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We investigate polynomial sets {P n } n≥0 with generating power series of the form F (xt -R(t)) and satisfying, for n ≥ 0, the (d + 1)-order recursion xP n (x) = P n+1 (x) + d l=0 γ l n P n-l (x), where {γ l n } is a complex sequence for 0 ≤ l ≤ d, P 0 (x) = 1 and P n (x) = 0 for all negative integer n. We show that the formal power series R(t) is a polynomial of degree at most d + 1 if certain coefficients of R(t) are null or if F (t) is a generalized hypergeometric series. Moreover, for the d-symmetric case we demonstrate that R(t) is the monomial of degree d + 1 and F (t) is expressed by hypergeometric series.

Introduction

In [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF][START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF][START_REF] Cheikh | On the Classical d-Orthogonal Polynomials Defined by Certain Generating Functions, 1[END_REF] the authors used different methods to show that the orthogonal polynomials defined by a generating function of the form F (xt -αt2 ) are the ultraspherical and Hermite polynomials. On the other hand, the author in [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] found (even if F is a formal power series) that the orthogonal polynomials are the ultraspherical, Hermite and Chebychev polynomials of the first kind. Motivated by the problem, posed in [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF], of describing (all or just orthogonal) polynomials with generating functions F (xU (t) -R(t)) we have generalized in [START_REF] Mesk | A new characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] the above results by proving the following:

Theorem 1 [START_REF] Mesk | A new characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] Let F (t) = n≥0 α n t n and R(t) = n≥1 R n t n /n be formal power series where {α n } and {R n } are complex sequences with α 0 = 1 and R 1 = 0. Define the polynomial set {P n } n≥0 by

F (xt -R(t)) = n≥0 α n P n (x)t n . ( 1 
)
If this polynomial set (which is automatically monic) satisfies the three-term recursion relation xP n (x) = P n+1 (x) + β n P n (x) + ω n P n-1 (x), n ≥ 0, P -1 (x) = 0, P 0 (x) = 1 [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] where {β n } and {ω n } are complex sequences, then we have: a) If R 2 = 0 and α n = 0 for n ≥ 1, then R(t) = 0, F (t) is arbitrary and F (xt) = n≥0 α n x n t n generates the monomials {x n } n≥0 . b) If α 1 R 2 = 0, then R(t) = R 2 t 2 /2 and the polynomial sets {P n } n≥0 are the rescaled ultraspherical, Hermite and Chebychev polynomials of the first kind.

Note that, the polynomials in Theorem 1 which satisfy a three term recursion with complex coefficients are not necessary orthogonal with respect to a moment functional L, i.e. for all non negative integers m, n; L(P m (x)P n (x)) = 0 if m = n and L(P 2 n (x)) = 0, see Definition 2.2 in [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF].

Remark 1 a) A polynomial set PS, {P n } n≥0 , is such that degree(P n ) = n, n ≥ 0. b) A PS is called a monic PS if

P n (x) = x n + • • • , for n ≥ 0.
c) The choice α 0 = 1 and R 1 = 0 comes from the fact that the generating function γ 1 + γ 2 F ((x + R 1 )t -R(t)) = γ 1 + γ 2 n≥0 α n P n (x + R 1 )t n , with γ 1 and γ 2 constants, is also of type [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF].

In the present paper, we are interested in monic PSs generated by (1) (with F (t) and R(t) as in Theorem 1) and satisfying higher order recurrence relations [START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF]. For this purpose, we adopt the following definitions:

Definition 1 Let d ∈ N. A PS {Q n } n≥0 is called a d-polynomial set d-PS if its corresponding monic PS {P n } n≥0 , defined by P n (x) = (lim x→+∞ x -n Q n (x)) -1 Q n (x)
, n ≥ 0, satisfies the (d + 1)-order recurrence relation:

xP n (x) = P n+1 (x) + d l=0 γ l n P n-l (x), n ≥ 0, P 0 (x) = 1, P -l (x) = 0, 1 ≤ l ≤ d

where {γ l n } n≥0 , 0 ≤ l ≤ d, are complex sequences (4) and {γ d n } n≥d is not the null sequence, for d ≥ 1.

(

) 5 
Definition 2 Let {P n } n≥0 be a d-PS. If the PS of the derivatives {(n + 1) -1 P ′ n+1 } n≥0 is also a d-PS, then {P n } n≥0 is called a classical d-PS.

Definition 3 [START_REF] Douak | Les polynômes orthogonaux "classiques" de dimension deux[END_REF] Let ω = exp(2iπ/(d + 1)), where i 2 = -1. The PS {P n } n≥0 is called d-symmetric if it fulfils:

P n (ωx) = ω n P n (x), n ≥ 0.

Remark 2 In Definition 1: a) For d ≥ 1, the first terms {γ l n } 0≤n<l≤d of the sequences {γ l n } n≥0 , 1 ≤ l ≤ d, are arbitrary. b) For d = 0, (3) becomes xP n (x) = P n+1 (x) + γ 0 n P n (x), n ≥ 0, with P 0 (x) = 1. Here {γ 0 n } n≥0 can be the null sequence, so the set of monomials is a 0-PS.

An interesting class of d-PSs characterized by [START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF], with the additional condition γ d n = 0 for n ≥ d, are the d-orthogonal polynomial sets d-OPSs [START_REF] Maroni | L'orthogonalité et les récurrences de polynômes d'ordre supérieur á deux[END_REF][START_REF] Van Iseghem | Vector orthogonal relations. Vector QD-algorithm[END_REF]. In this context, the authors in [START_REF] Cheikh | On the Classical d-Orthogonal Polynomials Defined by Certain Generating Functions, 1[END_REF] generalized the result stated in [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF][START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF] by showing the following:

Theorem 2 [START_REF] Cheikh | On the Classical d-Orthogonal Polynomials Defined by Certain Generating Functions, 1[END_REF] The only d-OPSs generated by G((d + 1)xt -t d+1 ) are the classical d-symmetric polynomials.

Another contribution concerns d-OPSs with generating functions of Sheffer type, i.e. of the form A(t) exp(xH(t)). We have Theorem 3 [START_REF] Varma | A characterization theorem and its applications for d-orthogonality of Sheffer polynomial sets[END_REF] Let ρ d (t) = d k=0 ρk t k be a polynomial of degree d (ρ d = 0) and σ d+1 (t) = d+1 k=0 σk t k be a polynomial of degree less than or equal to d + 1. The only PSs, which are d-orthogonal and also Sheffer PS, are generated by

exp t 0 ρ d (s) σ d+1 (s) ds exp x t 0 1 σ d+1 (s) ds = ∞ k=0 P n (x) t n n! (7) 
with the conditions σ0 (nσ

0 -ρd ) = 0, n ≥ 1. (8) 
Note that Theorem 3 characterizes also the d-OPSs with generating functions of the form

F (xH(t)-R(t)) with F (t) = exp(t), since A(t) exp(xH(t)) = F (xH(t) -R(t)) where R(t) = -ln(A(t))
. For H(t) = t we meet the Appell case with the Hermite d-OPSs [START_REF] Douak | The relation of the d-orthogonal polynomials to the Appell polynomials[END_REF] generated by exp(xt -ρd+1 (t)) where ρd+1 (t) is a polynomial of degree d + 1. As a consequence of the results obtained in this paper, we give some generalizations of Theorems 1, 2 and the Appell case in Theorem 3 (see also [START_REF] Douak | The relation of the d-orthogonal polynomials to the Appell polynomials[END_REF]) to d-PS generated by [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF].

After this short introduction, we give in section 2 some results for d-PSs generated by [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF]. Then in section 3 we show that the only d-symmetric d-PSs generated by [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF] are the classical d-symmetric polynomials. For this later case, we give in section 4 the (d + 1)-order recurrence relation [START_REF] Von Bachhaus | The orthogonal polynomials generated by F (xt -αt 2 ) = n≥0 α n P n (x)t n[END_REF] and the expression of F (t) by means of hypergeometric functions.

