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Abstract  

The paper addresses a supply network design problem in which a set of enterprises decides to organize itself as a 

multi-stage supply network through resource sharing and production coordination. A biform game theory 

formulation of the problem is obtained by combining the cooperative subgame in the manufacturing network 

with the strategic subgame of the Stackelberg type between the retailer and the manufacturers’ network. As a 

result of the interaction between these two subgames, a new type of cooperative game, the Quadratic Production 

Game (QPG), is formulated to describe the supply network design problem under anticipated price elastic 

demands from the market. The key problem of coalitional stability is addressed through the properties of 

rationality and fairness of the profit sharing agreement. We prove that the game is non convex in general and 

thus the fair solution given by the Shapley value allocation is not always rational. The main results indicate that 

the coalition stability can be reinforced by minimizing the number of partner enterprises achieving the maximal 

expected profit and applying a profit sharing policy with guaranteed fairness restricted to the member enterprises. 

 

Keywords: Game Theory; Manufacturing; Enterprise networks; Cooperative Game Theory; Production Games; 

Biform Games; Stackelberg equilibrium. 

 

1. Introduction 

In the context of international projects such as the European coordinated action CODESNET 

(2009), it has been observed that some networks of manufacturers have now organized 

themselves both internally in a cooperative manner, by sharing their products and resources, 

and externally as dominant strategic actors relatively to their suppliers and customers. Other 

empirical studies, , such as Audy et al.(2011), have stressed the fact that potential benefits and 

cost savings brought by resource and/or inventory pooling among enterprises must be 

organized and implemented and that their effectiveness critically depends on the business 

practices of the collaborating companies. The same authors also distinguish horizontal 
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cooperation, vertical cooperation and lateral cooperation, which is a combination of the two, 

with partners at the same level (horizontal) and at different levels (vertical) of the supply 

chain. The manufacturing processes considered in this study are structured from the bills of 

materials of the final products. The structure and the flow dynamics of the supply chain can 

then be obtained from the MRP theory. The global efficiency of the emerging supply chain is 

supposed to derive from the allocation of tasks to the companies who own the most effective 

resources for performing them. In this view, enterprises may be complementary even if they 

perform tasks that are at the same level in the manufacturing process. 

This study describes a supply network that consists of a price reactive market, a retailer and a 

manufacturing network. The term “supply network” (SN) is preferred to “virtual enterprise” 

(VE) simply because our analysis may apply to any types of market dynamics, rapid with 

agility requirements as for VE or slow with more stable business agreements. And the crucial 

problem of partner selection applies to supply networks as well as virtual enterprises (Crispim 

and Pinho de Souza, 2010). The enterprises of the manufacturing network own capital and 

human resources and want to make a collective use of them, to produce the quantities of 

products that maximize their corporate expected profit. In the recent years, many studies have 

been devoted to globally optimizing supply chain design problems, either in a deterministic 

framework (Bidhandi et al., 2009, Liu and Papageorgiou, 2013) or in stochastic or uncertain 

environments (Santoso et al. 2005, Baghalian et al., 2013). Here, the game theory approach 

allows modeling the enterprises of the network as autonomous entities with their own 

resources, goals and decisions. However, since it can be economically profitable for the firms 

to collaborate, cooperative game theory can be used to determine the maximal expected profit 

of the manufacturing network and the coalitions for which this profit value can be obtained. 

This theory also helps focusing the analysis on the coalitional stability issue, in connection 

with the profit allocation policy among the partners of the coalition. 

In the model under study, the retailer who sells the goods on the market is considered an 

independent actor in the supply chain, associated with the manufacturing network through a 

wholesale price contract. Assuming that the manufacturing network knows the profit 

maximizing model of the retailer, the manufacturing network acts as a Stackelberg leader with 

respect to the retailer. As defined in classical game theory books (e.g. Osborne and Rubinstein, 

1994), a Stackelberg game is a two-player two-stage game with perfect information in which 

the leader plays first. Here, the network imposes the wholesale prices of the goods produced 

and the retailer buys the quantities of goods that maximize his expected profit. The retailer 

then decides on the retail prices of the goods by anticipating the price elastic demand from 
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customers. It can be noted that the assumption of a single retailer is not restrictive. This model 

is generic and can be applied as well to a set of retailers contracting with the same 

manufacturing network and facing the same market. 

The concept of co-opetition, coined by Brandenburger and Nalebuff (1996),  can be useful to 

analyze such new structures of power and trade. In this paper, competition does not only 

emerge from the cooperative game between manufacturers. It is also the leading trend of the 

profit sharing mechanism between manufacturers and retailers. Biform games have been 

introduced by Brandenburger and Stuart (2007). They combine strategic subgames with 

cooperative subgames. In the context of enterprise networks, they provide a theoretical 

framework for describing business situations that involve strategic decisions with one or 

several partners and cooperative agreements between others. This hybrid model has been 

adopted in several SCM literatures, in particular by Anupindi et al. (2001), Plambeck and 

Taylor (2005), Chatain and Zemsky (2007). 

