equation*}
$$

Let us consider the i - th line of system (2.2) on the time interval ($0, \tilde{T}$), i.e.

$$
\begin{cases}\partial_{t} z_{i} & =d_{i} P Z_{i} \quad \text { in } \quad(0, \tilde{T}) \times L^{2}(\Omega) \\ z_{i}(0) & =z_{i}^{0}\end{cases}
$$

We perform the change of unknowns $\tilde{z}_{i}(t, x):=z_{i}\left(t / d_{i}, x\right)$. \tilde{z} is now defined on $\left(0, T_{i}\right)$, where $T_{i}=d_{i} \tilde{T}$, and \tilde{z} verifies (1.1).

By definition (2.3) of \tilde{T}, one has $T_{i} \geqslant T$, hence using (1.2) and the well-posedness of equation (1.1) we obtain

$$
\left\|\tilde{z}_{i}\left(T_{i}\right)\right\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{T_{i}} \int_{\omega}\left\|\tilde{z}_{i}(t, x)\right\|^{2} d x d t
$$

i.e.

$$
\left\|z_{i}(\tilde{T})\right\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{0}^{\tilde{T}} \int_{\omega}\left\|z_{i}(t, x)\right\|^{2} d x d t
$$

Adding on i we obtain (2.15).
Now, we consider $\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2}$. Using (2.7), the fact that B has constant coefficients and equation (2.1), we deduce that

$$
\begin{equation*}
\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2}=\sum_{k=0}^{n-1} \int_{0}^{T} \int_{\omega}\left\|B^{*} D^{* k} P^{n-1} Z(t, x)\right\|^{2} d x d t \tag{2.16}
\end{equation*}
$$

Since (2.11) is verified, the following map

$$
z=\left(z_{1}, \ldots z_{n}\right) \in \mathbb{R}^{n} \mapsto \sum_{k=0}^{n-1}\left\|B^{*} D^{* k} z\right\|^{2}
$$

is a norm on \mathbb{R}^{n}, equivalent to the euclidian one $z \mapsto\|z\|^{2}$. Hence, we obtain, using (2.16), that

$$
\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2} \geqslant C \int_{0}^{T} \int_{\omega}\left\|P^{n-1} Z(t, x)\right\|^{2} d x d t
$$

Applying (2.15) to $P^{n-1} Z$, instead of Z, we know that

$$
\|Z(T)\|_{D\left(P^{n-1}\right)}^{2} \leqslant C\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2}
$$

from which we deduce (2.10).
The fact that (2.10) implies (2.11) is classical and will be omitted here (see [5, Sections $3.1 \& 3.2$] for example).

2.2 The case of time-dependent matrices

In this section we assume, for the sake of simplicity, that system (1.1) is observable in arbitrary small time. We will explain in Remark 4 how to treat the case where the minimal time of observation is positive. We consider the following system versions of the scalar equation (1.1):

1. The diagonal case with the same operator P on each line and time-dependent coupling terms and observation operators:

$$
\begin{cases}\partial_{t} Z & =P Z+A^{*}(t) Z \quad \text { in } \quad(0, T) \times \Omega \tag{2.17}\\ Z(0) & =Z^{0}\end{cases}
$$

with $Z^{0} \in \mathcal{H}^{N}$ and $A^{*} \in C^{\infty}\left([0, T], \mathcal{M}_{n}(\mathbb{K})\right)$. The observation operator is given by $\mathbb{1}_{\omega} B^{*} Z$, where $B \in C^{\infty}\left([0, T], \mathcal{M}_{n, m}(\mathbb{K})\right)$.
2. The case where the coupling arises in the principal part:

$$
\left\{\begin{array}{l}
\partial_{t} Z=D(t) P Z \quad \text { in } \quad(0, T) \times \Omega \tag{2.18}\\
Z(0)=Z^{0}
\end{array}\right.
$$

with $Z^{0} \in \mathcal{H}^{N}$ and $D \in C^{\infty}\left([0, T], \mathcal{M}_{n}(\mathbb{K})\right)$ assumed to be diagonalizable with positive eigenvalues at all time. In this way, from now on, we assume, without loss of generality, that $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in C^{\infty}\left([0, T], \mathcal{M}_{n}(\mathbb{K})\right)$, where $d_{i}(t)>0$ for all $t \in[0, T]$. The observation operator is given by $\mathbb{1}_{\omega} B^{*} Z$, where $B \in C^{\infty}\left([0, T], \mathcal{M}_{n, m}(\mathbb{K})\right)$.

