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INTRODUCTION

A U-Shaped electrothermal actuator is a series of three connected lineshaped beams (hot arm, cold arm and flexure), in a folded configuration as can be seen in figure 1.

The electrothermal heating of different arms with variable sections leads to non-equivalent expansions between the two sides of the folded actuator. The slight expansion of those arms is amplified by the structure to generate a considerable displacement at the tip of the actuator. The U-shaped actuator can output high forces with a wide range of displacement compared to other microactuators in MEMS. It has a repeatable behavior, long life time [START_REF] Edward S Kolesar | Thermallyactuated cantilever beam for achieving large in-plane mechanical deflections[END_REF], small footprint, simple design, and tolerance to working conditions (dust, moisture...). Its monolithic single material structure makes it compliant with standard MEMS-based fabrication processes.

This design, firstly introduced in 1992 [START_REF] Guckel | Thermo-magnetic metal flexure actuators[END_REF], is being widely exploited during the last two decades especially in MEMS applications [START_REF] John | Applications for surface-micromachined polysilicon thermal actuators and arrays[END_REF][START_REF] Moulton | Micromechanical devices with embedded electro-thermal-compliant actuation[END_REF][START_REF] Chen | Design of contoured microscale thermomechanical actuators[END_REF][START_REF] Chalvet | A microfabricated planar digital microrobot for precise positioning based on bistable modules[END_REF][START_REF] Hussein | Design optimization of bistable modules electrothermally actuated for digital microrobotics[END_REF][START_REF] Wang | Design, modeling, and characterization of a mems electrothermal microgripper[END_REF] due to its obvious advantages which pushed research towards ameliorating the design and the performance of the actuator.

Modeling the behavior of the actuator is a diverse task since it is an interaction of several domains : electricity, thermal distribution, structural expansion and elastic deformation. Usually, the modeling process is a sequence of two models: Electro-thermal and thermo-mechanical. The first one allows computing the temperature values at each section as a result of joule heating, the second one estimates the displacement at the actuator's tip according to the obtained temperature distribution.

Numerous electrothermal [START_REF] Huang | Analysis and design of polysilicon thermal flexure actuator[END_REF][START_REF] Kuang | Numerical simulation of a polysilicon thermal flexure actuator[END_REF][START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF][START_REF] Muratet | Conception, caractérisation et modélisation: Fiabilité prédictive de MEMS à actionnement électrothermique[END_REF][START_REF] Mayyas | Thermal cycle modeling of electrothermal microactuators[END_REF] and thermomechanical [START_REF] Huang | Analysis and design of polysilicon thermal flexure actuator[END_REF][START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF][START_REF] Muratet | Conception, caractérisation et modélisation: Fiabilité prédictive de MEMS à actionnement électrothermique[END_REF][START_REF] Mayyas | Thermal cycle modeling of electrothermal microactuators[END_REF] models have been presented in previous works on the U-shaped actuator, yet few studies [START_REF] Mayyas | Thermal cycle modeling of electrothermal microactuators[END_REF][START_REF] Lerch | Modelization and characterization of asymmetrical thermal micro-actuators[END_REF][START_REF] Syms | Long-travel electrothermally driven resonant cantilever microactuators[END_REF][START_REF] Hickey | Time and frequency response of two-arm micromachined thermal actuators[END_REF][START_REF] Vincent A Henneken | Improved thermal u-beam actuators for micro-assembly[END_REF][START_REF] Hussein | Analysis of the dynamic behavior of a doped silicon u-shaped electrothermal actuator[END_REF] are found that have addressed the dynamic response of the U-shaped actuator. Further, experiments and simulations in our previous work [START_REF] Hussein | Analysis of the dynamic behavior of a doped silicon u-shaped electrothermal actuator[END_REF] showed a dynamic behavior that is related to the thermal dynamic while the elastic response is quasistatic relatively. Therefore, dynamic electrothermal model and static thermomechanical model are required.

An analytical formulation of the steady state and transient solutions of the electrothermal response of a lineshaped beam are presented in [START_REF] Lin | Electrothermal responses of lineshape microstructures[END_REF]. As for the U-shaped actuator, the steady state solution was investigated in [START_REF] Huang | Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator[END_REF]. As for the transient solution, the problem was solved numerically in [START_REF] Mayyas | Thermal cycle modeling of electrothermal microactuators[END_REF] using Laplace transformation.

As far as we know, no exact analytical solution of the transient electrothermal response of the actuator was found in literature. In the case of a simple beam, solving the electrothermal equation revolves around the recognition of a Fourier series form of the general solution after introducing boundary and initial conditions (Appendix A). This is not the case for the U-shaped actuator.