Anupindi et al. (2001) analyzed a decentralized distribution system composed of independent 

retailers. In the first stage, before demand realization, each retailer makes its own decision on 

how much to order. In the second stage, after observing the demands, the retailers can 

cooperate by reallocating their inventories and allocating the corresponding additional profit. 

The authors have shown that this biform game has a non-empty core and have constructed an 

allocation mechanism based on dual solution and contained in the core of the game. 

Plambeck and Taylor (2005) studied a model with two original equipment manufacturers 

(OEMs) who sell their capacity to the contract manufacturer (CM). In the first stage, the 

OEMs individually choose their capacity and innovation levels. In the second cooperative 

stage, the manufacturers pool their capacity and negotiate the allocation of the additional 

profit obtained from capacity pooling. 

In (Chatain and Zemsky, 2007), a biform game approach is used to model a buyer-supplier 

relationship. First, suppliers make initial proposals and take organizational decisions. This 

stage is analyzed using a non-cooperative game theory approach. Then, suppliers negotiate 

with buyers who seek to outsource two tasks. In this stage, a cooperative game theory 

approach is applied to characterize the outcome of the bargaining process among the player 

on how to distribute the total surplus. Each supplier’s share of the total surplus is the product 

of its added value and its relative bargaining power. 

Due to their simplicity and frequent use in the industry, wholesale price contracts have been 

extensively studied in the literature on supply chains. In particular, Larriviere and Porteus 

(2001) analyzed a wholesale price only contract in a supply chain with one manufacturer and 
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one retailer. The manufacturer (leader) offers the terms of contract to her retailer (follower). 

They assumed that the retailer will accept this contract if such contract allows him to earn a 

non-negative profit. Under this situation, the authors studied how supply chain performance 

depends on the demand distribution.  

Chen (2011) extended the newsvendors problem by integrating a wholesale price discount 

policy. In this study, the author considered a supply chain with a manufacturer acting as a 

Stackelberg leader and dominating the retailer.  He discussed the wholesale price contract as a 

benchmark and proposed a contract with discount that can coordinate the supply chain. Arda 

and Hennet (2008) also pointed at some limitations of wholesale price contracts and proposed 

a contract combining wholesale price and delay penalty for a better coordination of the supply 

chain. A more complete study on optimal contract selection is presented in Talluri and Lee 

(2010), but their study mainly applies to couples (manufacturer – supplier), for which a 

contract is generally more sophisticated than for couples (manufacturer – retailer).  

Another application of the wholesale price contract with the Stackelberg model can be found 

in the study of Hua and Li (2008). The particularity of this study is the shifting of power from 

the manufacturer to the retailer who faces stochastic demand. Accordingly, the authors 

suppose that the retailer is in a dominant position and has the ability to influence the 

manufacturer’s wholesale price.    

In our model, the market demand for each product is supposed stochastic but its mean value 

curve is characterized by a constant price elasticity, and the manufacturing network is 

supposed to act as a Stackelberg leader with respect to the retailer. This study shows that the 

optimal expected profit function of the manufacturing network is a quadratic function of the 

expected quantities of goods sold on the market. The manufacturing network design problem 

then defines a quadratic production game, denoted QPG.  Such a game can be viewed as an 

extension of the classical Linear Production Game (LPG), studied in particular by Shapley 

and Shubik (1972), Owen (1975) and Hennet and Mahjoub (2010). However, it is shown that 

the properties of the QPG differ from those of the LPG, especially from the difficulty to 

construct for the QPG a “competitive” profit allocation policy similar to the Owen set. This 

new type of games is studied in terms of efficiency, rationality and fairness of payoff policies.  

In particular, it is shown that the core of the game, defined as the set of efficient and rational 

allocations policies, is not empty. However, the QPG is not a convex game in general and 

therefore, the fair profit allocation policy computed by the Shapley value allocation, does not 

always belong to the core. A modified Shapley value assignment policy is then proposed as a 

fair allocation policy that satisfies an additional necessary condition for rationality. 



 5

Performance evaluation appears as a critical issue for implementing the proposed 

collaborative scheme for the design of the multistage supply network. The gap to theoretical 

optimality arises from the assumed autonomy of the retailer. The paper shows how to evaluate 

this gap and provides an explicit expression of this gap in a particular case.  A possible 

solution to filling this gap is to integrate the retailer as a collaborative actor of the supply 

chain. 

The next section of the paper presents the multistage network problem. Section 3 formulates 

the retailer’s problem of profit maximization under given wholesale prices. The 

manufacturers’ network and the multistage manufacturing process are modelled in section 4.  

In section 5, the supply chain formation process is analyzed as the outcome of a biform game 

involving a cooperative subgame among the partners of a manufacturing network and a 

strategic subgame between the manufacturing network and the retailer considered as an 

external partner. The integrated manufacturing problem is then described as a Quadratic 

Production Game (QPG) and some key properties are established for this game. In section 6, 

the study evaluates the gap between the performance of the biform game structure under study 

and the global optimum of the chain. The issues of fairness and game convexity are then 

discussed in section 7. A new allocation policy called the restricted Shapley value solution is 

proposed in section 8. And finally, section 9 gives some conclusions of the study and draws 

some paths for future research on games and manufacturing network design problems. 