Some general results

The results in this section concern all d-PSs generated by [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF]. The central result is Proposition 2 below from which the other results arise. First we have Proposition 1 [START_REF] Mesk | A new characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] Let {P n } n≥0 be a PS generated by (1). Then we have

α n xP ′ n (x) - n-1 k=1 R k+1 α n-k P ′ n-k (x) = nα n P n (x), n ≥ 1. (9) 
Secondly Proposition 2 Let {P n } be a d-PS generated by (1) and satisfying (3), ( 4) and (5), with α n = 0 for n ≥ 1. Putting

a n = α n α n+1 , (n ≥ 0) and c l n = α n α n-l γ l n , (1 ≤ l ≤ d, n ≥ l),
then we have: a)

γ 0 n = 0, for n ≥ 0. (10) 
b)

γ 1 n = R 2 2 (na n -(n -1)a n-1 ), for n ≥ 1. ( 11 
)
or equivalently

c 1 n = R 2 2 n a n a n-1 -(n -1) , for n ≥ 1. ( 12 
)
c)

c 2 n = R 3 3 (n -1) a n a n-2 -(n -2) , for n ≥ 2. ( 13 
)
d.i) k + 1 n -k + 1 a n-k c k n = R k+1 a n - n -k n -k + 1 a n-k + k-2 l=1 R k-l n + 2 n -l + 1 c l n - n -k + l + 1 n -k + l + 2 c l n-k+l+1 - k-2 l=1 l + 1 n -l + 1 c l n c k-l-1 n-l - k-2 l=1 R l+1 R k-l n -l + 1 , 3 ≤ k ≤ d, n ≥ k. ( 14 
) d.ii) R k+1 a n - n -k n -k + 1 a n-k + d l=1 R k-l n + 2 n -l + 1 c l n - n -k + l + 1 n -k + l + 2 c l n-k+l+1 - d l=k-1-d l + 1 n -l + 1 c l n c k-l-1 n-l = k-2 l=1 R l+1 R k-l n -l + 1 , d + 1 ≤ k ≤ 2d + 1, n ≥ k. ( 15 
) d.iii) R k+1 a n - n -k n -k + 1 a n-k + d l=1 R k-l n + 2 n -l + 1 c l n - n -k + l + 1 n -k + l + 2 c l n-k+l+1 = k-2 l=1 R l+1 R k-l n -l + 1 , k ≥ 2d + 2, n ≥ k. ( 16 
)
Proof: By differentiating (3) we get

xP ′ n (x) + P n (x) = P ′ n+1 (x) + d l=0 γ l n P ′ n-l (x). ( 17 
)
Then by making the operations nα n Eq(17) + Eq [START_REF] Douak | Les polynômes orthogonaux "classiques" de dimension deux[END_REF] and Eq(9) -α n Eq(17) we obtain, respectively,

(n + 1)α n xP ′ n (x) = nα n P ′ n+1 (x) + d l=0 γ l n P ′ n-l (x) + n-1 k=1 R k+1 α n-k P ′ n-k (x) (18) 
and

(n + 1)α n P n (x) = α n P ′ n+1 (x) + d l=0 γ l n P ′ n-l (x) - n-1 k=1 R k+1 α n-k P ′ n-k (x). ( 19 
)
Inserting [START_REF] Douak | Les polynômes orthogonaux "classiques" de dimension deux[END_REF] in the left-hand side of the equation Eq(19) multiplied by x we obtain

(n + 1)α n P n+1 + d l=0 γ l n P n-l (x) = α n xP ′ n+1 (x) + d l=0 γ l n xP ′ n-l (x) - n-1 k=1 R k+1 α n-k xP ′ n-k (x). (20) 
Using ( 19) and ( 18) respectively in the left hand side and right hand side of (20) we get

n + 1 n + 2 α n P ′ n+2 (x) + d l=0 γ l n+1 P ′ n+1-l (x) - n + 1 n + 2 α n α n+1 n k=1 R k+1 α n+1-k P ′ n+1-k (x) +(n + 1)α n d l=0 γ l n 1 n + 1 -l P ′ n+1-l (x) + (n + 1)α n d l=0 γ l n 1 n + 1 -l d l ′ =0 γ l ′ n-l P ′ n-l-l ′ (x) -(n + 1)α n d l=0 γ l n 1 n + 1 -l 1 α n-l n-l-1 k=1 R k+1 α n-l-k P ′ n-k-l (x) = n + 1 n + 2 α n P ′ n+2 (x) + d l=0 γ l n+1 P ′ n+1-l (x) + 1 n + 2 α n α n+1 n k=1 R k+1 α n+1-k P ′ n+1-k (x) + α n d l=0 γ l n n -l n + 1 -l P ′ n+1-l (x) +α n d l=0 γ l n n -l n + 1 -l d l ′ =0 γ l ′ n-l P ′ n-l-l ′ (x) + α n d l=0 γ l n 1 n + 1 -l 1 α n-l n-l-1 k=1 R k+1 α n-l-k P ′ n-l-k (x) - n-1 k=1 R k+1 n -k n + 1 -k α n-k P ′ n+1-k (x) - n-1 k=1 R k+1 n -k n + 1 -k α n-k d l=0 γ l n-k P ′ n-k-l (x) - n-1 k=1 R k+1 1 n + 1 -k n-k-1 k ′ =1 R k ′ +1 α n-k-k ′ P ′ n-k-k ′ (x). ( 21 
)
It follows that

- α n α n+1 n k=1 R k+1 α n+1-k P ′ n+1-k (x) + α n d l=0 γ l n l + 1 n + 1 -l P ′ n+1-l (x) + α n d l=0 γ l n l + 1 n + 1 -l d l ′ =0 γ l ′ n-l P ′ n-l-l ′ (x) -(n + 2)α n d l=0 γ l n 1 n + 1 -l 1 α n-l n-l-1 k=1 R k+1 α n-l-k P ′ n-k-l (x) = - n-1 k=1 R k+1 n -k n + 1 -k α n-k P ′ n+1-k (x) - n-1 k=1 R k+1 n -k n + 1 -k α n-k d l=0 γ l n-k P ′ n-k-l (x) - n-1 k=1 R k+1 1 n + 1 -k n-k-1 k ′ =1 R k ′ +1 α n-k-k ′ P ′ n-k-k ′ (x) (22) 
a) By comparing the coefficients of P ′ n+1 (x) in the both sides of (22) we obtain

1 n + 1 α n γ 0 n = 0, for n ≥ 0,
and then γ 0 n = 0, for n ≥ 0. b) Equating the coefficients of P ′ n (x) in the both sides of the equation ( 22) gives

2 n α n γ 1 n = R 2 α n α n+1 α n -R 2 n -1 n α n-1 , for n ≥ 1,
which can be written as γ 1 n = na n -(n -1)a n-1 , for n ≥ 1. Now by equating the coefficients of P ′ n+1-k (x) for k ≥ 2 in the both sides of the equation ( 22) we obtain

k + 1 n + 1 -k α n γ k n + R k+1 α n-k n -k n + 1 -k -R k+1 α n α n+1 α n+1-k + α n d l=1 γ l n l + 1 n + 1 -l d l ′ =1 γ l ′ n-l δ k-1 l+l ′ -(n + 2)α n d l=1 γ l n 1 n + 1 -l n-l-1 k ′ =1 R k ′ +1 α n-l-k ′ α n-l δ k-1 l+k ′ + n k ′ =1 R k ′ +1 α n-k ′ n -k ′ n + 1 -k ′ d l=1 γ l n-k ′ δ k-1 k ′ +l + n k ′′ =1 R k ′′ +1 1 n + 1 -k ′′ n-k ′′ k ′ =1 R k ′ +1 α n-k ′ -k ′′ δ k-1 k ′ +k ′′ = 0, for n ≥ k. ( 23 
)
then by taking k = 2 in (23) we retrieve c) and by considering 3 ≤ k ≤ d, d + 1 ≤ k ≤ 2d + 1 and k ≥ 2d + 2 we obtain d.i.), d.ii.) and d.iii.) respectively.

In the following corollaries we adopt the same conditions and notations as in Proposition 2.

Corollary 1 If R 2 = R 3 = • • • = R d+1 = 0 and α n = 0 for n ≥ 1, then R(t) = 0, F (t) is arbitrary and F (xt) = n≥0 α n x n t n generates the monomials {x n } n≥0 . Proof: As R 1 = R 2 = • • • = R d+1 = 0, it is enough to show by induction that R n = 0 for n ≥ d + 2.
For n = 1, 2, ..., d + 2, the equation ( 9) gives P 1 (x) = x, P 2 (x) = x 2 , ..., P d+1 (x) = x d+1 and P d+2 (0) = -R d+2 α 1 (d+2)α d+2 . But according to equation (3), for n = d + 1, P d+2 (0) = 0 and then R d+2 = 0. Now assume that R k = 0 for d + 2 ≤ k ≤ n -1. According to [START_REF] Douak | Les polynômes orthogonaux "classiques" de dimension deux[END_REF] we have, for d + 2 ≤ k ≤ n -1, P k (0) = 0 and P n (0) = -Rnα 1 nαn . On other hand, by the shift n → n -1 in (3) we have P n (0) = 0 and thus R n = 0. As R(t) = 0, the generating function (1) reduces to F (xt) = n≥0 α n x n t n which generates the monomials with F (t) arbitrary.

Corollary 2 If R d+2 = R d+3 = • • • = R 2d+2 = 0 then R(t) = R 2 t 2 /2 + R 3 t 3 /3 + • • • + R d+1 t d+1 /(d + 1).
Proof: We will use [START_REF] Varma | A characterization theorem and its applications for d-orthogonality of Sheffer polynomial sets[END_REF] and proceed by induction on k to show that R k = 0 for k ≥ 2d + 3. Indeed k = 2d + 2 and n = 2d + 2 in ( 16) leads to a 2d+2 R 2d+3 = 0 and since a n = 0 we get 16) gives a k R k+1 = 0 and finally R k+1 = 0.

R 2d+3 = 0. Suppose that R 2d+3 = R 2d+4 = • • • = R k = 0, then for n = k the equation (
Corollary 3 If R κ+d+1 = • • • = R κ+1 = R κ = R κ-1 = • • • = R κ-d = 0 for some κ ≥ 3d + 3, then R d+2 = R d+3 = • • • = R 2d+2 = 0. Proof: • Let k = κ in (16), then for n ≥ κ the fraction κ-2 l=1 R l+1 R κ-l n-l+1 , as function of integer n, is null even for real n. So, lim x→l-1 (x -l + 1) κ-2 s=1 R s+1 R κ-s x -s + 1 = R l+1 R κ-l = 0, for 1 ≤ l ≤ κ -2 (24) which is R d+2 R κ-d-1 = 0 when l = d+1. Supposing R d+2 = 0 leads to R κ-d-1 = 0. So R κ+d = R κ+d-1 = • • • = R κ-d = R κ-d-1
= 0 and with the same procedure we find R κ-d-2 = 0. Going so on till we arrive at R d+2 = 0 which contradicts R d+2 = 0.