We introduce the notations
$\bar{B}_{0}=\tilde{B}_{0}=B, \bar{B}_{i}=A \bar{B}_{i-1}-\bar{B}_{i-1}^{\prime}$ and $\tilde{B}_{i}=D \tilde{B}_{i-1}-\tilde{B}_{i-1}^{\prime}$ for $i \in \mathbb{N}^{*}$.
One has the following result:
Theorem 2. - System (2.17) is observable in norm $\mathcal{H}_{n, m}(\omega)$ in the sense that there exists $C>0$ such that for every $Z^{0} \in D\left(P^{n-1}\right)$, the solution Z of (2.17) verifies

$$
\begin{equation*}
\|z(T)\|_{L^{2}(\Omega)}^{2} \leqslant C\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2} \tag{2.19}
\end{equation*}
$$

if there exist $\bar{t} \in[0, T]$ such that

$$
\begin{equation*}
\operatorname{Span}\left\{\bar{B}_{k}(\bar{t})\left(\mathbb{R}^{m}\right) \mid k \in \mathbb{N}^{*}\right\}=\mathbb{R}^{n} \tag{2.20}
\end{equation*}
$$

- System (2.18) is observable in norm $\mathcal{I}_{n, m}(\omega)$ in the sense that there exists $C>0$ such that for every $Z^{0} \in D\left(P^{n-1}\right)$, the solution Z of (2.18) verifies

$$
\begin{equation*}
\|z(T)\|_{L^{2}(\Omega)}^{2} \leqslant C\left\|B^{*} Z\right\|_{\mathcal{I}_{n, m}(\omega)}^{2} \tag{2.21}
\end{equation*}
$$

if there exist $\tilde{t} \in[0, T]$ such that

$$
\begin{equation*}
\operatorname{Span}\left\{\tilde{B}_{k}(\tilde{t})\left(\mathbb{R}^{m}\right) \mid k \in \mathbb{N}^{*}\right\}=\mathbb{R}^{n} \tag{2.22}
\end{equation*}
$$

Remark 4. - The condition that the minimal time of observation needs to be arbitrarily small comes from conditions (2.20) and (2.22), which require that one has to observe on a small interval of time near \bar{t} or \tilde{t} (this will be made more precise during the proof of Theorem 2). One can readily see from the proof of Theorem 2 that it is possible to get rid of the condition of observability in arbitrary small time by assuming respectively the following conditions: There exists $K \in \mathbb{N}$ such that for every $t \in[0, T]$,

$$
\operatorname{Span}\left\{\bar{B}_{k}(t)\left(\mathbb{R}^{m}\right) \mid k \in[0, K]\right\}=\mathbb{R}^{n}
$$

and there exists $K \in \mathbb{N}$ such that for every $t \in[0, T]$,

$$
\operatorname{Span}\left\{\tilde{B}_{k}(t)\left(\mathbb{R}^{m}\right) \mid k \in[0, K]\right\}=\mathbb{R}^{n}
$$

We would then obtain a result of observability in time T for (2.17) and $\tilde{T}:=\min _{i} \int_{0}^{T}\left(d_{i}(s)\right)^{-1} d s$ for (2.18) respectively.

Proof of the first point of Theorem 2. Let us first consider system (2.1). We assume that condition (2.20) is verified.

We will need the following Lemma, that essentially says that in condition (2.20), we can restrict to a finite number of \bar{B}_{i} on an interval close to \bar{t}.

Lemma 2.1. Assume that (2.20) is verified. Then there exists $\varepsilon>0$ such that for every $t \in[\mid \bar{t}-$ $\varepsilon, \bar{t}+\varepsilon \mid] \backslash\{\bar{t}\}$,

$$
\begin{equation*}
\operatorname{Span}\left\{\bar{B}_{k}(t)\left(\mathbb{R}^{m}\right) \mid k \in[|0, n-1|]\right\}=\mathbb{R}^{n} . \tag{2.23}
\end{equation*}
$$

This Lemma is proved in [14, Proposition 1.19, Page 11].
Hence, we now consider some interval $\left[t_{0}, t_{1}\right] \subset[0, T]$ such that for every $t \in\left[t_{0}, t_{1}\right]$, one has $\left\{\bar{B}_{k}(t)\left(\mathbb{R}^{m}\right) \mid k \in[|0, n-1|]\right\}=\mathbb{R}^{n}$.