 

2. The Multistage Network Problem 

The supply chain model considered in this study focuses on a manufacturing network made of 

autonomous enterprises who want to collaborate to generate profit from capturing a market. 

The companies in the network plan to organize their activities in the form of supply chains for 

manufacturing goods to be sold on the market. The manufacturing network also collectively 

negotiates with a retailer who sells the goods on the market. The network is supposed to 

dominate the retailer by imposing the wholesale prices of the goods and anticipating the 

reaction function of the retailer, who fixes the retail prices of the goods to maximize his 

expected profit under prospective demand curves characterized by constant price elasticity.  

The market is characterized by a price dependent expected demand curve for each end-

product. These curves are supposed to be known by the retailer and by the manufacturing 

network in the steady state of exchanges. Figure 1 describes the model and its decomposition 

in terms of subgames. The wholesale subgame represents the interaction between the 

manufacturing network and the retailer in the form of a Stackelberg game, with the network 
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as the Stackelberg leader. The manufacturing subgame raises the two basic problems of 

cooperative games (also called TU cooperative games, where TU indicates that utilities are 

transferable, as it is the case for money): 

• global utility maximization: determination of the maximal value function and 

the coalitions of  players for which this value is obtained, 

• allocation problem: determination of the endowments of the players by 

distributing the global payoff among them. 

 

 

 

 

 

 

 

 

 

Fig.1 A Multistage supply chain 

 

3. The retailer and the market 

Consider a retailer who proposes on a market a set of products numbered i=1,…,n at a price 

vector p=(p1…pn)
T 

. According to the theory of Consumer’s Behavior (see e.g. Samuelson and 

Nordhaus, 2004), the market reacts by buying quantities of products defining vector 

1( )T
ny y y  such that a utility function ( )U F y  is maximized under a budget constraint 

with maximal budget  : T
p y  . At the equilibrium, the matrix of price elasticity of 

demands is: (( ))i

j

y
H

p




 .  

As it is classical in economics, we now assume that, at least locally, matrix H is constant, 

symmetric and negative definite. Then, its inverse, (( ))i

j

p
Q

y





, is also negative definite.  

Under such constant price elasticities (diagonal terms of H) and cross-elasticities (off-

diagonal terms), the market game is supposed to reach a stable equilibrium for which the 

vector of expected demand rates iy sold over a reference period, satisfies: 

y Hp   . with  Hp    (componentwise vector inequality).    (1) 

 

Manufacturers’  

network  Retailer 

  

  Customers 

   Market demand curves 

   Wholesale subgame    Production subgame 
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In stationary conditions, the retailer is supposed to know the expected market demand with 

respect to prices for the n products. He can then impose the prices of the goods ip  for 

i=1,…,n, so that the expected quantity sold, iy  for i=1,…,n,  would maximize his expected 

profit over the reference period.  

It is also assumed that the vector of wholesale prices, T
nwww )( 1 , is determined by the 

manufacturer’s network, who acts as a Stackelberg leader with respect to the retailer. In 

addition, the retailer has to face storage costs, supposed linear in quantities, with unit cost 

vector 1( )T
ns s s  . His expected profit over the reference period is: 

i

n

i

iii
TR

yswpyswpy )()()(

1




  under conditions: iii swp    for i=1,…,n (2) 

Then, the retailer can set the market prices of the products according to the inverse demand 

map (3): 

p Qy   . with 1 ,  Qy Q H    ,.        (3) 

The retailer’s objective is to find the optimal vector *y  that maximizes R , with: 

( ) ( )R T T
y y Qy w s y                        (4) 

The optimality condition takes the following form: 

1

1

( *)

( *) 2 * 0

( *)

R

R

R

y
y

y Qy w s

y
y



 
  
       
 
 
  

        (5) 

  

And since matrix Q is negative definite, the criterion is strictly concave and admits a single 

maximal solution. For each product, the optimal expected demand rate is:  

1
* ( )

2
y H w s                         (6) 

Accordingly, the optimal proposed retail price is derived from (3) and (6): 

1
* ( )

2
p w s    .                    (7) 

From optimality condition (5), the vector of wholesale prices of products, w , to be determined 

by the manufacturer’s network, is related to the optimal vector of expected outputs *y , by: 

2 *w s Qy                       (8) 
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It can be noted that that the components of vector w in (8) are decision variables, not expected 

values, even if they can be computed from the vector of expected output rates, *y . From (4) 

and (8), the retailer’s optimal expected profit can then be expressed as a quadratic function of 

the output vector *y : 

( *) * *R T
y y Qy   .                   (9) 

 

 

It can be noted that if cross elasticity of demand between the different products of the 

manufacturers’ network is neglected, then matrix (( ))i

j

y
H

p




  is diagonal, each diagonal term 

i
ii

i

y
H

p





is negative and represents the price elasticity of product i. The inverse demand map 

(3) then reduces to n independent price-demand curves, and the retailer’s profit maximization 

problem is totally decomposed by products, matrix Q also being diagonal with negative 

diagonal terms. 

 

4. The manufacturers’ network 

Consider a network of N firms represented by numbers in the set  N,...,1N . These firms are 

willing to cooperate to produce commodities and set their wholesale prices. By contract, the 

retailer buys the products from the manufacturing network at their wholesale prices and sells 

them to a market.  

