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Abstract—In this paper, we study the problem of feedback
based beamforming for multiple-input single-output free space
optical (FSO) system with pointing errors. For a 2×1 FSO system,
it is shown by analysis that any arbitrary beamforming scheme
performs poorer to the repetition coding scheme but achieves
full diversity over the Gamma-Gamma fading with pointing
errors. Then we study a beamforming scheme for 2 × 1 FSO
system which employs one bit feedback from receiver to the
transmitter. Erroneous feedback leads to loss in diversity for
this beamforming scheme as established by the bit error rate
(BER) analysis. For avoiding the loss in diversity, an improved
one bit feedback based beamforming scheme is proposed which
outperforms the repetition coding. The average BER of this
scheme is obtained by using the order statistic and it is minimized
to find the optimized transmit weights for the transmit apertures
under the erroneous feedback over Gamma-Gamma fading with
pointing errors.

Index Terms—Bit error rate, free space optical links, Gamma-
Gamma fading, MISO system, subcarrier intensity modulation.

I. INTRODUCTION

Free space optical (FSO) communication system has been

heavily studied along with multiple-input multiple-output

(MIMO) technology [1]–[3], because MIMO technology en-

ables the FSO communication to overcome the atmospheric

turbulence. The Gamma-Gamma distribution is used for char-

acterizing the FSO links over a wide range of atmospheric

turbulence conditions (weak to strong) [4]–[7]. However, for

study of a practical FSO system, the pointing error along with

the atmospheric fluctuations must be considered [8]–[10]. The

pointing error can occur with boresight due to deterministic

displacement of the laser beam at the receiving aperture, which

is more pronounced in the longer distance FSO communication

systems like in earth-to-satellite links [10]. The Alamouti

space-time block code (STBC) [11] is a useful coding scheme

for radio frequency (RF) MIMO system for achieving the

transmit diversity. However, the Alamouti code is found to

work inferior to the repetition coding in the FSO system

employing intensity modulation and direct detection with

on/off keying, and subcarrier intensity modulation (SIM) [5],

[6], in some recent literature [12]–[14].

The transmit aperture selection performs better than the rep-

etition coding scheme in FSO MIMO system [15]–[19]. Lim-

ited feedback based transmit power allocation/beamforming

scheme has been studied in [15], for log-normal fading FSO

links; in this scheme, the transmit apertures are divided into

different sizes of partitions and one partition is selected

based on (error-free) feedback bits for transmitting signals by

using the repetition coding. In [16], a transmit laser selection

scheme is proposed which requires perfect knowledge of

the channel gains in the transmitter for the selection of the

transmit aperture with maximum channel magnitude. However,

in practice, the feedback information cannot be received error-

free. In [19], a simple one bit erroneous feedback based

beamforming scheme is discussed for multiple-input single-

output (MISO) FSO system. However, in [19] the effect of

pointing error is ignored.

In this paper, we consider the problem of erroneous quan-

tized feedback based beamforming in FSO MISO systems,

employing SIM binary phase shift keying (BPSK) and oper-

ating under the Gamma-Gamma fading with zero boresight

pointing errors. We first derive an analytical framework for

the BER of a 2 × 1 FSO system with arbitrary beamforming

over the Gamma-Gamma fading channels with pointing errors.

It is figured out based on the BER analysis that any arbitrary

beamforming with non-zero weights performs poorer to the

repetition coding scheme but achieves the maximum possible

diversity over Gamma-Gamma fading with pointing errors.

Then we consider the case when only one bit feedback about

the instantaneous channel state information (CSI) is available

in the transmitter. By using this one bit feedback, the trans-

mitter can employ the best transmit aperture selection scheme;

but it is analytically shown that the transmit aperture selection

scheme looses diversity with the errors in the feedback bit. For

avoiding the loss in the diversity, we propose an improved

one bit feedback based scheme for 2 × 1 FSO system; this

scheme outperforms the repetition coding scheme with one

bit erroneous feedback over the Gamma-Gamma fading with

pointing errors.