We proceed as in the proof of Theorem 1 . We want to prove the following observability inequality on the solutions of (2.17):

$$
\begin{equation*}
\left\|Z\left(t_{1}\right)\right\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{t_{0}}^{t_{1}} \int_{\omega}\|Z(t, x)\|^{2} d x d t \tag{2.24}
\end{equation*}
$$

Since we assumed that (1.1) holds in arbitrary small time, we know that there exists $C>0$ such that for any solution z of (1.1), we have

$$
\begin{equation*}
\left\|z\left(t_{1}\right)\right\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{t_{0}}^{t_{1}} \int_{\omega}\|z(t, x)\|^{2} d x d t \tag{2.25}
\end{equation*}
$$

We now use the change of variables $\tilde{Z}:=R_{-A^{*}}\left(t, t_{0}\right) Z$, where $R_{-A^{*}}$ is the resolvent operator associated to the ordinary differential equation $y^{\prime}=-A^{*}(t) y$. Then \tilde{Z} is solution of

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{Z}=P \tilde{Z} \quad \text { in } \quad(0, T) \times L^{2}(\Omega)^{n} \tag{2.26}\\
\tilde{Z}(0)=Z^{0}
\end{array}\right.
$$

Using inequality (2.25) on each equation of (2.26), we deduce that

$$
\left\|\tilde{Z}\left(t_{1}\right)\right\|_{L^{2}(\Omega)}^{2} \leqslant C \int_{t_{0}}^{t_{1}} \int_{\omega}\|\tilde{Z}(t, x)\|^{2} d x d t .
$$

Inequality (2.24) is then easily deduced by remarking that, thanks to the regularity of A, one has

$$
C_{1}\left\|\tilde{Z}(t, x)^{2}\right\| \leqslant\left\|Z(t, x)^{2}\right\| \leqslant C_{2}\left\|\tilde{Z}(t, x)^{2}\right\|
$$

for some constants C_{1} and C_{2} independent of t and x (but depending on t_{0}, t_{1}).
We introduce

$$
\begin{equation*}
\|\varphi\|_{\tilde{\mathcal{H}}_{n}}^{2}:=\sum_{k=0}^{n-1} \int_{t_{0}}^{t_{1}} \int_{\omega}\left\|\left(\partial_{t}-P\right)^{k} \varphi(t, x)^{2}\right\| d x d t \tag{2.27}
\end{equation*}
$$

Using (2.6), (2.17) and the fact that now A^{*} and B^{*} depend on t, we deduce that

$$
\begin{equation*}
\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2}=\sum_{k=0}^{n-1} \int_{t_{0}}^{t_{1}} \int_{\omega}\left\|\bar{B}_{i}(t)^{*} Z(t, x)\right\|^{2} d x d t \tag{2.28}
\end{equation*}
$$

Since (2.23) is verified, for every $t \in\left(t_{0}, t_{1}\right)$, the following map

$$
x=\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n} \mapsto \sum_{k=0}^{n-1}\left\|\bar{B}_{i}(t)^{*} x\right\|^{2}
$$

is a norm on \mathbb{R}^{n}, equivalent to the euclidean one $x \mapsto\|x\|^{2}$, which means that there exists some constant $C(t)>0$ such that

$$
\sum_{k=0}^{n-1}\left\|\bar{B}_{i}^{*}(t) x\right\|^{2} \geqslant C(t)\|x\|^{2}
$$

Moreover, by restricting $\left(t_{0}, t_{1}\right)$ if necessary, we may always assume that $C(t)>C$ for $t \in\left[t_{0}, t_{1}\right]$ since $C(t)$ can be chosen as the smallest singular value of $\left[\left|\bar{B}_{0}\right| \bar{B}_{1} \ldots\left|\bar{B}_{n}\right|\right]^{*}$, which is continuous with respect to t. We deduce that

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left\|\bar{B}_{i}(t)^{*} x\right\|^{2} \geqslant C\|x\|^{2} \tag{2.29}
\end{equation*}
$$

Hence, we obtain, using (2.14) and (2.29), that

$$
\left\|B^{*} Z\right\|_{\mathcal{H}_{n, m}(\omega)}^{2} \geqslant C \int_{t_{0}}^{t_{1}} \int_{\omega}\|Z(t, x)\|^{2} d x d t
$$

which enable us to deduce (2.8) thanks to (2.24) and the well-posedness of (2.17).
Proof of the second point of Theorem 2 The proof is similar and then omitted.