• By taking successively k = κ + r, κ + r -1, ..., κ in ( 16), for 1 ≤ r ≤ d, we find

R l+1 R κ+r-l = 0 for 1 ≤ l ≤ κ + r -2, R l+1 R κ+r-1-l = 0 for 1 ≤ l ≤ κ + r -3, . . . R l+1 R κ-l = 0 for 1 ≤ l ≤ κ -2. If R d+2+r = 0 then by taking l = d + 1 + r we get R κ-d-1 = R κ-d-2 = • • • = R κ-d-r-1 = 0. So R κ+d-r = R κ+d-r-1 = • • • = R κ-d-r-1 = 0 and with the same procedure we find R κ-d-r-2 = R κ-d-r-3 = • • • = R κ-d-2r-2 = 0.
Going so on till we arrive at R d+2+r = 0 which contradicts R d+2+r = 0.

Corollary 4 If a n is a rational function of n then R d+2 = R d+3 = • • • = R 2d+2 = 0.
Proof: From ( 12), ( 13) and ( 14) observe that c l n will also be a rational function of n. Then it follows that, in [START_REF] Varma | A characterization theorem and its applications for d-orthogonality of Sheffer polynomial sets[END_REF], two fractions are equal for natural numbers n ≥ k, k ≥ 2d + 2, and consequently will be for real numbers n. If we denote by N s (G(x)) the number of singularities of a rational function G(x) then we can easily verify, for all rational functions G and G of x and a constant a = 0, that:

a) N s (G(x + a)) = N s (G(x)), b) N s (aG(x)) = N s (G(x)), c) N s (G(x) + G(x)) ≤ N s (G(x)) + N s ( G(x)).
Using property a) of N s we have

N s n -k n -k + 1 a n-k = N s n n + 1 a n and N s n -k + l + 1 n -k + l + 2 c l n-k+l+1 = N s n n + 1 c l n .
According to properties b) and c) of N s , the N s of the left-hand side of ( 15) is finite and independent of k. Thus, the right-hand side of ( 15) has a finite number of singularities which is independent of k. As consequence there exists a

k 1 ≥ 3d + 3 for which R l+1 R k-l = 0 for all k ≥ k 1 -d -1 and k 1 -d -1 ≤ l ≤ k. According to Corollary 1, there exists a k 0 such that 2 ≤ k 0 ≤ d + 1 and R k 0 = 0. So, taking successively k = k 0 + l with l = k 1 + d, k 1 + d -1, ..., k 1 -d -1 we get R k 1 +d+1 = R k 1 +d = • • • = R k 1 -d = 0. Then, by Corollary 3 we have R d+2 = R d+3 = • • • = R 2d+2 = 0.
The fact that a n is a rational function of n means that F (ǫz) = n≥0 α n (ǫz) n (where ǫ is the quotient of the leading coefficients of the numerator and the denominator of a n ) is a generalized hypergeometric series, i.e. of the form:

p F q (µ l ) p l=1 (ν l ) q l=1 ; z = p F q µ 1 , µ 2 , ..., µ p ν 1 , ν 2 , ..., ν q ; z = n≥0 (µ 1 ) n (µ 2 ) n • • • (µ p ) n (ν 1 ) n (ν 2 ) n • • • (ν q ) n z n n! (25) 
where (µ l ) p l=k denotes the array of complex parameters µ k , µ k+1 , ..., µ p , and if k > p we take the convention that (µ l ) p l=k is the empty array. The symbol (µ) n stands for the shifted factorials, i.e.

(µ

) 0 = 1, (µ) n = µ(µ + 1) • • • (µ + n -1), n ≥ 1. ( 26 
)
As an interesting consequence, from Corollary 4 and Corollary 2 we state the following result, which can be interpreted as a generalization of the Appell case in the above Theorem 3 (see also [START_REF] Douak | The relation of the d-orthogonal polynomials to the Appell polynomials[END_REF]):

Theorem 4 Let {P n } be a d-PS generated by (1) with F (z) a generalized hypergeometric series. Then R(t) = R 2 t 2 /2 + R 3 t 3 /3 + • • • + R d+1 t d+1 /(d + 1). Proof: F (z) = n≥0 α n z n has the form (25). Then a n = α n /α n+1 is a rational function of n, since (µ) n+1 /(µ) n = n + µ.
The use of Corollary 4 and Corollary 2 completes the proof.

Corollary 5 Let R(t) = R 2 t 2 /2 + R 3 t 3 /3 + • • • + R d+1 t d+1 /(d + 1). Then, i) If R d+1 = 0 we have c d n+d c d n = 0, for n ≥ d + 1. ii) If R d+1 = 0 then c d n = R d+1 d + 1 (n + 1) b n-d b n -(n -d) , for n ≥ d + 1, ( 27 
)
where b md+r = (b d+r -b r )m + b r , f or m ≥ 0, 1 ≤ r ≤ d.
iii) The {c m n } 1≤m≤d-1 can be calculated recursively by solving the following d-order linear difference equations:

1 n -m + 1 R d+1 (n + 2) -(n -d)c d n-m c m n - 1 n -d + 1 R d+1 (n -d) + (d + 1)c d n c m n-d + + d l=m+1 R m+d+1-l n + 2 n -l + 1 c l n - n -m -d + l n -m -d + l + 1 c l n-m-d+l - d-1 l=m+1 l + 1 n -l + 1 c l n c m+d-l n-l = d-1 l=m R l+1 R m+d+1-l n -l + 1 , 1 ≤ m ≤ d -1, n ≥ m + d + 1. ( 28 
)
Proof:

The proof of i) Put k = 2d + 1 in [START_REF] Van Iseghem | Vector orthogonal relations. Vector QD-algorithm[END_REF] to get the following Riccati equation for {c d n }:

R d+1 (n + 2) c d n -(n -d) c d n-d -(d + 1)c d n c d n-d -R 2 d+1 = 0, f or n ≥ 2d + 1. ( 29 
)
By taking R d+1 = 0 in (29), i) follows immediately.

The proof of ii) Substituting ( 27) in ( 29) we find the 2d-linear homogeneous equation

b n -2b n-d + b n-2d = 0, f or n ≥ 2d + 1. ( 30 
)
By writing n = md + r, where m, r are natural numbers with 1 ≤ r ≤ d, the equation (30) can be solved by summing twice to find that

b md+r = (b d+r -b r )m + b r , f or m ≥ 0, 1 ≤ r ≤ d.
The proof of iii)

Since d + 1 ≤ k ≤ 2d + 1 we have R k+1 = 0 and R k-l = 0 for l ≤ k -2 -d. So, we can write (15) as d l=k-d R k-l n + 2 n -l + 1 c l n - n -k + l + 1 n -k + l + 2 c l n-k+l+1 + R d+1 n + 2 n -k + d + 2 c k-1-d n - n -d n -d + 1 c k-1-d n-d - d-1 l=k-d l + 1 n -l + 1 c l n c k-l-1 n-l - k -d n -k + d + 2 c k-1-d n c d n-k+1+d - d + 1 n -d + 1 c d n c k-1-d n-d = = k-2 l=k-1-d R l+1 R k-l n -l + 1 , d + 1 ≤ k ≤ 2d + 1, n ≥ k. ( 31 
)
Putting m = k -d -1 = 0 in (31) and rearranging we obtain (28).

Remark 3 In the case of d-OPSs, in Corollary 5 the polynomial R(t) is of degree d + 1. Otherwise (i.e. R d+1 = 0), we have a contradiction with the regularity conditions γ d n = 0, for n ≥ d.

Corollary 6 The d-PS is classical if and only if R(t) = R 2 t 2 /2 + R 3 t 3 /3 + • • • + R d+1 t d+1 /(d + 1) with R d+1 = 0.
Proof: 1) Assume that the d-PS is classical. From (18) and Definition 2 we have

R k+1 = 0 for d + 1 ≤ k ≤ n -1.
We get R(t) by taking n ≥ 2d + 2 and using Corollary 2. Now we show that R d+1 = 0. Equation ( 18) becomes

xQ n (x) = Q n+1 (x) + d l=1 γl n Q n-l (x), n ≥ 0, ( 32 
)
where

Q n (x) = (n + 1) -1 P ′ n+1 (x) and γl n = n + 1 -l n + 2 γ l n+1 + R l+1 α n+l-1 (n + 1)α n+1 , n ≥ d. (33) 
From ( 27), if R d+1 = 0 then γ d n+1 = 0, and (33) gives γd

n = 0, for n ≥ d. So, {Q n } is not a d-PS which contradicts the fact that {P n } is classical (see Definition 2). 2) Assume that R(t) = R 2 t 2 /2 + R 3 t 3 /3 + • • • + R d+1 t d+1 /(d + 1
) with R d+1 = 0 , then the PS of the derivatives {Q n } satisfy (32) and are generated by

F ′ (xt -R(t)) = n≥0 (n + 1)α n+1 Q n (x)t n . Using Corollary 5 we find that cd n := (n + 1)α n+1 γd n /((n -d + 1)α n-d+1
) satisfies (29). And according to the same expression (29), we should have, if c d n = 0 or γ d n = 0 (for n ≥ d + 1), R d+1 = 0. Therefore, there exists for cd n , since R d+1 = 0, a n 0 ≥ d + 1 such that cd n 0 = 0 or γd n 0 = 0. This means that {P n } is classical.