The N manufacturers compete to be partners in a coalition NS . Each candidate enterprise 

is characterized by its production resources: manufacturing plants, machines, work teams, 

robots, pallets, storage areas, etc. Mathematically, each firm is characterized by her vector 

NjBBB T
Rjj

j ,,1 ,)( 1    of R types of resources. These resources can be used, directly or 

indirectly to produce final products in quantities given by vector T
nyyy )( 1 .  

Several authors, like Francas and Minner (2009), have explored the relations between the 

market properties and the manufacturing network configuration. In this study, the 

manufacturing process is described by the bills of materials (BOM) of the products. Each 

transformation of products requires resources owned by one or several companies in the 

network. The sequence of product transformations generates the structure of the supply chain, 

with the logistic organization of product flows in agreement with the manufacturing sequence 
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of products. The BOM technical matrix, T, is defined as follows: according to the selected 

manufacturing process, production of one unit of product i requires combination of 

components  nl ,,1   in quantities liT . Assuming a constant lead-time at each 

manufacturing stage, a dynamic model of the manufacturing process can be obtained from the 

MRP theory, formulated in continuous time, as in (Grübbström, 1999) or in discrete time, as 

in (Hennet, 2003, Grubbström  and  Huynh, 2006). It can be noted that MRP algorithms can 

be easily translated into distributed ordering policies in supply networks, as shown in (Hennet, 

2009). In this study, the supply chains are evaluated in stationary conditions, components 

being implicitly available at the right time and in the right quantity. Then, denoting i the 

quantity of product i produced during the reference period, the output rate vector  can be 

computed from the global throughput rate vector  Tn 1 by the following relation: 

y  (I T) ,    with I  the nn  identity matrix.       (10) 

Then, using the property that matrix I - T is an M-matrix, as defined in (Berman and 

Plemmons, 1979), its inverse exists and is nonnegative.  Hence, the global throughput vector 

  can be computed by: 

  (I T)1 y .           (11) 

Let rim  be the cumulated amount of resource r necessary to produce 1 unit of product i. The 

resource requirements matrix is noted M  ((mri ))Rn . The vector of resource 

requirement rates,  M , relates to the output rate vector y in the following form: 

AyM       with   1)(  TIMA .        (12) 

nR
riAA  ))((  and riA  is the total amount of resource r necessary for production of one 

unit of final product i.  

A coalition S is defined as a subset of the set N  of N enterprises with characteristic vector 

eS  0,1 N
  such that: 

(eS ) j 1     if  j S 

(eS ) j  0     if  j S 
.                                                              (13) 

For the R types of resources considered (r =1,…,R), rjB  is the amount of resource r available 

per time unit  at enterprise j, B  ((Brj))
RN

 .  

Resource capacity constraints for coalition S are thus written: 

Ay  BeS .                                                                         (14) 
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The coalition incurs manufacturing costs T
nccc )( 1   per unit of final products and sells the 

products to the retailer at the wholesale price defined by vector T
nwww )( 1 . The retailer 

acts as an intermediate party between the manufacturers’ network and the final consumers.  

Under the considered wholesale price contract, the manufacturers’ coalition acts as the 

Stackelberg leader relatively to the retailer by fixing the wholesale price vector w as a take-it-

or-leave-it proposal. As the follower, the retailer can only accept or reject the manufacturers’ 

proposal. It is assumed that the retailer agrees to conclude any contract, provided that he 

obtains an expected profit greater than his opportunity cost which is set equal to zero by 

convention. After the manufacturer network has set the vector of wholesale prices, w, the 

retailer determines the vector of retail prices, p to maximize his expected profit. Using the 

expected demand curve, he is able to determine the expected rate of purchase from customers 

and his expected profit rate from the retail price vector. Having anticipated the retailer’s 

reaction function (5), the coalition determines the optimal vector of wholesale prices, w*  , to 

maximize her expected profit. The pair of optimal vectors (w
* , y

* )  can thus be determined by 

the manufacturers’ network. 

 

5. The Quadratic Production Game 

In the biform game formulation of the supply chain design problem, the manufacturing 

network must solve two joint problems: the strategic problem of selecting the wholesale price 

vector w, and the cooperative problem of optimizing both the production rate vector y and the 

coalition characteristic vector .Se  The profit optimization problem can be formulated as 

follows: 

 N

S

n

S

TM

ey

ey

BeAy

ycw
S

1,0 ,

  subject to

)(Maximize ,








                             15  
For given vectors w and c, problem (16) characterizes a TU cooperative game denoted v,N  

known as the Linear Production Game (LPG) and studied in (Shapley and Shubik, 1972), 

(Owen, 1975). In the biform game studied in this paper, variables iw  are decision variables 

with optimal values related to the optimal expected output rates iy  through relations (8). 

Acting as the Stackelberg leader in the strategic game with the retailer, the manufacturing 

network anticipates the optimal reaction of the retailer by substituting equation (8) into the 

objective function of problem (15). The obtained set of quadratic programming problems (P) 
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defines a quadratic production game denoted (QPG), which is different type of TU 

cooperative games v,N .  