3 Sharp results for non-diagonal systems of parabolic equations

In this Section, we are interested in the question of observing the following system of heat equations

$$
\left\{\begin{array}{l}
\partial_{t} Z=D^{*} \Delta Z+A^{*} Z \quad \text { in } \quad(0, T) \times \Omega \tag{3.1}\\
Z(0)=Z^{0}
\end{array}\right.
$$

with $Z^{0} \in L^{2}(\Omega)^{n}, A^{*} \in \mathcal{M}_{n}(\mathbb{R})$ and $D^{*} \in \mathcal{M}_{n}(\mathbb{R})$ verifying an ellipticity condition given by

$$
\begin{equation*}
\left\langle D^{*} X, X\right\rangle \geqslant C\|X\|^{2}, \forall X \in \mathbb{R}^{n} \tag{3.2}
\end{equation*}
$$

This condition is sufficient to ensure the well-posedness of (3.1), since the system is strongly parabolic in the sense of [27, Chapter 7, Definition 7].

The observation is done on

$$
\sum_{i=1}^{m} B_{i}^{*} Z 1_{\omega_{i}}
$$

where B_{i} is the i-th column of $B \in \mathcal{M}_{n, m}(\mathbb{K})$, and $\omega_{i}(i \in[|1, n|])$ are some open subsets of Ω. These observation subsets can be chosen arbitrarily. In particular all the subdomains ω_{i} may be disjoint.

Let $\left\{\lambda_{k}\right\}_{k \geq 1}$ be the eigenvalues of $-\Delta$ with Dirichlet boundary conditions and $e_{k} \in H_{0}^{1}(\Omega)$ be the corresponding eigenfunctions, constituting an orthonormal basis of $L^{2}(\Omega)$.

We also introduce the one-parameter $(\lambda>0)$ family of matrices

$$
\begin{equation*}
K(\lambda):=\left[B|(-\lambda D+A) B| \ldots \mid(-\lambda D+A)^{n-1} B\right] . \tag{3.3}
\end{equation*}
$$

The main result of this section is as follows:
Theorem 3. System (3.1) is observable on $(0, T)$ in the sense that for every $Z^{0} \in L^{2}(\Omega)^{n}$, the solution Z of (3.1) verifies

$$
\begin{equation*}
\|Z(T)\|^{2} \leqslant C \int_{0}^{T} \int_{\omega} \sum_{i=1}^{m}\left\|B_{i}^{*} Z(t, x) 1_{\omega_{i}}(x)\right\|^{2} d x d t \tag{3.4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{rank} K\left(\lambda_{p}\right)=n, \forall p \geqslant 1 \tag{3.5}
\end{equation*}
$$

Remark 5. - Here we do not need to make any extra assumption on the Jordan blocks of D contrary to [23]. This comes from the fact that we only have constant coupling terms here, which enables us to use a different strategy.

- The same condition was obtained in [5] under the restrictions that D had to be a diagonalizable matrix and that all the ω_{i} had to coincide.
- Some results for systems of parabolic equations with internal or boundary controls with different control domains have already been proved in [35], under the restrictive condition that D is the identity matrix, which makes the study easier. The author derived Kalman rank conditions similar to the ones of [5].
- The strategy developed in the proof relies heavily on the spectral observability estimate proved by Lebeau and Robbiano (see (3.7) below). The method of proof we develop here can be applied as soon as an appropriate spectral inequality similar to (3.7) for the scalar equation (1.1) is available. For instance, similar results could be obtained for a system of Kolmogorov equations on the whole space (see [28]).

Proof of Theorem 3. We first prove the inverse part of the Theorem. We assume that (3.5) holds. We use the Lebeau-Robbiano strategy.