The d-symmetric case

The main result of this section is the following:

Theorem 5 If {P n } is a d-symmetric d-PS generated by (1) then R(t) = R d+1 t d+1 /(d + 1).
Theorem 5 generalizes Theorem 1 and Theorem 2 mentioned above. Its proof is quite similar to that of Theorem 1 in [START_REF] Mesk | A new characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] and it requires the following Lemmas.

Lemma 1 If {P n } is a d-symmetric d-PS generated by (1) then R(t) = k≥1 R k(d+1) k(d + 1) t k(d+1) . ( 34 
)
Proof: Let {P n } be a d-symmetric d-PS satisfying (3) and generated by [START_REF] Al-Salam | On a characterization of a certain set of orthogonal polynomials[END_REF]. Then it has, according to Definition 3, the property

P n (ωx) = ω n P n (x), (35) 
where ω = exp(2πi/(d + 1)). It follows that (3) becomes [START_REF] Douak | Les polynômes orthogonaux "classiques" de dimension deux[END_REF] xP n (x) = P n+1 (x) + γ d n P n-d (x), n ≥ 0, P -n (x) = 0, 1 ≤ n ≤ d, and P 0 (x) = 1.

(36)

Let us show that R k = 0 when k is not a multiple of d + 1. First we replace x by ωx in (9) and use (35

) with P ′ n (ωx) = ω n-1 P ′ n (x) to get α n xP ′ n (x) - n-1 k=1 R k+1 α n-k ω -k-1 P ′ n-k (x) = nα n P n (x), n ≥ 2. ( 37 
)
Subtracting (37) from [START_REF] Douak | Les polynômes orthogonaux "classiques" de dimension deux[END_REF] gives

n-1 k=1 R k+1 α n-k (1 -ω -k-1 )P ′ n-k (x) = 0, n ≥ 2 (38) which leads to R k α n-k+1 (1 -ω -k ) = 0, for 2 ≤ k ≤ n, n ≥ 2.
Since ω k = 1, provided k is not a multiple of d + 1, gives the result.

By Lemma 1 and putting T k = R k(d+1) for k ≥ 0, the equations in Proposition 2 simplify to particular forms. Indeed, from ( 12), ( 13) and ( 14) we get

c d n = T 1 d + 1 (n -d + 1) a n a n-d -(n -d) , for n ≥ d. (39) 
The equation [START_REF] Van Iseghem | Vector orthogonal relations. Vector QD-algorithm[END_REF], with k = 2d + 1, becomes

T 2 a n - n -2d -1 n -2d a n-2d-1 + T 1 n + 2 n -d + 1 c d n - n -d n -d + 1 c d n-d - d + 1 n -d + 1 c d n c d n-d = T 2 1 n -d + 1 , n ≥ 2d + 1, (40) 
which by (39) takes the form

(d + 1)T 2 T 2 1 1 - n -2d -1 n -2d a n-2d-1 a n = n + 1 a n - 2(n -d + 1) a n-d + n -2d + 1 a n-2d , for n ≥ 2d + 1. (41) 
Finally, the equation ( 16) simplifies to

T k+1 a n - n -k(d + 1) -d n -k(d + 1) -d + 1 a n-k(d+1)-d + T k n + 2 n -d + 1 c d n - n -k(d + 1) + 1 n -k(d + 1) + 2 c d n-k(d+1)+1 = k-1 l=0 T l+1 T k-l n -l(d + 1) -d + 1 , k ≥ 2, n ≥ k(d + 1) + d. ( 42 
)
This equation will be denoted by E k (n) in below. Proof: The proof is similar to that of Corollary 7 in [START_REF] Mesk | A new characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF]. Let assume that T κ+1 = 0 and T m+1 = 0, since if not, we apply Corollary 3. When m > κ and by using (42), the following operations

Lemma 2 If T 2 = 0 then R(t) = T 1 t d+1 /(d + 1). Proof: According to Corollary 2, if T 2 = R 2(d+1) = 0 then R(t) = T 1 t d+1 /(d + 1), since in this case we have R d+2 = R d+3 = • • • = R 2d+1 = 0. Lemma 3 If T m = T m+1 = 0 for some m ≥ 3, then T 2 = 0. Proof: T m = T m+1 = 0 means that R (d+1)m = R (d+1)(m+1) = 0. Also by Lemma 1, we have R (d+1)m+d = R (d+1)m+d-1 = • • • = R (d+1)m+1 = 0 and R (d+1)m-1 = R (d+1)m-2 = • • • = R ( 
[E κ (n + (d + 1)m + d)/T κ+1 -E m (n + (d + 1)m + d)/T m+1 ] -[E κ (n)/T κ+1 -E m (n + (d + 1)(m -κ) + d)/T m+1 ] (43) 
give

n n + 1 - n + (d + 1)(m -κ) n + (d + 1)(m -κ) + 1 a n = Q(n) (44) 
where Q(n) is a rational function of n. Consequently, a n is a rational function of n and by Corollary 4 we have T 2 = 0.

Lemma 5

The following equality is true for k ≥ 3 and n ≥ k(d + 1) + 2d + 1.

T k-1 D k+1 (a n -ãn-k(d+1)-2d-1 ) -T k+1 D k (a n-d-1 -ãn-k(d+1)-d ) = k-1 l=1 V k,l n -l(d + 1) -d + 1 , (45) 
where

• D k,l = T k T k-l+1 -T k+1 T k-l . • D k = D k,1 = T 2 k -T k+1 T k-1 . • V k,l = T 1 2 (T l T k+1 D k-1,l-1 -T l+1 T k-1 D k,l ).
• ãn = n n+1 a n .

Proof: Just by making the following combinations it is easy to get (45):

T k+1 (T k-1 E k (n) -T k E k-1 (n -d -1)) -T k-1 (T k E k+1 (n) -T k+1 E k (n -d - 1 
)) .

To prove Theorem 5 it is sufficient, according to Lemma 2, to show that T 2 = 0. To this end, we will consider three cases:

Case 1: There exists k 0 ≥ 3 such that D k = 0 for k ≥ k 0 . and 3a n+d+1 n + d + 2 -D 2a n n + 1 - a n-d-1 n -d = Q (4) k (n). ( 54 
)
By shifting n → n + d + 1 in (53) we obtain

3a n-d-1 n -d -D - a n+d+1 n + d + 2 + 2a n n + 1 = Q (3) k (n + d + 1). ( 55 
)
The coefficients a n+d+1 and a n-d-1 can be eliminated by the operations D × Eq(54) -3 Eq(55) and 3 Eq(54) -D × Eq(55) leaving us with

6D -2D 2 n + 1 a n + D 2 -9 n -d a n-d-1 = Q (5) k (n) (56) and 9 -D 2 n + d + 2 a n+d+1 - 6D -2D 2 n + 1 a n = Q (6) k (n). ( 57 
)
Finally, the shifting n → n -d -1 in (57) leads to

9 -D 2 n + 1 a n - 6D -2D 2 n -d a n-d-1 = Q (6) k (n -d -1) (58) 
and the operation (6D -2D 2 )Eq(56) + (D 2 -9)Eq(58) gives

[(6D -2D 2 ) 2 + (D 2 -9) 2 ]a n = Q (7) k (n). ( 59 
)
According to manipulations made above, Q

k (n) is a rational function of n. As consequence, if D = 3, a n is a rational function of n and then T 2 = 0. Now, we explore the case D = 3. According to the left-hand sides of (54) and (55), we have

Q (3) k (n + d + 1) = Q (4) k (n) ,
which can be written as

(n + 2d + 2)Q (1) 
k (n + d + 1) -(n -2d -2)Q (1) k (n) = (n + 2d + 3) Q (1) k (n + d + 1) -(n -2d -1) Q (1) k (n) .
(60) By using, from (46) and (48), the expressions of

Q (1) k (n) and Q (1) k (n) with W k,k+1 = W k,k+1 = W k,0 = W k,0 = 0 we obtain k l=0 ((d + 1)l + 2d)W k,l+1 -((d + 1)l -2d -4)W k,l n -(d + 1)l + 2 = k l=0 (d + 1)((2 -l) W k,l -(l + 2) W k,l+1 ) n + (d + 1)l + 1 . (61) 
Observe that in (61) the singularities of the left hand side are different from those of the right hand side. So,

((d + 1)l + 2d)W k,l+1 -((d + 1)l -2d -4)W k,l = (2 -l) W k,l -(l + 2) W k,l+1 = 0, (0 ≤ l ≤ k), (62) 
and by induction on l, all the W k,l and W k,l are null. Thus, (46) reads

a n+d+1 -a n-2(d+1) -3(a n -a n-d-1 ) = 0. ( 63 
)
For n = (d + 1)m + r, m ≥ 0 and 0 ≤ r ≤ d, the solutions of (63) have the form

a (d+1)m+r = C 0,r + C 1,r m + C 2,r m 2 , ( 64 
)
where C 0,r , C 1,r and C 2,r are constants. So, by Corollary 4 we get T 2 = 0.