The difficulty in the case of the actuator lies in the fact that the arms are differently heated, and temperature evolution in each arm is described by an equation. This leads to a general solution in the form of a hybrid function with three sub-functions, each one concerns one arm of the actuator. In result, the hybrid function cannot be recognized as a Fourier series, and no solution can be obtained with this method.

An exact analytical solution of the electrothermal problem of the actuator is presented in this paper using a novel calculation method that allows presenting an integrable function by a hybrid function, where sub-functions consist of infinite sum of sines and cosines. Expression of the temperature final solution is an infinite sum of periodic functions where all the parameters are determined. This analytical expression describes evolution of the temperature distribution inside the actuator in response to an electrical input.

As for the thermo-mechanical model, in previous works, several approaches were considered to estimate the displacement at the tip using mainly the length thermal expansion in each arm. The difference of enthalpy approach was used in [START_REF] Muratet | Conception, caractérisation et modélisation: Fiabilité prédictive de MEMS à actionnement électrothermique[END_REF], Castiglianos theory approach as in [START_REF] Hickey | Time and frequency response of two-arm micromachined thermal actuators[END_REF] and Euler-Bernoulli equation was derived to estimate the displacement in [START_REF] Eniko T Enikov | Analytical model for analysis and design of vshaped thermal microactuators[END_REF]. As in the validated model [START_REF] Huang | Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator[END_REF] where the virtual works method was used, in our proposed model we calculate the displacement using the same method but we have chosen not to make any of the simplifications done previously in order to obtain a solution of a more general case with regard to the dimensions of the actuator.

The importance of the proposed models, lies not only in the estimation of the displacement and temperature distribution; but also to their capability of showing the effects of different parameters and dimensions on the response, a key tool for the design and optimization.

The models and solutions will be addressed in the following sections, the actuator's electrothermal new solution is presented followed by the thermomechanical modeling. Finally, analytical solutions are discussed and compared to FEM modeling and experimental results.

Calculation method of the electrothermal equation for a lineshaped structure is recalled in Appendix A.

Electrothermal modeling of the actuator

Electrothermal equation

At the microscale, the heat transfer mechanisms are different from the macroscale [START_REF] Jungen | Electrothermal effects at the microscale and their consequences on system design[END_REF][START_REF] Ozsun | On heat transfer at microscale with implications for microactuator design[END_REF]. Conduction is dominant on the free convection [START_REF] Ozsun | On heat transfer at microscale with implications for microactuator design[END_REF] while radiation is negligible as in several previous studies [START_REF] Huang | Analysis and design of polysilicon thermal flexure actuator[END_REF][START_REF] Kuang | Numerical simulation of a polysilicon thermal flexure actuator[END_REF][START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF]. As for, conduction should be treated as the only mode of heat transfer in the absence of forced convection and radiation [START_REF] Ozsun | On heat transfer at microscale with implications for microactuator design[END_REF].

The models for the U-shaped actuator are generally one dimensional and have simplifying assumptions. The temperature is considered to be uniform in the cross section for microactuators [START_REF] Chen | Design of contoured microscale thermomechanical actuators[END_REF][START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF].

In this paper, convection and radiation effects are then neglected in the electrothermal modeling and a one dimensional simplification is considered making the device modeled unfolded. So, with regards to the previous, the electrothermal partial differential equation (PDE) that allows describing the temperature T in terms of the space dimension x and time t is as follows:

ρ d C p ∂T ∂t = J 2 ρ 0 + K p ∂ 2 T ∂x 2 (1) 
ρ d : density in kg m 3 C p : specific heat in J K.kg J: electrical current density in A m 2 ρ 0 : electrical resistivity in Ω.m K p : thermal conductivity in W K.m
The term on the left of (1) represents the density of heat added due to thermal variation. The first term on the right represents the heat generation by Joule effect, the one next concerns the conduction between sections and the anchors.

Actuator electrothermal response

In this section, we model the system using three electrothermal PDEs that are continuous in temperature and heat flux density, one for each arm of the actuator.

The folded actuator (figure 1) is modeled unfolded in order to match the one dimension 1D hypothesis. Coordinates and dimensions of the actuator are shown in figure 2. The temperature distribution T (x, t) in the case of the actuator is a hybrid function with three subfunctions that represent the temperature in each of the three arms.

T (x, t) =    T h (x, t) x ∈ [0; l 1 ] T c (x, t) x ∈ [l 1 ; l 2 ] T f (x, t) x ∈ [l 2 ; l 3 ] (2)
Where the indexes h, c and f refer to the hot arm, cold arm and flexure respectively.