First of all, we decompose the initial condition Z^{0} as

$$
Z^{0}(x)=\sum_{k=1} Z_{k}^{0} e_{k}(x), Z_{k}^{0} \in \mathbb{R}^{n}
$$

Then the solution Z of (3.1) can be written as

$$
Z(t, x)=\sum_{k=1}^{\infty} Z_{k}(t) e_{k}(x)
$$

where Z_{k} is the unique solution of the ordinary differential system

$$
\begin{cases}Z_{k}^{\prime} & =\left(-\lambda_{k} D^{*}+A^{*}\right) Z_{k} \tag{3.6}\\ Z_{k}(0) & =Z_{k}^{0}\end{cases}
$$

Let us recall the Lebeau-Robbiano inequality for eigenfunctions of the Dirichlet-Laplace operator as obtained in [26]: for any non-empty subset ω_{i} of Ω, there exists $C_{i}>0$ such that for any $J>0$ and any finite linear combination of the $e_{k}(k \leqslant J)$ given by $e(x):=\sum_{k \leqslant J} a_{k} e_{k}(x)$, we have

$$
\begin{equation*}
\sum_{k \leqslant J}\left|a_{k}\right|^{2}=\int_{\Omega}\left(\sum_{k \leqslant J} a_{k} e_{k}(x)\right)^{2} d x \leqslant C_{i} e^{C_{i} \sqrt{\lambda_{J}}} \int_{\omega_{i}}\left(\sum_{k \leqslant J} a_{k} e_{k}(x)\right)^{2} d x \tag{3.7}
\end{equation*}
$$

Writing (3.7) for each component of $B^{*} Z_{k}$ and adding on n we obtain that there exists $C>0$ such that

$$
\begin{equation*}
\sum_{k \leqslant J}\left\|B^{*} Z_{k}(t)\right\|^{2} \leqslant C e^{C \sqrt{\lambda_{J}}} \sum_{j=1}^{J} \sum_{i=1}^{n} \int_{\omega_{i}}\left\|B_{i}^{*} Z_{k}(t) e_{k}(x)\right\|^{2} d x \tag{3.8}
\end{equation*}
$$

Integrating (3.8) between 0 and T, we obtain

$$
\begin{equation*}
\int_{0}^{T} \sum_{k \leqslant J}\left\|B^{*} Z_{k}(t)\right\|^{2} d t \leqslant C e^{C \sqrt{\lambda_{J}}} \sum_{j=1}^{J} \sum_{i=1}^{n} \int_{0}^{T} \int_{\omega_{i}}\left\|B_{i}^{*} Z_{k}(t) e_{k}(x)\right\|^{2} d x d t \tag{3.9}
\end{equation*}
$$

Now, we consider equation (3.6). Thanks to the assumption (3.5), we deduce that for every $k \in[|1, J|]$, system (3.6) is observable and we have the existence of some constant $C\left(\lambda_{k}\right)>0$ such that

$$
\begin{equation*}
\left\|Z_{k}(T)\right\|^{2} \leqslant C\left(\lambda_{k}\right) \int_{0}^{T}\left\|B^{*} Z_{k}(t)\right\|^{2} d t \tag{3.10}
\end{equation*}
$$

Moreover, one can prove the following Lemma:
Lemma 3.1. There exists $p_{1}, p_{2} \in \mathbb{N}$ (depending on n but independent of k) such that (3.10) holds with

$$
\begin{equation*}
C\left(\lambda_{k}\right) \leqslant C\left(1+\frac{1}{T^{p_{1}}}\right) \lambda_{k}^{p_{2}} \tag{3.11}
\end{equation*}
$$

This is a consequence of the computations made in [38] and will be proved in Appendix A. Using (3.9), (3.10) and (3.11) we deduce that

$$
\begin{align*}
\sum_{k \leqslant J}\left\|Z_{k}(T)\right\|^{2} & \leqslant \sum_{k \leqslant J} C\left(\lambda_{k}\right) e^{C \sqrt{\lambda_{J}}} \int_{0}^{T} \int_{\omega} \sum_{j=1}^{J}\left\|Z_{k}(t) e_{k}(x)\right\|^{2} d x d t \\
& \leqslant \tilde{C}\left(1+\frac{1}{T^{p_{1}}}\right) e^{\tilde{C} \sqrt{\lambda_{J}}} \int_{0}^{T} \int_{\omega} \sum_{j=1}^{J} Z_{k}(t) e_{k}(x) \|^{2} d x d t \tag{3.12}
\end{align*}
$$

for some new constant $\tilde{C} \geqslant C$. Once we have (3.10), it is very classical that one can deduce the observability inequality (3.4) by coupling (3.10) with a dissipation estimate (one can for example apply directly [34, Theorem 2.2]).