Case 2: There exists

k 0 ≥ 3 such that D k = 0 for k ≥ k 0 . Suppose that D k = T 2 k -T k-1 T k+1 = 0 for all k ≥ k 0 . First, notice that if there exists a k 1 ≥ k 0 such that T k 1 = 0, then T k 1 -1 T k 1 +1 = 0. Then, T k 1 -1 = 0 or T k 1 +1
= 0 and by Corollary 3, T 2 = 0. We have also T k 0 -1 = 0, otherwise T k 0 = 0 and by Corollary 3, T 2 = 0. Now, for T k = 0 (k ≥ k 0 -1), we have

T k+1 T k = T k T k-1 = T k 0 T k 0 -1 . ( 65 
)
This means that

T k = T k 0 T k 0 -1 k-k 0 T k 0 = ab k (66) 
where

a = T k 0 k 0 -1 /T k 0 -1 k 0 = 0 and b = T k 0 /T k 0 -1 = 0. The substitution T k = ab k in (42) for k ≥ k 0 leads to the equation b a n - n -k(d + 1) -d n -k(d + 1) -d + 1 a n-k(d+1)-d + n + 2 n -d + 1 c d n - n -k(d + 1) + 1 n -k(d + 1) + 2 c d n-k(d+1)+1 = b -k a k-1 l=0 T l+1 T k-l n -l(d + 1) -d + 1 = Q k (n) . (67) 
Let denote (67) by E (k, n) and make the subtraction

E (k + 1, n + d + 1) -E (k, n) to get b (a n+d+1 -a n ) + n + d + 3 n + 2 c d n+d+1 - n + 2 n -d + 1 c d n = Q k+1 (n + d + 1) -Q k (n) . ( 68 
)
On the right hand side of (68) we have, for k ≥ k 0 , the expression

Q k (n) := Q k+1 (n + d + 1) -Q k (n) = b -k-1 a k l=0 T l+1 T k+1-l n + d + 1 -l(d + 1) -d + 1 - b -k a k-1 l=0 T l+1 T k-l n -l(d + 1) -d + 1 = b -k-1 a k l=0 T l+1 T k+1-l n -l(d + 1) + 2 - b -k a k l=1 T l T k+1-l n -l(d + 1) + 2 = b -k-1 a T k+1 T 1 n + 2 + b -k-1 a T k (T 2 -bT 1 ) n -d + 1 + b -k-1 a k l=2 T k+1-l (T l+1 -bT l ) n -l(d + 1) + 2 = T 1 n + 2 + T 2 -bT 1 b(n -d + 1) + b -k-1 a k l=2 T k+1-l (T l+1 -bT l ) n -l(d + 1) + 2 . ( 69 
)
from which we deduce

Q k+1 (n) = T 1 n + 2 + T 2 -bT 1 b(n -d + 1) + b -k-2 a k+1 l=2 T k+2-l (T l+1 -bT l ) n -l(d + 1) + 2 . ( 70 
)
Now since the left hand side of equation ( 68) is independent of k, it follows

Q k+1 (n) -Q k (n) = b -k-2 a k l=2 (T k-l+2 -bT k-l+1 ) (T l+1 -bT l ) n -l(d + 1) + 2 = 0. (71) 
As a result, for 2 ≤ l ≤ k and k ≥ k 0 , we have

(T k-l+2 -bT k-l+1 ) (T l+1 -bT l ) = 0. ( 72 
)
Let take k = 2 (k 0 -2) -1 and l = k 0 -2 to get (T k 0 -1 -bT k 0 -2 ) 2 = 0 and then T k 0 -1 = bT k 0 -2 , (or equivalently D k 0 -1 = 0). Thus, the equations ( 65) and (66) are valid for k = k 0 -1 and by induction we arrive at T 4 = bT 3 , (or equivalently D 4 = 0). For k = 4, the right-hand side of (45) is null. Consequently, V 4,2 = 0 and using T 5 = T 2 4 /T 3 (from D 4 = 0) we get D 3 = 0. On the other side (when T 2 = 0) we can write

T k = T 3 T 2 k-2 T 2 = ab k , for k ≥ 2,
where b = T 3 /T 2 = 0 and a = T 3 2 /T 2 3 = 0. Therefore, the equation (67) reads

b a n - n -k(d + 1) -d n -k(d + 1) -d + 1 a n-k(d+1)-d + n + 2 n -d + 1 c d n - n -k(d + 1) + 1 n -k(d + 1) + 2 c d n-k(d+1)+1 = T 1 n -(d + 1)k + 2 + T 1 n + k-2 l=1 ab n -l(d + 1) -d + 1 , k ≥ 2 and n ≥ (d + 1)k + d. (73) 
When n = (d + 1)k + d and n = (d + 1)(k + 1), the equation (73) gives

ba (d+1)k+d + (d + 1)k + d + 2 (d + 1)k + 1 c d (d+1)k+d = d + 1 d + 2 c d d+1 + T 1 d + 2 + T 1 (d + 1)k + d + k-2 l=1 ab (d + 1)(k -l) + 1 (74) and ba (d+1)(k+1) + (d + 1)(k + 1) + 2 (d + 1)(k + 1) -d + 1 c d (d+1)(k+1) = a 1 b d + 1 + d + 2 d + 3 c d d+2 + T 1 d + 3 + T 1 (d + 1)(k + 1) + k-2 l=1 ab (d + 1)(k + 1 -l) -d + 1 (75)
respectively. Let take n = (d + 1)N + d in (73) and use (74) to obtain the expression

d + 1 d + 2 c d d+1 + T 1 d + 2 + T 1 (d + 1)N + d + N -2 l=1 ab (d + 1)(N -l) + 1 - (d + 1)(N -k)b (d + 1)(N -k) + 1 a (d+1)(N -k) - (d + 1)(N -k + 1) (d + 1)(N -k) + d + 2 c d (d+1)(N -k+1) = T 1 (d + 1)(N -k) + d + 2 + T 1 (d + 1)N + d + k-2 l=1 ab (d + 1)(N -l) + 1 .
In this last equality let put N -k instead of k to get

- b(d + 1)k (d + 1)k + 1 a (d+1)k - (d + 1)(k + 1) (d + 1)(k + 1) + 1 c d (d+1)(k+1) = = - (d + 1) d + 2 c d d+1 - T 1 d + 2 - N -2 l=1 ab (d + 1)(N -l) + 1 + T 1 (d + 1)k + d + 2 + N -k-2 l=1 ab (d + 1)(N -l) + 1 = - d + 1 d + 2 c d d+1 - T 1 d + 2 + T 1 (d + 1)k + d + 2 - k+1 l=2 ab (d + 1)l + 1 . ( 76 
)
After defining

A 1 = a 1 d+1 + d+2 (d+3)b c d d+2 + T 1 (d+3)b , A 2 = -d+1 d+2 c d d+1 b -T 1 (d+2)b and A 3 = T 1 b , the operation 1 (d + 1)(k + 1) + 2 (d + 1)(k + 1) (d + 1)(k + 1) + 1 Eq(75) + (d + 1)(k + 1) + 2 (d + 1)(k + 1) -d + 1
Eq(76)

leads to

(d + 1)(k + 1) ((d + 1)(k + 1) + 2)((d + 1)(k + 1) + 1) a (d+1)(k+1) - (d + 1)k ((d + 1)k + 2)((d + 1)k + 1) a (d+1)k = = -A 1 d + dA 3 -A 3 ((d + 1)k + d + 2) d + 2 A 1 -A 3 (d + 1)k + d + 3 + A 2 d + A 3 ((d + 1)k + 2) d + 2 (d + 1)k + d + 3 - 1 (d + 1)k + d + 2 k-2 l=1 a (d + 1) (k + 1 -l) -d + 1 - 1 (d + 1) (k + 1) -d + 1 k+1 l=2 a (d + 1) l + 1 = -A 1 d + dA 3 -A 3 ((d + 1)k + d + 2) d + 2 A 1 -A 3 (d + 1)k + d + 3 + A 2 d + A 3 ((d + 1)k + 2) d + 2 (d + 1)k + d + 3 - 1 (d + 1)k + d + 2 k-1 l=2 a (d + 1) (l + 1) -d + 1 - 1 (d + 1) (k + 1) -d + 1 k+1 l=2 a (d + 1) l + 1 = B 1 k + d+3 d+1 + B 2 k + d+2 d+1 + B 3 k + 2 d+1 + a (d + 1) 2 2 k + d+3 d+1 - 1 k + d+2 d+1 Ψ k + 2 d + 1 - a (d + 1) 2 1 k + 2 d+1 Ψ k + 2 + 1 d + 1 , ( 77 
)
where the Digamma function Ψ(x) as well as the short notations