In order to simplify the presentation of the model, the index k refers to the three different arms as follows:

{eq. k } ≡    eq. k≡h x ∈ [0; l 1 ] eq. k≡c x ∈ [l 1 ; l 2 ] eq. k≡f x ∈ [l 2 ; l 3 ] (3) 
Three different equations allow defining the electrothermal behavior of each arm taking in consideration the thermal exchanges in all three as follows:

∂ 2 T k ∂x 2 = 1 α p ∂T k ∂t - J 2 k ρ 0 K p (4) 
The steady state temperature solution (T ss ) has the following distribution in all three arms:

T kss (x) = - J 2 k ρ 0 2K p x 2 + d k1 x + d k2 (5) 
Where

d h1 , d h2 , d c1 , d c2 , d f 1 and d f 2 are constants.
In addition to the boundary conditions at both ends of the actuator, there are also continuity conditions between adjacent arms in temperature and heat flux density. Considering the boundary and continuity conditions allows determining the values of d k1 and d k2 in (5):

T h (0, t) = T ∞ T f (l 3 ) = T ∞ T h (l 1 , t) = T c (l 1 , t) A h ∂T1 ∂x (l 1 , t) = A c ∂Tc ∂x (l 1 , t) T c (l 2 , t) = T f (l 2 , t) A c ∂Tc ∂x (l 2 , t) = A f ∂T f ∂x (l 2 , t) (6) 
Where A h , A c and A f are the arms section areas, and T ∞ is the ambient temperature.

As in the lineshaped beam case (Appendix A), the transient solution of temperature is a sum of the steady state temperature solution and a sum of separated variable function as follows :

T k (x, t) = T kss (x) + ∞ n=1 X kn (x)T kn (t) (7) 
The general solutions of T kn (t) and X kn (x) have the following forms (Appendix A):

   T kn (t) = e -αpλ 2 n t X kn (x) = a kn sin(λ n x) + b kn cos(λ n x) = C kn sin(λ n x + ϕ kn )    (8) 
Introducing the boundary and continuity conditions in [START_REF] Chalvet | A microfabricated planar digital microrobot for precise positioning based on bistable modules[END_REF] leads to the following conditions on X kn :

X hn (0) = 0 X f n (l 3 ) = 0 X hn (l 1 ) = X cn (l 1 ) A h ∂X hn ∂x (l 1 ) = A c ∂Xcn ∂x (l 1 ) X cn (l 2 ) = X f n (l 2 ) A c ∂Xcn ∂x (l 2 ) = A f ∂X f n ∂x (l 2 ) (9)
Applying the conditions in (9) on X kn allows obtaining the equation of λ n and defining the relation between a hn and the other constants. The relations between a hn and the other constants are as follows:

b hn = 0 b cn a hn = 1 - A h A c sin(λ n l h ) cos(λ n l h ) a cn a hn = sin 2 (λ n l h ) + A h A c cos 2 (λ n l h ) b f n a hn = - a f n a hn tan(λ n l 3 ) a f n a hn = cos(λ n l c ) A h A f cos(λ n l 2 ) cos(λ n l 1 ) + sin(λ n l 2 ) sin(λ n l 1 ) + sin(λ n l c ) A h Ac sin(λ n l 2 ) cos(λ n l 1 ) -Ac A f cos(λ n l 2 ) sin(λ n l 1 ) (10) 
In addition, the equation of λ n concluded from ( 9) is as follows:

A h A c cos(λ n l h ) cos(λ n l c ) sin(λ n l f )+ A h A f cos(λ n l h ) sin(λ n l c ) cos(λ n l f )+ A c A f sin(λ n l h ) cos(λ n l c ) cos(λ n l f )- A 2 c sin(λ n l h ) sin(λ n l c ) sin(λ n l f ) = 0 (11)
Unlike the case of a lineshaped beam, the trigonometric equation ( 11) doesn't allow obtaining a simple analytical form of λ n . The values of λ n for the actuator must be then calculated numerically using [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF].

Yet, a kind of periodicity for the values of λ n is noticed. If the total length of the arms can be written as a positive integer after scaling, then λ K l is the K l th solution of λ n :

λ K l = K l π l 3 ( 12 
)
K l is a least common multiple (lcm) between lengths of arms:

K l = lcm lcm(l h , l 3 ) l h , lcm(l c , l 3 ) l c , lcm(l f , l 3 ) l f (13) 
In result, the solutions of λ n are periodic as follows:

λ K l +n = λ K l + λ n (14) 
In our case, l 3 = 2l h , then the first part in ( 13) is equivalent to 2 and K l is always an even number. In this case, λ K l /2 = (K l π)/(2l 3 ) is also a solution of λ n . The first K l solutions of λ n are also symmetric as follows:

λ K l -n = λ K l -λ n (15)
Therefore, it is sufficient to calculate only the first λ n solutions for λ n ≤ (K l π)/(2l 3 ). The other λ n are defined by symmetry and periodicity.