II. SYSTEM AND CHANNEL MODEL

A. System Model

Let us consider a FSO MISO system with M transmit and a

single receive apertures. It is assumed that this system employs

the SIM scheme [6]. In a transmission time interval, a BPSK

symbol s ∈ {A,−A} with E[|s|2] = Es, where E[·] stands for

the expectation, is transmitted by all transmit apertures. Before

transmission the symbol s is multiplied by a beamforming

vector v = [v1, v2, .., vM ]T such that
∑M

i=1 vi ≤ M . The

received electrical signal at the receive aperture, after optical-

to-electrical conversion, can be written as

yi =
η

M
[I1, I2, ..., IM ][v1, v2, .., vM ]T s+ e



=
η

M

M∑

i=1

Iivis+ e, (1)

where e is the zero-mean complex-valued additive white Gaus-

sian noise (AWGN) of σ2 variance; Ii is the real-valued irradi-

ance of the link between the the i-th transmit aperture and the

receive aperture, following the Gamma-Gamma distribution

with pointing errors [8]; and η denotes the optical-to-electrical

conversion coefficient. A maximum-likelihood receiver for the

scheme is given by

ŝ = min
s̃∈{A,−A}

∣
∣
∣
∣
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Iivis̃

∣
∣
∣
∣
∣

2

. (2)

B. Channel Model

The Gamma-Gamma fading caused by atmospheric turbu-

lence with zero boresight pointing errors is considered for the

study. When both the atmospheric turbulence and the pointing

errors are considered, the distribution of Ii is given by [8,

Eq. (8)]

fIi(x) =
αβξ2

A0Γ(α)Γ(β)
G3,0

1,3

(
αβx
A0

∣
∣
∣

ξ2

ξ2−1,α−1,β−1

)

, (3)

where Gm,n
p,q (·| ······) is the Meijer-G function [20, Eq. (9.301)]

and α and β depict the atmospheric fluctuations [6]. The

effect of the pointing errors is characterized by the following

parameters: A0 = [erf(ν)]
2
, ν =

√

π/2R/wb, ξ
2 = w2

e/4σ
2
s ,

R is the radius of the receiver aperture, wb is the normalized

beamwaist, we =
[√

πerf(ν)w2
b/(2νe

−ν2

)
]1/2

is the equiva-

lent beamwaist, σ2
s is the variance of the Gaussian distributions

for both horizontal and vertical buildings’ sway, and erf(·)
denotes the error function.

It is difficult to directly deal with the PDF of (3) due to

the presence of the Meijer-G function. Therefore, we aim to

have an alternative representation of the PDF of (3), which can

render simplified analysis. Let us use the Slater’s theorem [21]

to express the Meijer-G function in (3) as

G3,0
1,3

(

z
∣
∣
∣

a1
b1, b2, b3

)

=

3∑

h=1

∏3
j=1 Γ(bj − bh)

†

Γ(a1 − bh)
zbh

×1F2

(

1 + bh − a1; [1 + bh − b]
†
; z
)

, (4)

where [·] indicates a row vector, b = [b1, b2, b3], (·)† indicates

to ignore the terms with bj = bh, Γ(·) is the Gamma func-

tion [20], and 1F2(·; ·, ·; ·) is the generalized Hypergeometric

function [20]. Note that the expansion in (4) is valid only if

bj − bh /∈ Z and a1 − bh /∈ Z.

From (3) and (4), and employing the series representation:

1F2(a1; b1, b2; z) =

∞∑

n=0

(a1)n
(b1)n(b2)n

zn

n!
, (5)

where (x)n is the Pochhammer symbol, we obtain the PDF of

Ii,j in series form as

fIi,j (x) = X0x
ξ2−1 +

∞∑

n=0

Ynx
n+α−1

+

∞∑

n=0

Znx
n+β−1, (6)

where

X0 =
ξ2

Γ(α)Γ(β)
Γ(α− ξ2)Γ(β − ξ2)

(
αβ

A0

)ξ2

Yn =
ξ2

Γ(α)Γ(β)

Γ(ξ2 − α)Γ(β − α)

Γ(1 + ξ2 − α)

× (α− ξ2)n
(1 + α− ξ2)n(1 + α− β)nn!

(
αβ

A0

)n+α

Zn =
ξ2

Γ(α)Γ(β)

Γ(ξ2 − β)Γ(α− β)

Γ(1 + ξ2 − β)

× (β − ξ2)n
(1 + β − α)n(1 + β − ξ2)nn!