 

,Maximize ( ) 2

subject to  

,  0,1

S

M T T
y e

S

Nn
S

s c y y Qy

Ay Be

y e





    



 

.            P  
Through the assumption of exogenous prices imposed by the market, the LPG describes a 

competitive market situation. On the contrary, the quadratic production game (QPG) 

described in this paper is more appropriate to describe an oligopolistic situation in which the 

retailer anticipates the market reaction function to decide on the retail prices. Upstream, the 

manufacturing network imposes its decisions to the retailer in the form of wholesale prices.  

In this context, the QPG addresses the three following issues:  

 the profit maximization problem for the manufacturing network considered as a whole,  

 the coalition decision problem through the choice of vector Se ,  

 the problem of profit allocation to the members of the optimal coalition. 

Wholesale prices imposed to the retailer are derived from the solution of the profit 

maximization problem. 

Consider a coalition S,   S N . The maximal profit that can be obtained by this coalition is 

obtained as the solution of a problem denoted (PS). Formally, problem (PS) is similar to 

problem (P), except for the fact that in problem (P),  Se  is a vector of decision variables, 

while in problem (PS), vector Se  is the fixed characteristic vector of the selected coalition, S.  

In terms of Cooperative Game Theory, the characteristic function of a coalition NS  is the 

value v(S) that gives the maximal value of coalition S. Therefore, v(S)  is the optimal value of 

criterion M  of problem (PS). This value is obtained for the optimal output rate vector 

denoted Sy . 

The following results can be derived from the comparison of problems (PS) for different 

coalitions NS . 

 

Property 1  The grand coalition generates the optimal profit 

Proof: Consider the grand coalition N . Its characteristic vector is  Te 11N . Note that 

matrices A and B in (PS) are componentwise nonnegative. For any set   S N ,   eS  eT and 
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  BeS  BeT . Then, the optimal solution of (PS) is feasible for (PN) and the maximal expected 

profit, denoted *v ,  can be obtained as the optimal solution of (PN ) defined by: 

Maximize ( ) 2

subject to  

M T T
y

n

s c y y Qy

Ay Be

y





    





N
.            (PN ) 

 

 

It can be noted that Property 1 derives from weak monotonicity of the criterion of problem (P) 

with Se  . However, the QPG does not generally possess the stronger property of super-

additivity. To see that the game is not super-additive, we can consider the case when the 

unconstrained optimal of problem (P) is reached for a coalition S  strictly included in N . 

Then, ( ) ( ) *v S v v N , and if ( ) 0v S N - , then ( ) ( ) ( )v S v S v N - N . 

Due to Property 1, the global profit maximization problem can be solved through solving (PN) 

instead of (P), with the advantage of solving a problem in which all the variables are 

continuous.  

 

Additionally, the criterion of problem (PN) is strictly concave with respect to variables iy  

since it is a quadratic form with Hessian 4Q  definite negative. Its maximization over the 

convex set defined by the set of linear constraints Ay Be N   yields a unique maximum.   

It can be noticed that property 1 does not mean that the grand coalition is the best strategic 

choice since some coalitions with a smaller cardinality than N may also yield the optimal 

expected profit. 

Property 2  The QPG defined by program (P) is balanced: it satisfies the following condition: 

  

v(N) 
SN

 Sv(S)  for any set of weights S  0  1   for each   S N such that 

  SN

 S 1 . 

Proof: The quadratic problem ( NP ) is composed by a concave quadratic objective function 

and linear constraints taking the following form:  

( ( ) max ( )M M
yv y y   NN)   

Subject to Ay Be N  

where   y
S  represents the vector of optimal quantities for coalition NS . 
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Let S  0  1  be a set of weights for each   S N such that 1


S
NS

 . These weights form a 

balancing set of weights and can be interpreted as the fractions of time that each player 

devotes to each coalition he is a member of, with a given coalition representing the same 

fraction of time for each player. And let  
S

iSi yy 



NS

ˆ ,  T

nyyy )ˆˆ(ˆ
1 .  

First, it can be shown that ˆ y i  verifies the resources constraints. For any resource (r = 1,…,R), 

it holds that: 

rj

N

j

jSrj

S

j

S

S

iri

n

i

S

S

iSri

n

i

iri

n

i

BeByA

yAyA













111

11

)(

ˆ





NSNS

NS
 

As a consequence,  ( ( ) ( )M Mv y y   NN) = . Next,  due  to  concavity  of  the  objective  function  in  problem  P , 
)()(M

Svy SS  



NS

S

NS

 and thus   

  

v(N) 
SN

 Sv(S) . 
Consequently, the Quadratic Production Game is balanced. 

Corollary 3  The QPG game defined by the programming (P) has a non-empty core. 

It is recalled that, by definition, the core of a cooperative game is the set of allocation 

profiles (uj)j N  that are both efficient (Pareto optimal) and collectively rational (see 

e.g. Osborne and Rubinstein, 1994). 