Returning to the modeling, the second representation of X kn (x) in [START_REF] Wang | Design, modeling, and characterization of a mems electrothermal microgripper[END_REF] with C kn , λ n and ϕ kn is adopted in order to present the developed solution hereinafter:

C kn = a 2 kn + b 2 kn ϕ kn =    -tan -1 b kn a kn a kn > 0 π -tan -1 b kn a kn a kn < 0 ( 16 
)
The values of ϕ kn can be concluded from ( 10) and ( 16). The relations of C cn , C f n with respect to C hn are as follows:

C hn = |a hn | Ccn C hn = A h Ac sin 2 (λ n l h ) + cos 2 (λ n l h ) + A h Ac -1 sin(λ n l h ) cos(λ n l h ) C f n C hn = a f hn cos(λnl3) (17) 
Among the 7 unknown constants in (8), λ n is obtained from [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF] and all others are defined according to only one constant C hn [START_REF] Vincent A Henneken | Improved thermal u-beam actuators for micro-assembly[END_REF]. This constant can be calculated by introducing the initial distribution of temperature:

∞ n=1 C kn sin(λ n x + ϕ kn ) = T k0 (x) -T kss (x) (18) 
The recognition of a Fourier series allows calculating the unknown constants in the case of a lineshaped beam (Appendix A). Fourier series allows representing any integrable function by an infinite sum of sine waves. The sine waves are periodic on a determined range while the sine and cosine constants are continuous throughout the period.

These conditions are satisfied in the case of the lineshaped beam, while the hybrid and aperiodic nature of the temperature distribution along the actuator prevents the application of the same principle for calculating the constants of the actuator electrothermal response.

A solution for the unknown constant in ( 18) is presented in the following using a novel calculation method to present an integrable function by a sum of hybrid sine and cosine functions. In order to calculate the values of the constants C h , C c , C f , ϕ h , ϕ c and ϕ f that correspond to λ n = λ, we multiply the first row in [START_REF] Hussein | Analysis of the dynamic behavior of a doped silicon u-shaped electrothermal actuator[END_REF] by C h A h sin(λx + ϕ h ), the second row by C c A c sin(λx + ϕ c ) and the third row by C f A f sin(λx + ϕ f ) and integrate the result over the length of the actuator:

l3 0 ∞ n=1 C kn C k A k sin(λ n x + ϕ kn ) • sin(λx + ϕ k ) dx = l3 0 {C k A k (T k0 (x) -T kss (x)) sin(λx + ϕ k )} dx (19) 
Noting that:

l3 0 {eq. k } dx = l1 0 eq. k≡h dx + l2 l1 eq. k≡c dx + l3 l2 eq. k≡f dx (20) 
The first side in [START_REF] Lin | Electrothermal responses of lineshape microstructures[END_REF] can be decomposed in two parts:

l3 0 ∞ n=1 C kn C k A k sin(λ n x + ϕ kn ) • sin(λx + ϕ k ) dx = l3 0 λn =λ C kn C k A k sin(λ n x + ϕ kn ) • sin(λx + ϕ k ) dx + l3 0 C 2 k A k sin 2 (λx + ϕ k ) dx (21) 
Considering boundary and continuity conditions allows canceling the first part of ( 21) for λ n = λ:

l3 0 λn =λ C kn C k A k sin(λ n x + ϕ kn ) • sin(λx + ϕ k ) dx = 0 (22) 
The other part of ( 21) is equivalent to:

l3 0 C 2 k A k sin 2 (λx + ϕ k ) dx = 1 2 (C 2 h A h l h + C 2 c A c l c + C 2 f A f l f ) (23) 
Introducing ( 21), ( 22) and ( 23), equation ( 19) becomes:

l3 0 {C k A k (T k0 (x) -T kss (x)) sin(λx + ϕ k )} dx = 1 2 (C 2 h A h l h + C 2 c A c l c + C 2 f A f l f ). (24) 
Applying integration by parts two times to the first part in [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF] and considering boundary and continuity conditions, the first part in [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF] becomes:

l3 0 {C k A k (T k0 (x) -T kss (x)) sin(λx + ϕ k )} dx = 1 λ 2 l3 0 C k A k d 2 dx 2 (T k0 (x) -T kss (x)) • sin(λx + ϕ k ) dx (25) 
Equations [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF] or/and (25) allow defining the value of the unknown constant for a determined initial temperature distribution.