(
αβ

A0

)n+β

. (7)

Remark 1: The proposed series based representation of the

PDF of Gamma-Gamma channels with pointing errors, cf. (6),

contains two power series. Each series contains summation

terms with only exponents of x. Therefore, it is easy to calcu-

late an integral containing the proposed series representation

as compared to a complicated function based representation in

(3). It can be easily shown by applying the ratio test for each

power series in (6) that the new series representation contains

converging power series with infinite radius of convergence.

III. STUDY OF AN ARBITRARY BEAMFORMING SCHEME

FOR 2× 1 GAMMA-GAMMA FADING FSO LINKS WITH

POINTING ERRORS

We will derive the analytical average BER performance

of an arbitrary beamforming based FSO MISO system with

Gamma-Gamma fading and pointing errors, in this section. For

simplicity, we concentrate over the 2×1 FSO system; however,

more generalized results can be obtained by following the

method given in this section.

Let us define a random variable (RV) as

wi , Iivi. (8)

From (6) and (8), the PDF of wi will be

fwi
(x) = X0,ix

ξ2−1 +

∞∑

n=0

Yn,ix
n+α−1

+
∞∑

n=0

Zn,ix
n+β−1, (9)

where X0,i = X0/v
ξ2

i , Yn,i = Yn/v
n+α
i , and Zn,i =

Zn/v
n+β
i . By using (9) in the relation: Mwi

(s) =
∫∞

0
e−sxfwi

(x)dx, the MGF of wi can be expressed as

Mwi
(s) = X̃0,is

−ξ2 +

∞∑

n=0

Ỹn,is
−n−α +

∞∑

n=0

Z̃n,is
−n−β , (10)



where X̃0,i = Γ(ξ2)X0,i, Ỹn,i = Γ(n + α)Yn,i, and Z̃n,i =
Γ(n+ β)Zn,i. Let us consider 2× 1 FSO system and we can

define another RV as

w , I1v1 + I2v2 = w1 + w2. (11)

After observing that I1 and I2 are independent, the MGF of

w can be written from (10) as

Mw(s) =

∞∑

n=0

An,1s
−n−α−ξ2 +

∞∑

n=0

An,2s
−n−β−ξ2

+
∞∑

n=0

An,3s
−n−2α +

∞∑

n=0

An,4s
−n−α−β

+

∞∑

n=0

An,5s
−n−2β +A0,6s

−2ξ2 . (12)

In (12), An,1 = X̃0,1Ỹn,2 + X̃0,2Ỹn,1, An,2 = X̃0,1Z̃n,2 +
X̃0,2Z̃n,1, An,3 = Ỹn,1 ∗ Ỹn,2, An,4 = Ỹn,1 ∗ Z̃n,2 + Z̃n,1 ∗
Ỹn,2, An,5 = Z̃n,1 ∗ Z̃n,2, A0,6 = X̃0,1X̃0,2, and ∗ denotes

the convolution. The PDF of w can be obtained by taking the

inverse Laplace transform of (12)

fw(x) =

∞∑

n=0

Ãn,1x
n+α+ξ2−1 +

∞∑

n=0

Ãn,2x
n+β+ξ2−1

+

∞∑

n=0

Ãn,3x
n+2α−1 +

∞∑

n=0

Ãn,4x
n+α+β−1

+
∞∑

n=0

Ãn,5x
n+2β−1 + Ã0,6x

2ξ2−1, (13)

where Ãn,1 = An,1/Γ(n+α+ξ2), Ãn,2 = An,2/Γ(n+β+ξ2),
Ãn,3 = An,3/Γ(n+2α), Ãn,4 = An,4/Γ(n+α+β), Ãn,5 =
An,5/Γ(n+ 2β), and Ã0,6 = A0,6/Γ(2ξ

2).