B 1 = 2A 1 -A 3 d+1 -2a (d+1) 2 Ψ 2 + 2 d+1 , B 2 = -dA 1 +(d-1)A 3 d(d+1) + a (d+1) 2 Ψ 2 + 2 d+1 and B 3 = dA 2 +A 3 d(d+1) + a (d+1) 2 Ψ 2 + 1 d+1 are introduced. Taking U k = (d + 1)k ((d + 1)k + 2)((d + 1)k + 1) a (d+1)k and G(k + 1) = B 1 k + d+3 d+1 + B 2 k + d+2 d+1 + B 3 k + 2 d+1 + a (d + 1) 2 2 k + d+3 d+1 - 1 k + d+2 d+1 Ψ k + 2 d + 1 - a (d + 1) 2 1 k + 2 d+1 Ψ k + 2 + 1 d + 1 . ( 78 
)
then (77) can be written in compact form as

U k+1 -U k = G(k + 1).
The later recurrence is easily solved to give

U k = U 3 + k j=4 G(j).
By using the formula Ψ(j + 1) = Ψ(j) + 1/j and the relations [13, Theorems 3.1 and 3.2]

k l=0 Ψ(l + α) l + β + k l=0 Ψ(l + β + 1) l + α = Ψ(k + α + 1)Ψ(k + β + 1) -Ψ(α)Ψ(β), ( 79 
) k j=0 Ψ(j + β) j + β = 1 2 Ψ ′ (k + β + 1) -Ψ ′ (β) + Ψ(k + β + 1) 2 -Ψ(β) 2 , ( 80 
)
we obtain

U k = (d + 1)k ((d + 1)k + 2)((d + 1)k + 1) a (d+1)k = B 1 Ψ k + d + 3 d + 1 + B 2 Ψ k + d + 2 d + 1 + B 3 Ψ k + 2 d + 1 + 2a (d + 1) ((d + 1)k + 2) + a (d + 1) 2 Ψ ′ k + d + 3 d + 1 + Ψ k + d + 3 d + 1 2 - a (d + 1) 2 Ψ k + 2 d + 1 Ψ k + d + 2 d + 1 + δ 2 , ( 81 
)
where

δ 2 = a (d + 1) 2 Ψ 2 d + 1 Ψ d + 2 d + 1 -B 1 Ψ d + 3 d + 1 -B 2 Ψ d + 2 d + 1 -B 3 Ψ 2 d + 1 - a d + 1 - a (d + 1) 2 Ψ ′ d + 3 d + 1 - a (d + 1) 2 Ψ d + 3 d + 1 2 -G(1) -G(2) -G(3) + U 3 .
From (81) we deduce the asymptotic behaviour of a (d+1)k as k → ∞:

a (d+1)k = δ 1 k + 3 d + 1 + 2 (d + 1) 2 k + a (d + 2) (d + 1) 2 + 1 2 a (d + 4) (d + 1) 3 k + 1 6 ad (d + 2) (d + 1) 4 k 2 - 1 4 
ad (d + 2) (d + 1) 5 k 3 + • • • ln(k) + δ 2 (d + 1)k + δ 3 + δ 4 k + δ 5 k 2 + δ 6 k 3 + • • • (82)
where coefficients δ i are defined by (higher terms are omitted)

δ 1 = (d + 1)(B 1 + B 2 + B 3 ), δ 3 = d 2 + d + 4 d + 1 B 1 + d 2 + 3 d + 1 B 2 - d -3 d + 1 B 3 + 3 δ 2 + 3 d + 1 a, δ 4 = 5 d 2 + 4 d + 47 6 (d + 1) 2 B 1 + 8 d 2 + d + 41 6 (d + 1) 2 B 2 - d 2 + 8 d -41 6 (d + 1) 2 B 3 + 2 d + 1 δ 2 + 9 d + 13 2 (d + 1) 3 a, δ 5 = d 2 + 2 d + 9 6 (d + 1) 3 B 1 - d 3 + 2 d 2 -9 6 (d + 1) 3 B 2 + d 2 + 2 d + 9 6 (d + 1) 3 B 3 + d 3 + 5 d 2 -2 d + 6 12 (d + 1) 4 a, δ 6 = d 2 + 2 d -19 60 (d + 1) 2 B 1 + d 3 + 18 d 2 + 13 d -19 60 (d + 1) 3 B 2 + d 2 + 2 d -19 60 (d + 1) 2 B 3 - 7 d 3 + 20 d 2 -11 d -8 24 (d + 1) 5 a, . . .
At this level we should remark that lim k→∞ a 2k = ∞ for all δ i , i = 1, 2, 3, ..., since a = 0. Recall that

c d n = T 1 d+1 (n -d + 1) an a n-d -(n -d) ,
for n ≥ d, then the equation (74) can be written as

a (d+1)k+d b + T 1 d + 1 (d + 1)k + d + 2 a (d+1)k = φ(k), (83) 
where

φ (k) = T 1 d + 1 ((d + 1)k)((d + 1)k + d + 2) (d + 1)k + 1 -bA 2 + bA 3 (d + 1)k + d + k-1 l=2 ab (d + 1)l + 1 ,
and the equation ( 75) can be written

a (d+1)(k+1) b + T 1 d + 1 (d + 1)(k + 1) + 2 a (d+1)k+1 = φ(k), (84) 
where

φ (k) = T 1 d + 1 ((d + 1)(k + 1) + 2)((d + 1)k + 1) (d + 1)k + 2 + bA 1 + bA 3 (d + 1)(k + 1) + k l=3 ab (d + 1)l -d + 1
.

From ( 83) and (84) we have

1 a (d+1)(k+1)+d = 1 φ (k + 1) b + T 1 d + 1 (d + 1)(k + 1) + d + 2 a (d+1)(k+1) (85) and 1 a 
(d+1)k+1 = d + 1 T 1 1 (d + 1)(k + 1) + 2 φ(k) a (d+1)(k+1) -b , (86) 
which give an explicit formula for a (d+1)(k+1)+d and a (d+1)k+1 .

• If we suppose lim k→∞ a (d+1)k (d+1)k = ∞, then from (85) and ( 86) we deduce on one side lim k→∞

(d + 1)(k + 2) a (d+1)(k+1)+d = lim k→∞ (d + 1)(k + 2) φ (k + 1) b + T 1 d + 1 (d + 1)(k + 1) + d + 2 a (d+1)(k+1) = (d + 1)b T 1 (87) 
and

lim k→∞ (d + 1)(k + 1) + 2 a (d+1)k+1 = lim k→∞ d + 1 T 1 φ(k) a (d+1)(k+1) -b = - (d + 1)b T 1 . (88) 
On the other side, for n = (d + 1)k + 2d + 1, (41) reads

(d + 1)T 2 T 2 1 1- (d + 1)k (d + 1)k + 1 a (d+1)k a (d+1)(k+1)+d = (d + 1)(k + 2) a (d+1)(k+1)+d - 2((d + 1)(k + 1) + 1) a (d+1)(k+1) + (d + 1)k + 2 a (d+1)k+1 . (89) 
Under the assumption T 2 = 0, (89) admits the limit ∞ = 0, as k → ∞, which exhibit a contradiction.

• Now if lim k→∞ a (d+1)k (d+1)k = η 1 = 0, then from (85) and (86) we have lim k→∞

(d + 1)(k + 2) a (d+1)(k+1)+d = lim k→∞ (d + 1)(k + 2) φ (k + 1) b+ T 1 d + 1 (d + 1)(k + 1) + d + 2 a (d+1)(k+1) = (d + 1)b T 1 + 1 η 1 := η 2 , (90) and lim k→∞ 
(d + 1)(k + 1) + 2 a (d+1)k+1 = lim k→∞ d + 1 T 1 φ(k) a (d+1)(k+1) -b = 1 η 1 - (d + 1)b T 1 = 2 η 1 -η 2 . (91) 
By taking the limit in (89) we obtain,

(d + 1)T 2 T 2 1 (1 -η 1 η 2 ) = η 2 - 2 η 1 + 2 η 1 -η 2 = 0.
If η 2 = 0, we have the contradiction T 2 = 0. But if η 2 = 0, then η 2 = 1/η 1 . From (90) we get (d + 1)b/T 1 + 1/η 1 = η 2 , which gives the contradiction b = 0.