The proof of the inverse part of the equivalence is finished.
Let us now prove the direct part of the inequality. We argue by contraposition as in [6]. We assume that (3.5) does not hold, i.e. there exists $p_{0} \in \mathbb{N}^{*}$ such that

$$
\operatorname{rank} K\left(\lambda_{p_{0}}\right)<n .
$$

Then, by the usual Kalman rank condition for ODEs, for $k=p_{0}$, (3.6) is not observable and there exists a solution $Z_{p_{0}}$ to (3.6) verifying $B^{*} Z_{p_{0}}(t)=0$ for every $t \in(0, T)$. It is clear that $Z(t, x)=$ $Z_{p_{0}}(t) e_{p_{0}}(x)$ is a solution of (3.1) verifying moreover $B^{*} Z(t, x)=0$ for every $(t, x) \in(0, T) \times \Omega$, which means that (3.1) is not observable and concludes the proof.

4 Conclusion and open problems

In this article, we presented a simple method for finding algebraic sufficient (and sometimes necessary) conditions for weak observability of coupled systems of partial differential equations with constant or time-dependent coefficients and a reduced number of observations, and we applied the LebeauRobbiano strategy on a non-diagonalizable system of heat equations in order to derive a spectral necessary and sufficient conditions of observability on distinct subsets. We address to following natural open questions arising after our study:

- In the case of systems $(2.1),(2.2),(2.17)$ and (2.18), can we obtain observability inequalities in the natural L^{2}-norm? If not, what are the optimal Sobolev norms that one can estimate in the left-hand side?
- In the case of systems (2.2) and (2.18), can we obtain the same Kalman or Silverman-meadows condition for non-diagonalizable coupling matrices D^{*} ?
- In the case where P is self-adjoint but no spectral inequality similar to (3.7) is known for the eigenfunctions of P, or in the case of parabolic systems of order two with time and spacedependent coefficients, can we obtain by other means necessary and sufficient conditions similar to (3.4) for general systems of the form $\partial_{t} Z=D^{*} P Z+A^{*} Z$?
- One may also ask the question of finding necessary and sufficient conditions for general systems of the form $\partial_{t} Z=D^{*} P Z+A^{*} Z$ for unitary groups of operators like Schrödinger or wave equationss. This case will be investigated in a forthcoming paper.
- In the case of systems $(2.1),(2.2),(2.17)$ and (2.18), can we obtain observability inequalities with different (and possibly disjoint) observation subsets ω_{i} as in the case of (3.1)?
- Can we obtain the same characterizations if we couple different dynamics (for example systems of mixed heat and wave equations), as in [39]?
- Can obtain the same results for an infinite number of coupled equations (i.e. $n=\infty$)?

A Proof of Lemma 3.1

Lemma 3.1 is a consequence of carefully employing the computations of [38].
Let us call $C_{T}\left(\lambda_{k}\right)$ the cost of controlling to 0 at time T the corresponding control problem naturally associated to the adjoint problem (3.6) given by

$$
\begin{cases}Y_{k}^{\prime} & =\left(-\lambda_{k} D+A\right) Y_{k}+B U_{k}, \tag{A.1}\\ Z_{k}(0) & =Y_{k}^{0},\end{cases}
$$

where $U_{k} \in L^{2}((0, T), \mathbb{R})$ for $k=1, \ldots, n$.
From now on, let us call $C_{k}:=\left(-\lambda_{k} D+A^{*}\right)$.
In all what follows, $\operatorname{Pol}(X)$ will denote a polynomial function in the variable X which may vary from line to line and $\operatorname{Frac}(X)$ will denote a fractional function in the variable X which may vary from line to line. It is well-known that

$$
C_{T}\left(\lambda_{k}\right)^{2}=\left\|W_{T}^{-1}\right\|
$$

where W_{T} is the Gramian operator given by

$$
W_{T}:=\int_{0}^{T} e^{s C_{k}} B B^{*} e^{s C_{k}^{*}} d s
$$

Now, if we look carefully at [38, Estimates (3.1)-(3.4)] and the intermediate computations leading to these estimates, we observe that if we call K_{k} the smallest integer $l \leqslant n-1$ ensuring that the matrix $\left[B|A B| \ldots\left|A^{l} B\right|\right]$ is of maximal rank, we have

$$
\left\|T^{2 K_{k}+1} W_{T}^{-1}\right\| \leqslant \operatorname{Pol}(T) P\left(\lambda_{k}\right)\left\|\left(Q+T R_{3}\right)^{-1}\right\|
$$