Using (1) and (11), we have the input-output (I/O) relation

for 2× 1 FSO system:

yi =
η

2
ws+ e. (14)

The instantaneous BER for the I/O relation of (14) is given

as [22]

Pe(w, γ̄) = Q
(√

2γ̄w
)

. (15)

Here Q(·) is the q-function and γ̄ = η2Es/(4σ
2) denotes the

average signal-to-noise ratio (SNR) per diversity branch. By

using the relation that Q(x) = (1/2)erfc(x/
√
2), where erfc(·)

is the complementary error function, we have the average BER

of the scheme as

Pe(γ̄) =
1

2

∫ ∞

0

erfc
(√

γ̄x
)
fw(x)dx. (16)

Let us first state a useful relation:

∫ ∞

0

xa−1erfc (bx) dx =
Γ(a+1

2 )

aba
√
π
. (17)

From (13), (16), and (17), we obtain the average BER of the

scheme:

Pe(γ̄) =
1

2

∞∑

n=0

Ãn,1

Γ(n+α+ξ2+1
2 )

(n+ α+ ξ2)
√
πγ̄

n+α+ξ2

2

+
1

2

∞∑

n=0

Ãn,2

Γ(n+β+ξ2+1
2 )

(n+ β + ξ2)
√
πγ̄

n+β+ξ2

2

+
1

2

∞∑

n=0

Ãn,3

Γ(n+1
2 + α)

(n+ 2α)
√
πγ̄

n
2
+α

+
1

2

∞∑

n=0

Ãn,4

Γ(n+α+β+1
2 )

(n+ α+ β)
√
πγ̄

n+α+β
2

+
1

2

∞∑

n=0

Ãn,5

Γ(n+1
2 + β)

(n+ 2β)
√
πγ̄

n
2
+β

+
1

2
Ã0,6

Γ(12 + ξ2)

(2ξ2)
√
πγ̄ξ2

. (18)

The BER performance of the considered SIM scheme can

be characterized at high SNR by using two parameters: coding

gain (Cg) and diversity gain (δ). The coding gain depicts the

relative horizontal shift of the BER versus SNR plots on the

log-log scale; whereas, the diversity gain indicates the slope of

the decay of these plots at high SNR. The standard definition

of the asymptotic BER is

lim
γ̄→∞

Pe(γ̄) ≈ (Cg γ̄)
−δ. (19)

In the considered scheme, the term corresponding to the

smallest exponent of the average SNR γ̄ in the power series

in (18) dominates the BER, at high SNR. Therefore, after

substituting n = 0 in (18) and keeping the terms dominating

the BER performance at very high SNR, we get the asymptotic

BER of the scheme:

lim
γ̄→∞

Pe(γ̄) =
(Γ(δ))

2
Γ(δ + 1

2 )

4δ
√
πΓ(2δ)

∏2
i=1 v

δ
i

×
(

(αβ)δP (α, β, ξ2)

Γ(α)Γ(β)Γ(1 + ξ2 − δ)Aδ
0

)2
1

γ̄δ
, (20)

where δ = min(α, β, ξ2) and P (α, β, ξ2) = Γ(α − δ)†Γ(β −
δ)†Γ(ξ2 − δ)†. It can be easily shown that the diversity

of a single FSO link based communication system is δ =
min(α, β, ξ2). Therefore, the diversity of the considered beam-

forming scheme is twice of that of a single FSO link based

system. Further, it can be seen from (20) that in order to have a

tolerable BER we should choose the weights such that vi 6= 0.

So let us make the following remark.

Remark 2: The arbitrary beamforming based 2 × 1 FSO

system achieves full diversity of min(α, β, ξ2), if the beam-

forming vector v = [v1, v2] is a full vector1.

1does not contain any zero entry.



The coding gain of the beamforming scheme can be given

from (20) after some algebra as

Cg =
(4δ

√
πΓ(2δ))

1/δ
A2

0

∏2
i=1 vi

(

(Γ(δ))2 Γ(δ + 1
2 )
)1/δ

(αβ)2

×
(
Γ(α)Γ(β)Γ(1 + ξ2 − δ)

P (α, β, ξ2)

)2/δ

. (21)

As shown in (21) that Cg is proportional to the product of

v1 and v2, i.e.,
∏2

i=1 vi. Therefore, in order to maximize the

coding gain in (21), we need to maximize this product. Since

vi > 0 and there is a constraint that v1 + v2 = 2, the product
∏2

i=1 vi will be maximized when v1 = v2 = 1. The uniform

weighing stands for the spatial repetition coding.