• Finally if lim k→∞ a (d+1)k (d+1)k = 0, then according to (82), we have δ 1 = δ 2 = 0 and

a (d+1)k = ((d + 1)k + 2)((d + 1)k + 1) (d + 1)k B 1 Ψ k + d + 3 d + 1 + B 2 Ψ k + d + 2 d + 1 -(B 1 + B 2 )Ψ k + 2 d + 1 + 2a (d + 1) ((d + 1)k + 2) + a (d + 1) 2 Ψ ′ k + d + 3 d + 1 + Ψ k + d + 3 d + 1 2 - a (d + 1) 2 Ψ k + 2 d + 1 Ψ k + d + 2 d + 1 , = a (d + 2) (d + 1) 2 + 1 2 a (d + 4) (d + 1) 3 k + 1 6 ad (d + 2) 
(d + 1) 4 k 2 - 1 4 
ad (d + 2) (d + 1) 5 k 3 + • • • ln(k)+δ 3 + δ 4 k + δ 5 k 2 + δ 6 k 3 + • • • .( 92 
)
Let write the equation (89) as

(d + 1)T 2 T 2 1 1- (d + 1)k (d + 1)k + 1 a (d+1)k a (d+1)(k+1)+d - (d + 1)(k + 2) a (d+1)(k+1)+d + 2((d + 1)(k + 1) + 1) a (d+1)(k+1) - (d + 1)k + 2 a (d+1)k+1 = 0. ( 93 
)
After multiplying the both sides of the equation (93) by φ(k + 1)a (d+1)(k+1) and using (92), ( 85) and (86), we get, as k → ∞,

λ 1 ln(k) 2 + λ 2 ln(k) + λ 3 + • • • = 0 (94) 
where

λ 1 = - (d + 2) b (d + 1) 3 T 2 1 T 2 + b 2 (d + 1) 2 T 1 a 2
and

λ 2 = 2b(d + 2)a 2 (d + 1) 3 T 2 1 Ψ 2d + 3 d + 1 -3 (d + 3)ba 2 (d + 1) 2 T 2 1 + 2 bA 2 (d + 2) + T 1 (d + 3) (d + 1) 2 T 2 1 a T 2 - 2b 2 a 2 (d + 1) 2 T 1 Ψ 2d + 3 d + 1 + 3 b 2 a 2 (d + 1)T 1 -2 (bA 2 + T 1 )ba (d + 1)T 1 .
So, we must have λ i = 0, i = 1, 2, 3, .... As a = 0 and b = 0, from λ 1 = 0 we get Case 3: For every k 0 ≥ 3, there exists infinitely many k, κ ≥ k 0 such that: D k = 0 and D κ = 0. We take k 1 and k 2 ,

T 2 = d + 1 d + 2 bT 1 , (95) 
k 1 = k 2 , with D k 1 = 0, D k 1 +1 = 0, D k 2 = 0 and D k 2 +1 = 0 to get from (45) that a n - n -k 1 (d + 1) -2d -1 n -k 1 (d + 1) -2d a n-k 1 (d+1)-2d-1 and a n - n -k 2 (d + 1) -2d -1 n -k 2 (d + 1) -2d a n-k 2 (d+1)-2d-1 (97) 
are two rational functions of n. Consequently, an analogous reasoning to that of Lemma 4 completes the proof.

In the next subsection we give some expressions concerning the sequence {γ d n } n≥d and the power series F (t). The later is expressed by hypergeometric series (25).

3.1

Expressions for γ with

γ d n = T 1 d + 1 (n -d + 1) α n-d+1 α n+1 -(n -d) α n-d α n , for n ≥ d, (99) 
and for n = dm + r, m ≥ 1, 1 ≤ r ≤ d we have

γ d dm+r = T 1 d + 1 (dm + r)!(β r (m -r -1) + (d + 1)b r ) (d(m -1) + r)! r l=1 (β l m + b l ) d l=r (β l (m -1) + b l ) (100) with γ d d = T 1 d!/ d l=1 b l , b l = (l + 1)α l+1 /α l and β l = b d+l -b l , 1 ≤ l ≤ d.
Proof: The equation ( 39) is

c d n = α n α n-d γ d n = T 1 d + 1 (n -d + 1) a n a n-d -(n -d) , for n ≥ d. ( 101 
)
As a n = α n /α n+1 we get (99).

According to Theorem 5 we have R(t) = T 1 t d+1 /(d + 1). So, by Corollary 5 we obtain 

c d n = α n α n-d γ d n = T 1 d + 1 (n + 1) b n-d b n -(n -d) , for n ≥ d + 1, (102) 
γ d n = T 1 d + 1 α n-d ((n + 1)b n-d -(n -d)b n ) α n b n , for n ≥ d + 1. ( 104 
)
We calculate α n b n /α n-d by using the relation

α n = b n-1 α n-1 /n = n-1 l=0 b l /n! to find α n b n α n-d = (n -d)! n! n l=0 b l n-d-1 l=0 b l = (n -d)! n! n l=n-d b l . ( 105 
)
Now for n = md + r, we can write 

Proposition 4 If d l=1 β l = 0 then F (t) = 1 + F 1 (t) + F 2 (t),
where

F 1 (t) = α d t d d+1 F d   1, b d β d , b l+d β l d-1 l=1 l+d d d l=1 ; d l=1 β l t d d   (108) 
and 

F 2 (t) = d-1 r=1 α r t r d F d-1   b l+d β l r-
F 1 (t) = α 1 βd   d F d-1   βd β d , b l β l d-1 l=1 l d d-1 l=1 ; d l=1 β l t d d   -1   . (110) 
Proof:

Recall that α n = n-1 l=0 b l /n!. If d l=1 β l = 0, then for n = md + r and using the expression of b md+r , we obtain

md+r-1 l=0 b l = b 0 b 1 b 2 • • • b r-1 b r b r+1 • • • b d+r-1 • • • b (m-1)d+r-1 b (m-1)d+r • • • b md b md+1 • • • b md+r-1 = (b 0 b 1 b 2 • • • b r-1 )(b r b r+d • • • b r+(m-1)d )(b r+1 • • • b r+1+(m-1)d ) • • • (b d+r-1 b 2d+r-1 • • • b md+r-1 ) = r-1 l=0 b l d+r-1 l=r b l b l+d • • • b l+(m-1)d = r!α r d l=r b l b l+d • • • b l+(m-1)d d+r-1 l=d+1 b l b l+d • • • b l+(m-1)d = r!α r d l=r β l m d l=r b l β l m r-1 l=1 β l m r-1 l=1 1 + b l β l m = r!α r d l=1 β l m d l=r b l β l m r-1 l=1 b l+d β l m . (111) 
We have also, for m ≥ 0 and 0 ≤ r ≤ d -1, the expressions [6, Lemma So,

α md+r = α r r-1 l=1 b l+d β l m d l=r b l β l m m! d-1 l=r+1 l d m d+r l=d+1 l d m d l=1 β l 1 d d m , for 1 ≤ r ≤ d -1, (112) 
α md+d = α d d-1 l=1 b l+d β l m b d β d m d l=1 1 + l d m d l=1 β l 1 d d m (113) 
and, if βd = 0,

α md+d = α 1 βd d-1 l=1 b l β l m+1 βd β d m+1 (m + 1)! d-1 l=1 l d m+1 d l=1 β l 1 d d m+1 . (114) 
Now, expanding F (t) as

F (t) = n≥0 α n t n = 1 + m≥0 α md+d t md+d + d-1 r=1 m≥0
α md+r t md+r , the expressions (108), ( 109) and (110) follow from (112), ( 113) and (114), respectively. 

Example 1 If d = 1 then R(t) = T 1 t 2 /2, b n = (b 2 -b 1 )n + 2b 1 -b 2 = β 1 n + β1 , for n ≥ 1, and F (t), γ d n have the expressions: 1) If β 1 = 0 we have F (t) ≡ F β 1 (t) = 1 + α 1 t 2 F 1 1, b 1 β 1 2 ; β 1 t (115) with γ 1 1 = T 1 /b 1 and for n ≥ 2, γ 1 n = T 1 2 n(β 1 (n -1) + 2 β1 ) (β 1 n + β1 )(β 1 (n -1) + β1 )
.

The limiting case is lim

β 1 →0 F β 1 (t) = 1 + α 1 t 1 F 1 1 2 ; b 1 t = 1 + α 1 b 1 e b 1 t -1 (116) with γ 1 n = T 1 n/b 1 for n ≥ 1. 2) If β1 β 1 = 0, [2, 14], F (t) ≡ F β 1 , β1 (t) = 1 + α 1 β1 (1 -β 1 t) -β1 β 1 -1 (Ultraspherical polynomials) (117) 
with

γ 1 n = T 1 2 n(β 1 (n -1) + 2 β1 ) (β 1 n + β1 )(β 1 (n -1) + β1 ) , for n ≥ 1.
The limiting cases are lim

β 1 →0 F β 1 , β1 (t) = 1 + α 1 b 1 e b 1 t -1 (Hermite polynomials) (118) 
and lim

β1 →0 F β 1 , β1 (t) = 1 - α 1 β 1 ln(1 -β 1 t) (Chebyshev polynomials of the first kind). (119) 
Remark that (117) and (119) are special cases of (115) for β1 β 1 = 0 and β1 = 0,i.e. β 1 = b 1 , respectively. Also, (116) is exactly (118), since in this case β 1 → b 1 .

Example 2 For d ≥ 1 we take b n = αn + β for all n ≥ 1. So, from (103) we have β r = dα and, of course, b r = αr + β, for 1 ≤ r ≤ d. Thus, for αβ = 0, γ d n becomes

γ d n = T 1 α -d-1 d + 1 n!(α(n -d) + (d + 1)β) (n -d)!(n + β α -d) d+1 , n ≥ d, (120) 
and for F (t), since α n = n-1 l=0 b l /n!, we obtain (see [START_REF] Anshelevich | A characterization of ultraspherical, Hermite, and Chebyshev polynomials of the first kind[END_REF] for calculations) A. The first representation by (108) and (109).

F (t) ≡ F α,β (t) = 1 + α 1 β (1 -αt) -β/α -1 . (121 
If β 1 β 2 = 0, then

F (t) = 1 + α 2 t 2 3 F 2 1, b 2 β 2 , b 3 β 1 3 2 , 2 ; β 1 β 2 t 2 2 + α 1 t 2 F 1 b 1 β 1 , b 2 β 2 3 2 ; β 1 β 2 t 2 2 . ( 130 
)
The limiting cases are obtained when: β 1 → 0, β 2 → 0 or (β 1 , β 2 ) → (0, 0). B. The second representation, by (109) and (110), with its limiting cases.