$Q \in \mathcal{M}_{n}(\mathbb{R})$ having coefficients growing at most as polynomials in λ_{k} and R_{3} being such that

$$
\begin{equation*}
\left\|R_{3}\right\| \leqslant \operatorname{Pol}(T) \operatorname{Pol}\left(\lambda_{k}\right) e^{\left\|C_{k}\right\| T} \tag{A.2}
\end{equation*}
$$

We choose T small enough such that

$$
\begin{equation*}
C(T) P\left(\lambda_{k}\right)\left\|Q^{-1} R_{3}\right\| \leqslant 1 / 2 \tag{A.3}
\end{equation*}
$$

which will ensure that $\left\|\left(Q+T R_{3}\right)^{-1}\right\| \leqslant 2\|Q\|^{-1}$ and hence

$$
\begin{equation*}
\left\|T^{2 K+1} W_{T}^{-1}\right\| \leqslant \operatorname{Pol}(T) \operatorname{Pol}\left(\lambda_{k}\right) \tag{A.4}
\end{equation*}
$$

One can remark that there exists a constant $C>0$ (independent on T and λ_{k}) such that

$$
P(T) P\left(\lambda_{k}\right) e^{\left\|C_{k}\right\| T}\left\|Q^{-1} R_{3}\right\| \leqslant C e^{\operatorname{Pol}\left(\lambda_{k}\right) T}
$$

Hence, (A.3) is ensured as soon as

$$
\begin{equation*}
T \leqslant \frac{C}{\operatorname{Pol}\left(\lambda_{k}\right)} \tag{A.5}
\end{equation*}
$$

We deduce by using (A.4) that under condition (A.5), we have

$$
C_{T}\left(\lambda_{k}\right) \leqslant \operatorname{Frac}(T) \operatorname{Pol}\left(\lambda_{k}\right)
$$

Now, using the fact that $C_{T}\left(\lambda_{k}\right)$ is a decreasing function of the time it is is clear that for any $T>C / \operatorname{Pol}\left(\lambda_{k}\right)$ we have

$$
C_{T}\left(\lambda_{k}\right) \leqslant C_{C / \operatorname{Pol}\left(\lambda_{k}\right)}\left(\lambda_{k}\right) \leqslant \operatorname{Frac}\left(\lambda_{k}\right)
$$

Hence, we deduce that, for any time $T>0$,

$$
C_{T}\left(\lambda_{k}\right) \leqslant\left(1+\frac{1}{\operatorname{Pol}(T)}\right) \operatorname{Pol}\left(\lambda_{k}\right)
$$

A classical duality argument enables us to conclude that (3.11) holds.

Acknowledgements

Pierre Lissy is partially supported by the project IFSMACS (ANR-15-CE40-0010) funded by the french Agence Nationale de la Recherche, 2015-2019.

Enrique Zuazua is partially supported by the Advanced Grant DYCON (Dynamic Control) of the European Research Council Executive Agency, FA9550-15-1-0027 of AFOSR, FA9550-14-1-0214 of the EOARD-AFOSR, the MTM2014-52347 Grant of the MINECO (Spain) and ICON (ANR-16-ACHN-0014) of the French Agence Nationale de la Recherche.