Remark 3: No arbitrary weighting based beamforming

scheme can perform better than the spatial repetition coding

scheme in 2× 1 FSO system over the Gamma-Gamma fading

links with pointing errors.

This observation is similar to [19], where study of arbitrary

beamforming is performed for a 2 × 1 FSO system over the

Gamma-Gamma fading and no pointing error.

IV. STUDY OF ONE BIT FEEDBACK BASED BEAMFORMING

SCHEME FOR 2× 1 GAMMA-GAMMA FADING FSO LINKS

WITH POINTING ERRORS

In this section, we study a beamforming scheme for 2 × 1
system which utilizes one bit feedback from the receiver for

determining the transmit weights. The effect of error in the

feedback is analyzed on the BER performance of this simple

scheme. Let the transmitter can use one of the following

beamforming vectors [19]:

v1 = [a, 2− a]T or v2 = [2− a, a]T , (22)

for some constant a that satisfies 0 ≤ a ≤ 2. The choice of

the beamforming vector depends upon the one bit feedback

received from the receiver. Provided that there is no error in

the feedback, then the best strategy is to use v1 if I1 > I2
and v2 otherwise, where v1 and v2 are given in (22). The

best choice in this case for a is a = 2. However, in practice

perfect error-free feedback is not possible. If there is an error

in decoding the feedback bit, then the transmitter chooses the

wrong aperture with min(I1, I2). This would lead to increase

in the error probability of the receiver. Let Pc denotes the

probability of correct detection of the feedback bit received

by the transmitter. Therefore, the average BER under the

erroneous feedback will be

Pe(γ̄) =
Pc

2

∫ ∞

0

erfc
(
2
√
γ̄x
)
ft(x)dx

+
(1− Pc)

2

∫ ∞

0

erfc
(
2
√
γ̄x
)
fu(x)dx, (23)

where t = max(I1, I2) and u = min(I1, I2). By observing

that Iis are independent and identically distributed (i.i.d), from

order statistics [23], t and u are distributed as

ft(x) = 2FI1(x)fI1 (x)

fu(x) = 2fI1(x) − 2FI1(x)fI1(x), (24)

where FI1(x) denotes the cumulative distribution function of

I1. Substituting these distributions in (23) and after some

algebra, it can be shown that

Pe(γ̄) = (2Pc − 1)

∫ ∞

0

erfc
(
2
√
γ̄x
)
FI1(x)fI1 (x)dx

+(1− Pc)

∫ ∞

0

erfc
(
2
√
γ̄x
)
fI1(x)dx. (25)

After using the relation: FI1 (x) =
∫ x

0
fIi(x)dx and some

algebra, the average BER of the beamforming scheme with

feedback error is given by

Pe(γ̄) = (2Pc − 1)

∞∑

n=0

Bn,1

Γ(n+α+ξ2+1
2 )

(n+ α+ ξ2)
√
π (4γ̄)

n+α+ξ2

2

+(2Pc − 1)

∞∑

n=0

Bn,2

Γ(n+β+ξ2+1
2 )

(n+ β + ξ2)
√
π (4γ̄)

n+β+ξ2

2

+(2Pc − 1)

∞∑

n=0

Bn,3

Γ(n+1
2 + α)

(n+ 2α)
√
π (4γ̄)

n
2
+α

+(2Pc − 1)
∞∑

n=0

Bn,4

Γ(n+α+β+1
2 )

(n+ α+ β)
√
π (4γ̄)

n+α+β
2

+(2Pc − 1)
∞∑

n=0

Bn,5

Γ(n+1
2 + β)

(n+ 2β)
√
π (4γ̄)

n
2
+β

+(2Pc − 1)B0,6

Γ(12 + ξ2)

(2ξ2)
√
π (4γ̄)

ξ2

+(1− Pc)X0

Γ(1+ξ2

2 )

ξ2
√
π (4γ̄)ξ

2/2

+(1− Pc)

∞∑

n=0

Yn

Γ(1+n+α
2 )

(n+ α)
√
π (4γ̄)(n+α)/2

+(1− Pc)

∞∑

n=0

Zn

Γ(1+n+β
2 )

(n+ β)
√
π (4γ̄)