1. If β2 β 1 β 2 = 0 we have

F (t) = 1 + α 1 β2 2 F 1 β2 β 2 , b 1 β 1 1 2 ; β 1 β 2 t 2 2 -1 + α 1 t 2 F 1 b 1 β 1 , b 2 β 2 3 2 ; β 1 β 2 t 2 2 . ( 131 
)
2. If β 1 → 0:

F (t) = 1 + α 1 β2 1 F 1 β2 β 2 1 2 ; b 1 β 2 t 2 2 -1 + α 1 t 1 F 1 b 2 β 2 3 2 ; b 1 β 2 t 2 2 . ( 132 
)
with

γ 2 2m = T 1 3b 1 2m(2 m -1)(β 2 (m -1) + 3 β2 ) (β 2 m + β2 )(β 2 (m -1) + β2 ) , m ≥ 1 ( 133 
)
γ 2 2m+1 = T 1 b 1 (2m)(2m + 1) β 2 m + β2 , m ≥ 1, (134) 
3. If β 2 → 0: 

F (t) = 1 + α 1 b 2 1 F 1 b 1 β 1 1 2 ; b 2 β 1 t 2 2 -1 + α 1 t 1 F 1 b 1 β 1 3 
F (t) = 1 + α 2 t 2 3 F 2 1 1 1 + b 1 β 1 2 3 2 ; β 1 b 2 t 2 2 + α 1 t 2 F 1 1 b 1 β 1 3 2 ; β 1 b 2 t 2 2 . ( 138 
)
with γ 2 2 = 2T 1 /(b 1 b 2 ),

γ 2 2m = T 1 3b 2 2(2m -1) (β 1 (m -1) + b 1 )
, m ≥ 2 (139) 5. If β 1 → 0 and β 2 → 0: 

γ 2 2m+1 = T 1 3b 2 
F (t) = 1 + α 1 b 2 0 F 1 - 1 2 ; b 1 b 2 t 2 2 -1 + α 1 t 0 F 1 - 3 
F (t) = 1 + α 2 t 2 2 F 2 1 1 2 3 2 ; b 1 b 2 t 2 2 + α 1 t 1 F 1 1 3 2 ; b 1 b 2 t 2 2 . ( 143 
)
with γ 2 2 = 2T 1 /(b 1 b 2 ),

Lemma 4

 4 d+1)m-d = 0 which represents the condition of corollary 3 with κ = (d + 1)m ≥ 3(d + 1) and therefore gives R 2d+2 = T 2 = 0. If T κ = T m = 0 for some κ = m ≥ 3, then T 2 = 0.

  and by replacing a = T 2 /b 2 and (95) in the equation λ 2 = 0 we obtaind -1 (d + 2) 3 T 1 2 = 0. (96) If d = 1, (96) gives T 1 = 0 which is a contradiction. The case d = 1 is already treated, [14, Theorem 1].

d n and F (t) Proposition 3

 3 The d-symmetric d-PS, {P n }, generated by (1) satisfies xP n (x) = P n+1 (x) + γ d n P n-d (x), n ≥ 0, P -n (x) = 0, 1 ≤ n ≤ d, and P 0 (x) = 1 (98)

  with b n = (n + 1)/a n = (n + 1)α n+1 /α n andb md+r = β r m + b r , for m ≥ 0, 1 ≤ r ≤ d,(103)whereβ r = b d+r -b r , for 1 ≤ r ≤ d.The equation (102) gives

  l (m -1) + b l ) r l=1 (β l m + b l ) (106) and (n + 1)b n-d -(n -d)b n = (md + r + 1)b (m-1)d+r -(md + r -d)b md+r = (md + r + 1)(β r (m -1) + b r ) -(md + r -d)(β r m + b r ) = β r (m -r -1) + (d 1)b r . and (100) follows by combining (105), (106) and (107).

  βd := b d -β d = 2b d -b 2d = 0, then F 1 (t) in (108) can be written as

(

  md + r)! = r!m!d dm d

Remark 4

 4 In proposition 4 two expressions of F (t) are given. The first, when d l=1 β l = 0, Equations (108) and (109), from which we can deduce the other limiting cases by tending to zero at least a constant β r , 1 ≤ r ≤ d. So, we can enumerate 2 d expressions of F (t) similar to that given in [6, Theorem 3.1]. The second, when d l=1 β l = 0 and βd = b d -β d = 0, Equations (110) and (109), seems to be a new representation of F (t). Similarly, the other limiting cases can be obtained by tending to zero at least a constant β r , 1 ≤ r ≤ d, and βd . So, in this second representation, we can enumerate 3 • 2 d-1 (= 2 d + 2 d-1 ) expressions of F (t). We note that, the resulting 2 d-1 expressions when βd → 0, i.e. β d → b d , are special cases of the first representation when β d = b d . See the illustrative examples given below.

)Fdbt d+1 1 -Example 3 3 2m( 2 m

 1332 Let λ = β/α. Then for T 1 = α d+1 (d + 1) -d and with the change of variable t → (d + 1)t/α in the generating function 1 -α(xt -T 1 t d+1 /(d + 1))-λ , we meet the Humbert polynomials[START_REF] Humbert | Some extensions of Pincherele's polynomials[END_REF] generated by1 -(d + 1)xt + t d+1 -λ . For d = 1we have the ultraspherical polynomials.The limiting cases are 1. α → 0 and β = 0:lim α→0 n = T 1 β -d n!/(n-d)!, for n ≥ d. In the generating function exp β xt -T 1 t d+1 /(d + 1) , with T 1 = β d ((d + 1)d!) -1 and the change of variable t → t/β, we find the generating function exp xt -(d + 1) -2 t d+1 /d! of the Gould-Hopper polynomials [10] . 2. β → 0 and α = 0 lim β→0 F α,β (t) = 1 -α 1 α ln(1 -αt) (123) with γ d d = T 1 α -d and γ d n = T 1 α -d /(d + 1) for n ≥ d + 1. Let b = T 1 α -d /(d + 1). Then by the shift n → n + d in (98), these polynomials satisfyP n+d+1 (x) = xP n+d (x) -bP n (x), n ≥ 1, P n (x) = x n , 0 ≤ n ≤ d, and P d+1 (x) = xP d (x) -(d + 1)bP 0 (x), (124)where we recognise the monic Chebyshev d-OPS of the first kind generated by (see[START_REF] Cheikh | d-orthogonal polynomial sets of Chebyshev type[END_REF] Theorem 5.1])1 -dbt d+1 1 -xt + bt d+1 = n≥0 P n (x)t n . xt + bt d+1 -1 dt = -ln 1 -xt + bt d+1 . (126)Then, by changing the variable t → αt, multiplying by α 1 /α and adding 1 in (126), we get the generating function (with F (t) as in (123)),1 -α 1 α ln 1 -α xt -T 1 d + 1 t d+1 = 1 + n≥1 α 1 αn P n (x)t n .(127) For d = 2 we have R(t) = T 1 t 3 /3 and from (100) we get, for m ≥ 1, the two expressions+ 1)(2 m + 1)(β 2 m + 3 β2 ) (β 1 m + b 1 )(β 2 m + b 2 )(β 2 m + β2 ) + 1)(β 1 (m -2) + 3 b 1 ) (β 1 m + b 1 )(β 1 (m -1) + b 1 )(β 2 m + β2 ) ,(129) with γ 2 2 = 2T 1 /(b 1 b 2 ), β 1 = b 3 -b 1 , β 2 = b 4 -b 2 and β2 = 2b 2 -b 4 . We enumerate the following forms of F (t):

2 ; b 2 β 1 t 2 2 . 2 2m( 2 m) 4 .

 22224 + 1)(β 1 (m -2) + 3 b 1 ) (β 1 m + b 1 )(β 1 (m -1) + b 1 ), m ≥ 1, (137If β2 → 0:

2( 2 m

 2 + 1)(β 1 (m -2) + 3 b 1 ) (β 1 m + b 1 )(β 1 (m -1) + b 1 ), m ≥ 1. (140)Clearly (138) is (130) with β 2 = b 2 .

2 ; b 1 b 2 t 2 2 6 .

 226 If β 1 → 0 and β2 → 0:
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Considering Lemma 4, we can choose k ≥ k 0 such that T k = 0 for k ≥ k -1. Let define, for k ≥ k, Dk = D k T k-1 T k and Ēk (n) be the equation ( 45) divided by T k-1 T k T k+1 . By making the operations

we get, for k ≥ k + 1, the equation

where W k,l is independent of n and

Similarly, by the operations

and the shift n

where W k,l is independent of n. Now, for k = κ ≥ k + 1, the equations ( 46) and (48) give, respectively,

and

If Dk = Dκ for some k = κ ≥ k + 1, then by ( 49) and ( 50) we can eliminate a n-d-1 to get that a n is a rational function of n. So, by Corollary 4, we have T 2 = 0.

If Dk = D for k ≥ k + 1, then (46) and (48) become, respectively,

and

The combinations ((n + d + 2)Eq(52) -(n + d + 1)Eq(51)) /(d + 1) and ((n -2d -1)Eq(52) -(n -2d -2)Eq(51))/(d + 1) give, respectively,