The allocation profile Niiu )(  is said to be efficient (or Pareto optimal) if and only if  

*)(
1

vuu
N

j

i 


N .                   (16)  

The allocation profile Njju )(  is said to be rational (or collectively rational) if and 

only if : 

u(S )  v (S )    S N .                   (17) 

It can be noted that if an allocation profile is collectively rational, it is necessarily 

individually rational:  

  jvu j   for all Nj .          (18) 

Bondareva (1963) and Shapley (1967) described a necessary and sufficient condition for the 

non-emptiness of the core of a cooperative game. Specifically, the core is non-empty if and 

only if the game is balanced.  
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Consequently, since the quadratic production game is balanced (Property 2), it has a 

nonempty core.   

 

6. Global performance of the biform game 

6.1  The gap to global supply chain optimality 

From objective functions (2) and (15) and relation (3), the problem of globally optimizing the 

expected profit of the supply chain can be written as follows: 

 

Maximize ( ) ( )

subject to   

,  ,  0,1 .

G T

S

Nn n
S

y p c s y

Ay Be

p Qy

y p e



 

   


 

  

         

By replacing p by its expression as a function of y, the problem takes the form: 

 

,Maximize ( ) ( )

subject to  

,  0,1

S

G T T
y e

S

Nn
S

y s c y y Qy

Ay Be

y e





    



 

.            (P’) 
Note that the structure of problem (P’) is very similar to that of problem (P). All the 

properties of the QPG, in particular Property 1, also apply to the game associated with 

problem (P’). The global optimal profit of the supply network is the optimum of problem 

(P’N), obtained by replacingeS  in (P’) by eN  1. 

Clearly, the solution of problem (P) is feasible for problem (P’) because it satisfies the same 

set of constraints. However, the objective functions of the two problems differ. Therefore, the 

global supply chain profit is smaller than the optimal one because the optimal output y* for 

problem (P) differs from the optimal one y** that solves problem (P’). Furthermore, even if 

the manufacturing network acts as a Stackelberg leader with respect to the retailer, the 

manufacturing network is unable to capture the expected profit of the retailer, which is given 

by (9): ( *) * *R Ty y Qy   . 

Consider the particular case when the unconstrained optimum of the manufacturing network 

profit function  M (y) , satisfies constraints Ay  B1. Then, the optimality conditions of 

problem (P) take the form: 4 * 0Qy s c    . The optimal output vector is then given by : 

1
* ( )

4
y H s c     .                 (19) 

The global profit of the supply chain is then distributed among the manufacturing network 

and the retailer in the proportions 2/3, 1/3, since 
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 ( ) 2 * *M T
y y Qy     and   ( *) * *R T

y y Qy   .  

In this case, the global optimal of problem (P’), if it also satisfies constraints Ay  B1, is 

obtained by solving the unconstrained optimality conditions for (P’): 2 ** 0Qy s c    . 

The global optimal output vector is then twice the output vector of the decentralized case: 

1
** ( ) 2 *

2
y H s c y      .         (20)  

In this case, the global profit of the supply chain is: 

( **) ** ** 4 * *G T T
y y Qy y Qy      

The suboptimality gap (loss of income) of the supply chain profit function is equal to the 

profit value of the retailer: ( **) ( *) ( *) * *G M R T
y y y y Qy      . 

Several techniques may be investigated to reduce the optimality gap. Cachon (2003), Arda 

and Hennet (2008) and other authors have shown that the limit to the system global 

performance is related to the price-only contract between the retailer and the manufacturing 

network. Such a gap to optimality could thus be overcome by using other contracts, such as 

revenue sharing or penalty contracts. 

6.2 Optimality of a direct interaction manufacturers-customers 

Another option to reach optimality could be investigated. It can be noted that the global 

optimization problem (P’) is exactly formulated as the manufacturing production game in 

which the manufacturing network also plays the role of the retailer by directly selling the 

products on the market, with the associated unit storage costs of end-products 

 nisi ,,1for   : 

 

,Maximize ( ) ( )

subject to  

,  0,1

S

G T T
y e

S

Nn
S

y s c y y Qy

Ay Be

y e





    



 

   

 

The following property can thus be derived. 

 

Property 4   

If the manufacturing network also plays the role of the retailer with respect to the market, her 

production achieves global optimality and she captures the maximal global profit.  
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This result provides strategic insights for formation and management of virtual enterprises. 

However, the maximal achievable degree of integration of retail with manufacturing is 

generally limited by business segmentation in different sectors, often imposed by national and 

international regulations. 

  

7. The issues of Fairness and Game Convexity  

From the definition of the core, any profit allocation policy in the core of the QPG is efficient 

and rational. Other properties can differentiate allocations. In particular, it is desirable to 

relate the profit share of the players to their marginal contribution to the value function.  

 

Some definitions and properties related to fairness are now recalled from Definition 5 to 

Property 10. Then, a specific result for the QPG is established in Property 11. 

 Definition 5: Marginal contribution  

Classically (see e.g. Osborne and Rubinstein, 1994), the marginal contribution of player j to 

coalition NS with Sj is defined by: 

  )()()( SvjSvSj                            (21) 

 

Definition 6: Fairness 

A profit allocation policy, denoted )N,vx j ( , is fair in   N  if and only if it satisfies the 

balanced contributions property:  

             j

kk

k

jj vjxvxvkxvx -N-N ,-N-N,=,-N-N,  N N,  kj  

where by definition, for all NS , ))(,( SvS  is the subgame of  (N,v) defined by 

STSvTv   )()( . 