In the case of an initial uniform distribution of temperature,

d 2 dx 2 (T k0 (x) -T kss (x)) is equivalent to: d 2 dx 2 (T k0 (x) -T kss (x)) = - I 2 ρ 0 K p A 2 k ( 26 
)
In result, the integral in ( 24) is equivalent to:

l3 0 {C k A k (T k0 (x) -T kss (x)) sin(λx + ϕ k )} dx = I 2 ρ0 λ 3 Kp        -C h A h cos(ϕ h ) +C h A h cos(λl 1 + ϕ h ) 1 A 2 h -1 A 2 c +C c A c cos(λl 2 + ϕ c ) 1 A 2 c -1 A 2 f + C f A f cos(λl 3 + ϕ f )        (27)
where I is the electrical current.

Combining [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF] and ( 27) allows obtaining the value of the unknown constant C h with respect to the actuator dimensions, material properties and the corresponding λ, ϕ k and C k :

C h = 2I 2 ρ 0 λ 3 K p l h + l c Ac A h ( Cc C h ) 2 + l f A f A h ( C f C h ) 2 •        -1 A 2 h cos(ϕ h ) + cos(λl 1 + ϕ h ) 1 A 2 h -1 A 2 c + Ac A h Cc C h cos (λl 2 + ϕ c ) 1 A 2 c -1 A 2 f + 1 A h A f C f C h cos(λl 3 + ϕ f )        (28) 
Consequently, the solution of the electrothermal problem is obtained.

The expression of the temperature with respect to time t and position x in the case of the actuator is as follows:

   T k (x, t) = T kss (x) + ∞ n=1 C kn sin(λ n x + ϕ kn )e -αpλ 2 n t    (29)
The steady state temperature distribution T kss (x) is obtained in [START_REF] Chen | Design of contoured microscale thermomechanical actuators[END_REF]. The values of λ n are calculated from [START_REF] Hickey | Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators[END_REF] and the corresponding constants C kn and ϕ kn are obtained in ( 16), ( 17) and [START_REF] Sheng | The dopant density and temperature dependence of hole mobility and resistivity in boron doped silicon[END_REF].

The obtained expression (29) allows obtaining directly the evolution of the temperature distribution inside U-shaped actuators with determined dimensions and material properties. In addition, this expression allows identifying the influence of all dimensions and parameters on the evolution of the temperature distribution inside the actuator.

Thermo-mechanical model

In this section, the displacement at the tip of the actuator is calculated based on the superposition and virtual work principles. The displacement is seen as an image of the evolution of the thermal distribution inside the actuator.

Generally, in micro-structures, the natural frequency is higher. In addition, simulations and experiments showed that the natural frequency of the actuator is of several KHz, which implies that the structural dynamic response is much faster then the electrothermal dynamic response (The dynamic response is shown later in Section 4). Thus, the mechanical inertia is considered to be quasi-static.

The structure of the actuator allows amplifying the thermal expansion difference between the two sides of the actuator. Thermal expansion of each arm occurs due to temperature rise with respect to the following equation:

∆l = l 0 α (T (x) -T 0 ) dx ( 30 
)
Where ∆l is the length expansion and α is the thermal expansion coefficient.

Figure 3 shows the surface forces N and moments M in the actuator anchored at the flexure after applying virtual unit forces and moments at the free border of the hot arm and at the tip of the actuator. The efforts X, Y and M are calculated in order to cancel the displacement and rotation at the free border of the hot arm as follows:

  δ XX δ XY δ XM δ Y X δ Y Y δ Y M δ M X δ M Y δ M M     X Y M   =   ∆ 0 0   (31) 
where ∆ = ∆L h -∆L c -∆L f . The displacements and rotations after applying unit forces and moments δ XX , δ XY ... are obtained by applying the virtual works principle with respect to the following equation:

δ 12 = l 0 N 1 N 2 EA + M 1 M 2 EI y dx (32)
δ 12 : Displacement or rotation in the direction of the virtual unit effort 1 after applying the real effort 2. N 1 : Surface forces with the virtual effort. N 2 : Surface forces with the real effort. M 1 : Bending moments with the virtual effort. M 2 : Bending moments with the real effort. I y = bw 3 12 : Second moment of area of section with respect to the midline. E: Young's modulus.