(n+β)/2
, (26)

where Bn,1 = X0Ỹn+ X̃0Yn, Bn,2 = X0Z̃n + X̃0Zn, Bn,3 =
Yn ∗ Ỹn, Bn,4 = Yn ∗ Z̃n + Zn ∗ Ỹn, Bn,5 = Zn ∗ Z̃n, B0,6 =
X0X̃0, X̃0 = X0/ξ

2, Ỹn = Yn/(n+α), and Z̃n = Zn/(n+β).
By substituting n = 0 in (26) and keeping the terms with

the lowest power of γ̄, we get the asymptotic BER of the

beamforming scheme with erroneous feedback:

lim
γ̄→∞

Pe(γ̄)

= (1− Pc)
ξ2Γ(δ + 1

2 )(αβ)
2δP (α, β, ξ2)

2δ
√
πA2δ

0 Γ(α)Γ(β)

1

(4γ̄)δ
, (27)

where δ = min(α/2, β/2, ξ2/2) represents the diversity order

of the beamforming scheme with erroneous feedback, which

is same as that of a single link based FSO system.

Remark 4: The 2 × 1 FSO beamforming system with a =
2, can achieve only the diversity of a single link based FSO

system, for any value of Pc < 1.

Remark 4 is very useful as it indicates that the error per-

formance of a simple beamforming leading to the transmit



aperture selection is very sensitive to the feedback errors.

Even very small values of the feedback error has a potential

to deteriorate the diversity performance of the FSO system.

These observations are similar to drawn in [19] for 2×1 FSO

MISO system without pointing error. However, in this study,

we have found that these useful observations are also valid for

a 2× 1 FSO MISO system with pointing errors.

V. IMPROVED ONE BIT FEEDBACK BASED BEAMFORMING

SCHEME FOR 2× 1 GAMMA-GAMMA FADING FSO LINKS

WITH POINTING ERRORS

As indicated by Remark 2, for avoiding the loss in the

diversity of the one bit feedback based beamforming scheme,

a should be chosen such that 0 6= a 6= 2. This condition

will ensure that both weights are non-zero and full diversity is

guaranteed irrespective of the error in the feedback. However,

we need an optimized value of a to minimize the average BER

of the scheme. Therefore, the modified beamforming scheme

is more generalized than the simple transmit aperture selection

scheme. The I/O relation for the scheme can be written as

y =
η

2
zs+ e. (28)

In (28), z is the effective channel and has two possibilities

depending upon the feedback:

z|correct = [t, u]v1

= at+ (2− a)u

z|wrong = [t, u]v2

= (2− a)t+ au. (29)

From (28) and (29), the conditional (conditioned on I1 and

I2) BER of the scheme can be written after some algebra as

Pe(I1, I2, γ̄) = PcQ(
√

2γ̄(at+ (2− a)u))

+ (1− Pc)Q(
√

2γ̄((2− a)t+ au)).(30)

By using the bound Q(x) ≤ (1/2)e−x2/2 [24, Fig. 3.1] in

(30), we get

Pe(I1, I2, γ̄) ≤ Pc

2
e−(at+(2−a)u)2γ̄

+
(1− Pc)

2
e−((2−a)t+au)2γ̄ . (31)

Since t > 0, u > 0, and 0 < a < 2, from (31) we get the

following upperbound on the conditional BER:

Pe(I1, I2, γ̄) ≤ Pc

2
e−(a2t2+(2−a)2u2)γ̄

+
(1 − Pc)

2
e−((2−a)2t2+a2u2)γ̄ . (32)

Under the observation that I1 and I2 are identically distributed,

an upperbound of the average BER of the scheme can be

written from (32) as

Pe(γ̄)

≤ Pc

∫ ∞

0

∫ x

0

e−(a2x2+(2−a)2y2)γ̄fI1(x)fI2 (y)dydx

︸ ︷︷ ︸

J1

+(1− Pc)

∫ ∞

0

∫ x

0

e−((2−a)2x2+a2y2)γ̄fI1(x)fI2 (y)dydx

︸ ︷︷ ︸

J2

.(33)

Note that the exact solution of the integrals in (33) can be

obtained by using the proposed series representation given

in (6), but it would be a cumbersome expression containing

many power series. It is very difficult to optimize this power

series based expression for finding an optimized value of a.