Definition 7: Shapley value  

A particular allocation policy, introduced by Shapley (1953), has been shown to possess the 

properties of balance and fairness. It is called the Shapley value, and is defined by:  

))((
!

1
),( qS

N
v j

Qq

jj 


  N           (22) 

for each j in N  where Q is the set of all N! orderings of N , and )( qS j
 is the set of players 

strictly preceding j in the ordering q (j not being included in ( )jS q ) . 

Property 8   
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The Shapley value is the only fair allocation policy in N . 

This property is general. It derives from Definition 7 and from the fact that the unique value 

that satisfies the balanced contribution property is the Shapley value (see e.g. [23]). 

The game convexity property will now be introduced to relate fairness with the core of a 

cooperative game. 

Definition 9: Convexity 

A cooperative game is convex if     ( , )  S Tand S T such that j    j N N - ,  

     )()()()( TvjTvSvjSv                                                              (23) 

This relation means that in a convex games, each player contribution to the worth of a 

coalition increases as the coalition increases in size. In other words, it is more effective for a 

player to join a larger coalition.  

As in [27, 28], the convexity property (23) can be rewritten in the following form, also known 

as the supermodularity property:  

  v(S  T)  v(S)  v(T)  v(S  T) S  N, T  N                 (24) 

Convex games exhibit the following important property. 

Property 10 

In a convex game, the Shapley value is a member of the core. 

This property indicates the existence for a convex game of an allocation policy that is efficient, 

rational and fair. It is the Shapley value. Such properties of the allocation policy are very 

useful to guarantee the robust stability of the grand coalition.  

Unfortunately, when a game is not convex, it is not always possible to construct a fair 

allocation that belongs to the core of the game. This difficulty will be illustrated by an 

example for the QPG. 

Property 11 Non convexity of the QPG   

The QPG game defined problem (P) is not convex in general 

Proof: To show this property, it suffices to exhibit an example of a non convex QPG.  

Consider the following numerical example: 

,
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 c  The unconstrained optimum of 

the QPG is:  29.32*v  for ]25.65.2[ y* .  The optimal value *v is the value of the 

characteristic function for coalitions     1,31,21,2,3 ,, , and  0)( Sv for        .3,2,3,2,1S  
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Thus, this QPG is not convex since property (22) does not apply, for instance, if 

   ., 1,31,2  TS  

In addition to non convexity, this numerical example is a case for which the Shapley value 

does not belong to the core of the QPG. Indeed, for this problem, the core allocation is unique: 

(v*, 0, 0) and the Shapley allocation is: ( *
6

1
*,

6

1
 ,

3

2
vvv* ).   

To complete the results for this example, the vector of wholesale prices is: 









17.9

5.7
w , and the 

optimal vector of retail prices is: 









25.11

75.8
p . 

It is then possible to differentiate coalitional rationality (relation (17), not verified in general) 

from individual rationality (18). Finally, the manufacturers’ game can be solved in a fair, 

efficient and individually rational manner through the following steps: 

 Solve problem (PN
) to obtain the maximal profit and the optimal output vector *y , 

 Set the wholesale price vector w computed by (8), 

 Set the market price vector p computed by (7), 

 Compute the Shapley value allocation (22) to allocate the expected profit among the 

partners. 

Computation of the Shapley value allocation requires computing the solution of all the 

problems (PS) for NS , and this, of course, can be very time consuming for large sets of 

manufacturing partners.  

8. A  restricted Shapley value solution 

 

8.1 How can we deal with the non-convexity issue? 

 

The results of the preceding sections indicate that when the QPG is convex, the grand 

coalition is optimal and can be stabilized by the Shapley value profit allocation policy,  that is 

efficient, rational and fair.  

The non-convexity issue raises 2 questions: 

1 In what cases the QPG is non-convex? 

2 What compromise can be found between rationality and fairness? 
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To answer the first question, it is interesting to mention the results of Aumann (1964) related 

to purely competitive markets. Such markets can be represented as cooperative games having 

the property that for a large number of firms, the core of the game coincides with the set of 

competitive equilibria. To show this result, Aumann introduced the idealized concept of 

replicated agents, who own the same bundle of resources. In any core allocation, identical 

agents should receive the same share of the profit. More generally, if two agents own the 

same resource and if this resource is not scarce, the two agents do not receive any reward for 

this resource in any core allocation policy. In this statement, the definition of non-scarcity 

may vary with the problem formulation. In Linear Production Games, a resource is not scarce 

if its marginal price is 0, that is if it is in excess in the optimal production plan (Hennet and 

Mahjoub, 2010).   

For Quadratic Production Games, consider the set of all the coalitions that achieve the 

maximal profit value :  *vv(S)N;  SO . The following property can be exhibited. 