References

[1] F. Alabau-Boussouira. A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls. Adv. Differential Equations, 18(11-12):1005-1072, 2013.
[2] F. Alabau-Boussouira, J.-M. Coron, and G. Olive. Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls. To appear in SIAM J. Control Optim., 2015.
[3] F. Alabau-Boussouira and M. Léautaud. Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. (9), 99(5):544-576, 2013.
[4] F. Ammar-Khodja, A. Benabdallah, and C. Dupaix. Null-controllability of some reaction-diffusion systems with one control force. J. Math. Anal. Appl., 320(2):928-943, 2006.
[5] F. Ammar Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos. A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl., 1(3):427-457, 2009.
[6] F. Ammar Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos. A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ., 9(2):267-291, 2009.
[7] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl. (9), 96(6):555-590, 2011.
[8] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields, 1(3):267-306, 2011.
[9] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences. J. Funct. Anal., 267(7):2077-2151, 2014.
[10] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa. New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence. Submitted, 2015.
[11] K. Beauchard and E. Zuazua. Large time asymptotics for partially dissipative hyperbolic systems. Arch. Ration. Mech. Anal., 199(1):177-227, 2011.
[12] A. Benabdallah, F. Boyer, M. González-Burgos, and G. Olive. Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null controllability in cylindrical domains. SIAM J. Control Optim., 52(5):2970-3001, 2014.
[13] F. Boyer and G. Olive. Approximate controllability conditions for some linear 1D parabolic systems with spacedependent coefficients. Math. Control Relat. Fields, 4(3):263-287, 2014.
[14] J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.
[15] J.-M. Coron, S. Guerrero, and L. Rosier. Null controllability of a parabolic system with a cubic coupling term. SIAM Journal on Control and Optimization, 48(8):5629-5653, 2010.
[16] J.-M. Coron and J.-P. Guilleron. Control of three heat equations coupled with two cubic nonlinearities. To appear in SIAM J. Control Optim., 2016.
[17] R. Dáger and E. Zuazua. Wave propagation, observation and control in 1-d flexible multi-structures, volume 50 of Mathématiques \& Applications (Berlin) [Mathematics \& Applications]. Springer-Verlag, Berlin, 2006.
[18] B. Dehman, J. Le Rousseau, and M. Léautaud. Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal., 211(1):113-187, 2014.
[19] M. Duprez and P. Lissy. Indirect controllability of some linear parabolic systems of m equations with $m-1$ controls involving coupling terms of zero or first order. J. Math. Pures Appl. (9), 106(5):905-934, 2016.
[20] M. Duprez and P. Lissy. Positive and negative results on the internal controllability of parabolic equations coupled by zero and first order terms. submitted, 2016.
[21] M. Duprez and G. Olive. Perturbation of controlled systems and applications. submitted, 2016.
[22] S. Ervedoza and E. Zuazua. Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal., 202(3):975-1017, 2011.
[23] E. Fernández-Cara, M. González-Burgos, and L. de Teresa. Controllability of linear and semilinear nondiagonalizable parabolic systems. ESAIM Control Optim. Calc. Var., 21(4):1178-1204, 2015.
[24] M. González-Burgos and L. de Teresa. Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Port. Math., 67(1):91-113, 2010.
[25] M. González-Burgos and R. Pérez-García. Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot. Anal., 46(2):123-162, 2006.
[26] D. Jerison and G. Lebeau. Nodal sets of sums of eigenfunctions. In Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., pages 223-239. Univ. Chicago Press, Chicago, IL, 1999.
[27] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralcceva. Linear and quasilinear equations of parabolic type. pages xi $+648,1968$.
[28] J. Le Rousseau and I. Moyano. Null-controllability of the Kolmogorov equation in the whole phase space. J. Differential Equations, 260(4):3193-3233, 2016.
[29] G. Lebeau and L. Robbiano. Contrôle exact de l'équation de la chaleur. Comm. Partial Differential Equations, 20(1-2):335-356, 1995.
[30] T. Liard and P. Lissy. A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups. submitted, 2016.
[31] M. Lopez-Garcia, A. Mercado, and L. de Teresa. Null controllability of a cascade system of Schrödinger equations. Electronic Journal of Differential Equations, 2016(74):1-12, 2016.
[32] Q. Lü and E. Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems, 34(10):4183-4210, 2014.
[33] L. Miller. The control transmutation method and the cost of fast controls. SIAM J. Control Optim., 45(2):762-772 (electronic), 2006.
[34] L. Miller. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B, 14(4):1465-1485, 2010.
[35] G. Olive. Null-controllability for some linear parabolic systems with controls acting on different parts of the domain and its boundary. Math. Control Signals Systems, 23(4):257-280, 2012.
[36] K. D. Phung. Observability and control of Schrödinger equations. SIAM J. Control Optim., 40(1):211-230 (electronic), 2001.
[37] L. Rosier and L. de Teresa. Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris, 349(5-6):291-296, 2011.
[38] T. I. Seidman. How violent are fast controls? Math. Control Signals Systems, 1(1):89-95, 1988.
[39] E. Zuazua. Stable observation of additive superpositions of Partial Differential Equations. Systems Control Lett., 93:21-29, 2016.

[^0]: *Ceremade, Université Paris-Dauphine \& CNRS UMR 7534, PSL, 75016 Paris, France. (lissy@ceremade.jussieu.fr)
 ${ }^{\dagger}$ DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain. (enrique.zuazua@deusto.es)
 ${ }^{\ddagger}$ Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
 §Facultad Ingeniería, Universidad de Deusto, Avda. Universidades, 24, 48007, - Basque Country - Spain
 ${ }^{\text {© }}$ Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.