Therefore, we proposed to use the following asymptotic PDF

for finding a simplified asymptotic upperbound of the average

BER:

fI1(x) = Axδ−1, (34)

where δ = min(α, β, ξ2) and

A =
ξ2P (α, β, ξ2)

Γ(α)Γ(β)Γ(1 + ξ2 − δ)

(
αβ

A0

)δ

. (35)

The asymptotic PDF is obtained from (6) by substituting n = 0
and writing the remaining terms compactly.

Let us consider to solve the integral given in J1 term in

(33) first. After some algebra and using (34), we get

J1 =
A2

2((2− a)2γ̄)δ/2

∫ ∞

0

xδ−1e−a2x2γ̄

×γ(
δ

2
, (2− a)2γ̄x2)dx. (36)

After substituting h = x2 and using the relation:
∫ ∞

0

hd−1e−phγ(g, ch)dh =
cgΓ(d+ g)

gpd+g

×2F1

(

g, d+ g; g + 1;− c

p

)

, (37)

where 2F1 (·, ·; ·;w) is the Gauss hypergeometric function, in

(36), we get

J1 =
A2Γ(δ)

2δa2δγ̄δ 2F1

(

δ

2
, δ;

δ

2
+ 1;− (2− a)2

a2

)

. (38)

The solution of the J2 term in (33) can be obtained by

replacing a with 2− a in (38), as

J2 =
A2Γ(δ)

2δ(2− a)2δ γ̄δ 2F1

(

δ

2
, δ;

δ

2
+ 1;− a2

(2− a)2

)

. (39)

The BER upperbound of the scheme can be obtained by

substituting (38) and (39) in (33):

Pe(γ̄) ≤
PcA

2Γ(δ)

2δa2δγ̄δ 2F1

(

δ

2
, δ;

δ

2
+ 1;− (2− a)2

a2

)

+
(1− Pc)A

2Γ(δ)

2δ(2− a)2δ γ̄δ 2F1

(

δ

2
, δ;

δ

2
+ 1;− a2

(2− a)2

)

. (40)
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Fig. 1. BER versus v1 plots of the arbitrary beamforming scheme of Section
III in 2 × 1 FSO system over Gamma-Gamma fading channel with strong
−−∗−− and moderate −−◦−− atmospheric turbulence and pointing errors
(ξ2 = 4.5, A0 = 1).

Remark 5: It can be seen from (40) that the proposed

one bit feedback based beamforming scheme achieves the

maximum possible spatial diversity of min(α, β, ξ2).

The optimized value of a can be found by numerically mini-

mizing the asymptotic upperbound of the BER given in (40).

It will be shown in the Section VII that the proposed one bit

feedback based beamforming scheme provides improvement in

the BER performance as compared to the repetition coding in

2×1 FSO system with pointing error, despite of the imperfect

feedback.

VI. NUMERICAL RESULTS

A detailed discussion upon the proposed quantized feedback

based beamforming technique is provided in this section. The

SIM BPSK scheme is employed. The analytical plots are

obtained by using the derived theoretical results in the previous

sections; the simulation results are obtained by simulating the

Gamma-Gamma fading channels with pointing errors through

MATLABTM. The derived power series based expressions are

truncated to a finite number of terms for obtaining the analyti-

cal BER results. In all figures, if not stated otherwise, the SNR

denotes the SNR per diversity branch, i.e., γ̄ = η2Es/(M
2σ2),

where M is the number of transmit apertures.

A. Performance Evaluation of Arbitrary Beamforming Scheme

In Fig. 1, we plot the BER values of the arbitrary beam-

forming scheme given in (1) for a 2 × 1 FSO system under

the moderate (α = 4.0, β = 1.9) and strong (α = 4.2,

β = 1.4) atmospheric turbulence, by varying the weight of the

first transmit aperture, i.e., 0 < v1 < 2 with the constraint that

v1 + v2 = 2. The pointing error is characterized by ξ2 = 4.5
and A0 = 1. The BER values are obtained by using (18). The

SNR is varied from 5-25 dB in the figure. As seen from the

figure that v1 = v2 = 1 minimizes the value of the BER under

both atmospheric turbulences at all SNR values considered in
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Fig. 2. Optimization of the weight value a by minimization of BER upper-
bound of (40) for Pc = 0.99, 0.95, 0.9, 0.7, 0.5 over moderate atmospheric
turbulence (α = 4.0, β = 1.9) with pointing error parameters ξ2 = 1.7 and
A0 = 1; a∗ denotes the optimized value of a which minimizes the BER
upperbound.

the figure. This fact corroborates the Remark 3 that repetition

coding outperforms any arbitrary beamfroming scheme.