Based on (32), expressions of δ coefficients in (31) are as follows:

δ XX = g 2 l f EI yf + g 2 l c EI yc + 2g 3 + 3gw h (g + w h 2 ) 6EI yg + l f ES f + l c ES c + l h ES h (33a) δ Y Y = l 3 f 3EI yf + l 3 h -l 3 f 3EI yc + gl 2 h EI yg + l 3 h 3EI yh + g ES g (33b) δ M M = l f EI yf + l c EI yc + g EI yg + l h EI yh (33c) δ XY = δ Y X = g l 2 f 2EI yf + g (l 2 h -l 2 f ) 2EI yc + g 2 l h + l h gw h 2EI yg (33d) δ XM = δ M X = g l f EI yf + g l c EI yc + g(g + w h ) 2EI yg (33e) δ Y M = δ M Y = l 2 f 2EI yf + l 2 h -l 2 f 2EI yc + gl h EI yg + l 2 h 2EI yh (33f)
given that: g: Gap width g : Distance between hot arm and flexure mid-lines; g = g + w h +w f 2 g : Distance between hot and cold arm mid-lines;

g = g + w h +wc 2
Calculation of the anchor efforts (31) allowed computing the surface forces and bending moments after the thermal expansion and then computing the displacement d at the tip of the actuator:

d = M + g X 2EI yf 2l h l f -l 2 f + M + g X 2EI yc 2l h l c -l 2 h + l 2 f +Y 3l h l 2 f -2l 3 f 6EI yf + l 3 h -3l h l 2 f + 2l 3 f 6EI yc (34)
The analytical expression of the displacement d (34) shows that the displacement is directly proportional to the expansion difference between two sides of the actuator.

d = k∆ (35)

Simulations, Experiments and discussion

The analytical models in this section are compared with FEM simulations and experiments and the evolution of the physical aspects (such as the temperature distribution and displacement) is discussed. Analytical models, FEM simulations and experiments are run on a doped silicon U-shaped actuator with the dimensions shown in figure 4. These dimensions are chosen to provide the required performance for our microrobotic application [START_REF] Hussein | Design optimization of bistable modules electrothermally actuated for digital microrobotics[END_REF]. Most of the physical properties of doped silicon are dependent of the temperature and the doping concentration. The thermal conductivity K p of silicon decreases with temperature [START_REF] Glassbrenner | Thermal conductivity of silicon and germanium from 3 k to the melting point[END_REF]. It also decreases for thin layers and for high impurity concentration [START_REF] Asheghi | Thermal conduction in doped single-crystal silicon films[END_REF]. The specific heat C p of silicon increases with temperature [START_REF] Okhotin | Thermophysical properties of semiconductors[END_REF]. The electrical resistivity ρ 0 of silicon is also thermally dependent, its evolution with doping concentration and temperature is clarified in [START_REF] Sheng | The dopant density and temperature dependence of hole mobility and resistivity in boron doped silicon[END_REF].

A simplifying assumption considering a constant value for these properties is taken. This hypothesis allows using the analytical solution of the electrothermal model to simulate the temperature distribution in the actuator.

Figure 5 shows evolution of the temperature distribution, at several instants between 0 and 1s, after applying a voltage of 15V at the anchors.

The electrothermal response is calculated directly from the analytical expression of T (x, t) in [START_REF] Okada | Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 k[END_REF]. The physical properties used in the calculation have the following values: T s = 298.15 K, ρ d = 2330 kg/m 3 , C p = 712 J/K • kg, K p = 149 W/mK, ρ 0 = 0.265 Ωmm.

Different rates of temperature evolution in the three arms of the actuator are observed in figure 5. Further, figure 6 shows evolution of the average temperature of the hot arm, cold arm and flexure regarding the time.

Due to the lower width, the local Joule heating is higher in the flexure at the beginning. Thus, the initial temperature evolution is faster in the flexure, than in the hot and cold arms respectively. However, the temperature evolution rate of the flexure is limited by the cold temperature of the anchor and the cold arm and its evolution rate starts to slow down (zoom in figure 6) consequently. From the beginning, the temperature in the hot arm grows rapidly and despite a larger width than the flexure arm, the temperature in the hot arm becomes quickly higher. After around 100 ms, the temperature in the hot arm is closer to the steady state and its evolution rate becomes highly reduced whereas the temperatures in the cold and the flexure arms continue to rise until their steady state.

In result, the evolution rate of the temperature in the hot arm is higher than the cold side (cold and flexure arms) at the beginning while it is slower while getting closer to the steady state. This difference in the evolution rate is the reason behind the overshoot behavior of the actuator displacement shown later in this paper (figure 10), where the thermal expansion in each side is related to the temperature distribution (30) and the displacement is an image of the expansion difference (35).