Property 12   

A necessary condition for an allocation policy Njju )( to belong to the core of the QPG is: 

SjOSju j     ,0 N; .        (25) 

Proof: Suppose SjOSu j     and  ,0 . Then ** vuvu j

Sj

j 


. Then, the allocation 

policy is not efficient in S, which contradicts the assumption that it belongs to the core of the 

game. 

 

In the set O, the coalition with minimal cardinality may be unique or not. But it is always 

possible to select one subset, *S O  with minimal cardinality, denoted s*, so that: 

v(S*)  v *

Card (S*)  s *





           (26) 

It can be noted that for a Shapley value allocation, denoted Njjx )( , any player in N receives 

a positive allocation, provided that he is not a dummy player: 0jx  if  0)(,  SS j  N . 

For the QPG, this property is one of the main reasons for the Shapley allocation not to belong 

to the core of the game.  

Then, as a possible answer to question 2, a compromise between fairness and rationality can 

be found by restricting the game to a set S* with minimal cardinality as defined above (26). 

The cooperative game under study becomes vS*,  in place of v,N . For this new game, the 
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grand coalition, S * , is the only coalition achieving the maximal profit value. A possible 

allocation policy can then be the Shapley value allocation for the restricted game vS*, : 

1
( , ) ( ( ))   if *

!

( , ) 0   if *

j j j

q Q

j

v S q j S
S

v j S






   

  

S*
*

S*

        (27) 

for each j in *S  where Q is the set of all *S ! orderings of *S , and )( qS j
 is the set of 

players (strictly) preceding j in the ordering q. 

By construction, the proposed allocation policy (27) is efficient. It is also fair in *S . But in 

general, it is not fair in N if NS*  . Policy (27) is individually rational in  *S  but collective 

rationality in *S has to be tested, Property 12 being only a necessary condition for collective 

rationality in *S . In a similar manner, convexity of the QPG restricted to vS*,  is more 

likely to be verified than for v,N , but it is not guaranteed and has to be tested. 

8.2 A numerical example 

In the case of the example above,  1,2*S   or  1,3*S  can be indifferently selected as 

optimal coalitions with minimal cardinality.  Suppose, for example that coalition  1,2*S  is 

selected. Then, the studied TU cooperative game is vS*,  in place of v,N . The restricted 

QPG  vS*,  has the same optimal solution than v,N :  29.32*v  for ]25.65.2[ y* . But 

it can be easily verified that it is convex and that the restricted Shapley value allocation: 

2

*
*),(*),( 21

v
vS*vS*    

is fair, efficient and rational for the TU game vS*, .  

Similar results are obtained when selecting  1,3*S , by simply replacing index 2 by index 3. 

8.3 Discussion 

The restricted Shapley value policy has been proposed to eliminate one of the major causes of 

non-rationality of the global Shapley policy. If a firm owns resources useful in some but not 

all the possible coalitions to which she belongs, then its Shapley value is strictly positive but 

its profit allocation for any core allocation policy should be null. To escape this contradiction 

between fairness and stability, it is proposed to exclude such a firm from the partnership, 

since she could not be fairly rewarded anyway. Having selected an optimal coalition with 

minimal cardinality, some causes of non-convexity may remain 

Some managerial insights can be drawn from this study, to improve the design process of 

supply networks. In particular, the coalition stability requirement stated in Property 12 implies 
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that owners of non-scarce resource should not receive a share of the common profit. As a 

consequence, it may be profitable for a firm to join an enterprise network only if she owns 

resources useful to produce the products that are globally the most profitable ones and if these 

resources are sufficiently scarce among the other partners. Another observation, derived from 

the assumption of a price elastic market, is that the retailer is always able to generate a 

positive profit for himself for any set of wholesale prices imposed by the manufacturing 

network. 

 

9.  Conclusions  

In the study reported in this paper, a supply network design problem has been studied as a 

biform game involving a network of manufacturing companies and a retailer facing a market 

with price dependent demands for the manufactured goods.  

The manufacturing network organizes the production resources in the most profitable manner 

and imposes the wholesale prices of the goods to the retailer. This situation has generated a 

cooperative game called QPG (Quadratic Production Game), not yet studied in the literature. 

The paper evaluates the performance gap between the global optimum of the system and the 

game equilibrium between the network and the retailer. This gap can be interpreted as the cost 

of the retailer’s autonomy with respect to the manufacturing network.  

It has been shown that in general, the QPG is not convex and therefore coalitional rationality 

and fairness of the profit allocation policy are not always compatible. To reach a compromise 

between fairness and rationality, it has been proposed to limit the coalition to the minimal 

number of partners able to produce the optimal output, and to distribute the expected profit 

among them. The particular profit allocation policy proposed has been called the “restricted 

Shapley value solution”. A practical requirement for implementation of this policy in an open 

enterprise network would be the introduction of an additional mechanism, such as a tariff that 

would deter participants to enter or leave the coalition. Other extensions of the presented work 

are also under investigation. One possibility is to propose a contract for a better coordination 

between the manufacturing network and the retailer. Another interesting problem to be 

studied is the reverse case in terms of leadership, when it is not the manufacturing network 

but the retailer who is the Stackelberg leader. Such an assumption would give rise to a 

different biform game in which the reaction function of the manufacturers’ network cannot be 

easily expressed analytically.  
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