B. Performance of the Proposed One Bit Feedback Based

Beamforming Scheme in 2× 1 FSO MISO System

In this subsection, we compare the repetition coding, trivial

transmit aperture selection scheme, and the proposed one bit

feedback based beamforming scheme (discussed in Section

V) for 2× 1 FSO MISO system. It is assumed that there is a

possibility of error in the feedback bit which is characterized

by the probability of correct detection Pc ≤ 1. The BER

performance of the aforementioned schemes is evaluated over

moderate atmospheric turbulence with pointing error parame-

ters ξ2 = 1.7 and A0 = 1.

The BER upperbound given in (40) is used to obtain Fig. 2,

where the values of BER upperbound are plotted for 0 < a < 2
to find the optimized values of a for different feedback errors

in a 2×1 FSO system. The optimized values of a for different

values of Pc over the moderate atmospheric turbulence are

calculated by minimizing the BER upperbound; the SNR value

is taken as 36 dB. It can be observed from the figure that

the optimized value of a, i.e., a∗ moves towards two with

increasing value of Pc. This is as expected intuitively.

Fig. 3 shows the BER versus SNR plots for various schemes

for 2× 1 FSO system. The analytical BER versus SNR plots

for the best transmit aperture selection based scheme and

repetition coding are shown in the figure. In addition, the

simulated performance of the proposed one bit feedback based

beamforming scheme (discussed in Section V) is shown with

optimized beamforming vectors in the figure. It is assumed that

the feedback bit can be erroneously decoded by the transmitter.

The values of probability of correct detection of the feedback

bit are taken as Pc = 0.99, 0.95. The optimized beamforming
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Fig. 3. The simulated BER versus SNR performance of the proposed one
bit feedback scheme with optimized beamforming vectors (given in Section
V) in 2 × 1 FSO system employing SIM BPSK over moderate atmospheric
turbulence perturbed Gamma-Gamma fading channels with pointing error
parameters ξ2 = 1.7 and A0 = 1. The analytical BER versus SNR plots
of the repetition coding and best transmit aperture selection based scheme
with errors in the feedback is also shown. The values of probability of correct
detection of the feedback bit is taken as Pc = 0.95, 0.99.

vectors for the proposed one bit feedback based scheme for

different values of Pc are obtained from (22) by using the

values of a∗, given in Fig. 2. The analytical values of the

BER of the transmit aperture selection scheme with erroneous

feedback bit are obtained by using (26) and those for the

repetition coding are found by setting v1 = v2 = 1 in (18).

It can be seen from the figure that the trivial best transmit

aperture selection based scheme is actually very sensitive

to the feedback errors and its BER performance drastically

degrades even for small errors in feedback. For example, for

Pc = 0.95, the beamforming scheme performs poorer than

the repetition coding for SNR>16 dB. Further, it can be seen

from the figure that for very small error in feedback, i.e.,

Pc = 0.99, the trivial scheme looses diversity performance.

On the other hand, the proposed one bit feedback based

beamforming scheme achieves the same diversity order as that

of the repetition coding scheme irrespective of the error in

the feedback bit. Therefore, the proposed improved one bit

beamforming scheme given in Section V enables the 2 × 1
FSO system to achieve the full diversity (that of the repetition

coding) despite of the feedback errors, as shown in the figure.

In addition, the proposed scheme outperforms the repetition

coding at all SNR values considered in Fig. 3. Moreover,

for meaningful values of the BER, the proposed scheme sig-

nificantly outperforms the transmit aperture selection scheme

as can be seen from the figure. For example at BER=10−4,

the proposed scheme provides approximately 8 dB and 2 dB

SNR gains as compared to the best aperture selection scheme

and the repetition coding for Pc = 0.95 and Pc = 0.99,

respectively. Further, the plots in the figure corroborate the

diversity analysis results obtained in Sections III-V.
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