A 3D FEM modeling is made using ANSYS and allows simulating the thermal distribution and the structural deformation of the actuator after applying electrical voltage. The element used in the simulation SOLID226 is selected to allow a thermal-electricstructural analysis. The actuator in the simulation has the same dimensions as in figure 4. Convection and radiation are neglected and the physical properties and boundary conditions are the same as in the analytical modeling.

The evolution of the average temperature in the hot arm is considered as a comparison parameter of the electrothermal response between the analytical solution and FEM simulation. The comparison is shown in figure 7 for two applied voltages (15 and 18V). Figure 7 shows a very good agreement between the presented electrothermal solution and FEM simulations. The temperature distribution in the 3D FEM simulation is remarked to be homogeneous in the cross section along each arm while it is slightly non-homogeneous at the borders. This validates the one-dimensional simplifying assumption used in the electrothermal analytical model.

Experiments that are run on microfabricated actuators allowed us to record the displacement of the actuator with a high speed camera after applying electrical voltages.

The actuators are fabricated using singlecrystalline silicon-on-insulator (SOI) wafer, with a 100µm device layer, a 2µm buried oxide (SiO 2 ) and a 380µm handle layer. The device layer with a <1-0-0> orientation is highly doped p-type and has a range of resistivity of 0.1 -0.3 Ωmm.

The shape of the actuator after fabrication is shown in figure 8. The active parts of the actuator are realized in the device layer while the handle layer serves as a support of the whole device. The intermediate SiO 2 layer is an electrical insulator, it allows separating the anchor pads electrically.

In the experiments, the actuators on wafer are placed in a micromanipulation station under a high speed camera. This camera allows recording the displacement of the actuator throughout a microscope with a frame rate of up to several ten thousands of frames per second. The electrical connection with the actuator is provided with 2 conductive probes that are connected to the actuator pads. The displacement of the actuator after applying a step voltage is recorded on videos. Figure 9 shows two frames of an experience video in the on and off state respectively. The displacement is then measured directly on the videos using a specific software. For example, the measured displacement in figure 9.b is around 150µm. Noting that the expansion coefficient α is considered to be thermally dependent in the analytical calculation (30) and FEM simulations. This consideration was taken into account because of the large variation of the expansion coefficient of silicon with temperature (from 2.568µm/mK at 300K to 4.258µm/mK at 1000K). Yokada et al. in [START_REF] Okada | Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 k[END_REF] have defined an equation for the thermal expansion coefficient of silicon with respect to temperature: α = 10 -6

3.725 1 -e -5.88•10 -3 (T -124) +5.548 • 10 -4 T (36)

Figure 10 shows an important overshoot of displacement of the actuator before reaching a steady state position. The transient shape of displacement is due to the variation of the evolution rate of temperature distribution on the two sides of the actuator as shown in figures 5 and 6.

Fig 10 shows that this behavior of displacement is common between the analytical models, FEM simulations and experiments but with slight differences.

The displacement curves of the analytical models and the FEM simulation have the same shapes but with a small shift between the two theoretical curves. Consequently, as there's a good agreement in terms of the electrothermal response as shown in figure 7 and as the displacement is equivalent to the expansion difference (35) which is an image of the temperature distribution, then the difference in the calculated displacement returns mostly to the thermo-mechanical model. This difference may return to the negligence of the shear force and the one dimensional simplification in the analytical calculation. The different arms in the actuator are considered as lines and there is an uncertainty in the calculation particularly at the connection between arms. In addition, the slightest difference in the electrothermal model is amplified in the displacement calculation due to the amplifying effect of the structure.

In the other side, there is a difference in the shape of the displacement curves between the calculated and experimental results as shown in figure 10. Experiments show a lower overshoot and a higher steady state final position.

This difference may exist due to the assumptions taken in the calculation (negligence of convection and radiation, boundary conditions etc.), the uncertainty in the physical properties and the thermal dependence of the physical properties of silicon especially in the steady state where the actuator is overheated.

In result, the analytical models presented in this paper show good agreement with the results of the FEM simulations and experiments.

An almost perfect agreement is noted in terms of the transient electrothermal response between the analytical solution and FEM simulations despite the 1D simplification of the analytical model.

Less agreement is noted in the calculated displacement. A small shift between the displacement curves is noted with the FEM simulation results and a slight difference in the shape of these curves is noted with the experimental results.

Originality of the electrothermal analytical model is that it provides an exact solution of the hybrid PDEs that describe the electrothermal behavior of the three arms of the actuator. The calculation method can be extended to any number of connected hybrid PDEs and evidently for other defined boundary conditions. The cooling cycle can be modeled also using the analytical modeling by canceling the Joule heating term in the electrothermal equation and introducing the final temperature distribution in the heating cycle as the initial temperature distribution in the cooling cycle.

The importance of the analytical models is not only that they provide a solution for an equation. The obtained expressions show clearly the influence of the different dimensions and material properties on the electrothermal behavior and the displacement of the actuator. These expressions can be used to design and optimize the dimensions and behavior of the U-shaped actuator.

Conclusion

In this paper, a complete electro-thermo-mechanical analytical modeling of the dynamic behavior of Ushaped electrothermal actuators was presented. The problem was treated by a sequence of two analytical models: electro-thermal and thermo-mechanical. The first one concerns the computation of the evolution of the thermal distribution in the actuator, while the second one allows computing the displacement resulting from the thermal distribution.

The electrothermal model provided an exact solution of the hybrid PDEs that describe the electrothermal behavior in the three arms of the actuator. The relation between the displacement and the thermal distribution is then provided in the thermo-mechanical model. FEM simulations and experiments were run on doped silicon actuators. the analytical models showed a good agreement with the results of the FEM simulation and experiments in terms of the thermal distribution and the displacement.

The presented modeling opens up important perspectives in terms of the modeling, design and optimization of the actuator. For the modeling, several development axes are possible such as the modeling of the cooling cycle, free and charged displacements with external forces, consideration of phenomena neglected in the present approach (convection or radiation, different boundary conditions, temperature dependence of the properties, etc). In the other side, the influence of the different dimensions and properties on the electrical, thermal and mechanical behavior of the actuator can be concluded from the presented analytical expressions which is very important for the design and optimization.
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 1 Figure 1. U-shaped electrothermal micoractuator.
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 2 Figure 2. Unfolded actuator
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 3 Figure 3. Surface forces N and moments M in the actuator anchored at the flexure after applying virtual forces and moment at the free border of the hot arm, (a), (b) and (c), and at the tip of the actuator (d).
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 4 Figure 4. The modeled actuator dimensions
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 5 Figure 5. Temperature profiles in the actuator obtained analytically at 0, 2, 10, 20, 40, 70, 150, 250, 500 and 1000ms after applying 15V.
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 6 Figure 6. Evolution of the average temperature with time in the three arms of the actuator after applying 15V voltage.
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 7 Figure 7. Comparison between the analytical model and ANSYS for the evolution of the average temperature in the hot arm.
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 8 Figure 8. Layers of the microfabricated actuator.
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 9 Figure 9. Frames from an experience video on the actuator, at the rest position (a) and during displacement (b).

Figure 10

 10 Figure 10 shows the displacement curves of the actuator with respect to time obtained from the analytical models, FEM simulations and experiments. Displacement curves are shown for two applied voltages (15V and 18V).

Figure 10 .

 10 Figure 10. Comparison between the analytical model, ANSYS and experiments for the displacement curves at the tip of the actuator.
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Appendix A. Lineshaped beam electrothermal response

In this appendix, we recall the calculation method of the electrothermal response for a lineshaped microbeam. Considering a constant temperature at the borders and an initial distribution of the temperature as follows:

Where l is the length of the beam.

Introducing the boundary conditions in (1), the steady state temperature in the lineshaped beam has the following distribution:

In order to obtain the transient solution, the temperature is decomposed in two parts:

Where u(x) is the steady state solution u(x) = T ss (x). This decomposition allows assigning to zero the boundary conditions of v(x, t). The boundary and initial conditions for v(x, t) are as follows:

Introducing (A.3) in the electrothermal equation (1), the PDE of v(x, t) can be written as follows:

Where α p = Kp ρ d Cp is the thermal diffusivity. Using the method of separation of variables (Fourier method), v(x, t) can be decomposed in two functions with separated variables:

Introducing the separated functions (A.6) in the PDE (A.5) allows obtaining the PDEs of Γ(t) and X(x):

where λ is a positive non-zero constant assigned to X(x) and Γ(t).

The general solutions of Γ(t) and X(x) have the following forms:

where a, b and λ are the unknowns.

Introducing the boundary conditions, we conclude that the unknowns have infinity of solutions with a periodic form: a = a n , b = b n and λ = λ n , where n is a positive integer. In result, according to the superposition principle:

where X n and Γ n are equivalent to X and Γ respectively for a = a n , b = b n and λ = λ n .

For the boundary conditions in A.1, the constants b n and λ n are equivalent to: b n = 0, λ n = nπ/l. Afterwards, the transient solution of the temperature has the following form:

Introducing the initial temperature condition, we recognize a Fourier series form, enabling to determine the expression of a n . Thereby, all the unknowns are determined and the solution is obtained.