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This paper is organized around three important works in applied mathematics that
took place in the century 1850–1950: Francis Bashforth (1819–1912) on capillary
action [1], Carl Størmer (1874–1957) on polar aurora [4], Georges Lemâıtre (1894–
1966) on cosmic rays [3]. I have chosen these three figures for several reasons:
they were applied mathematicians with strong theoretical training; they studied
complex physical problems for which they had to create new numerical methods at
the limit of the human and technical possibilities of their time; there is a natural
continuity in their works, each being partially inspired by the previous one; finally,
these works present the same characteristics as what we call today mathematical
modeling and computer simulation.

Francis Bashforth was fellow at St. John’s College at Cambridge and later pro-
fessor of mathematics at the Royal Military Academy of Woolwich. Between 1864
and 1880 he developed important experimental and theoretical research on bal-
listics. Before and after his professional engagement in artillery, he was also in-
terested in capillary action. In this domain, his major aim was to compare the
measured forms of drops of fluid resting on a horizontal plane, obtained by exper-
iment, with the theoretical forms of the same drops as determined by the Laplace
differential equation of capillarity.

In his research, Bashforth used, on the one hand, a new measurement process
involving a micrometer of his invention and, on the other hand, a new method
of numerical integration of differential equations involving finite differences of the
fourth order and efficient quadrature formulas, conceived with the help of the fa-
mous astronomer John Couch Adams [5]. Bashforth, with his assistants, computed
32 integral curves, each of them with 36 points. Knowing that five auxiliary values
were necessary for each point of the curve, we arrive at the total of more than 5000
numbers to be calculated. The calculation time can be estimated to at least 500
hours. The coincidence of the curves obtained by the experimental method and
the numerical one was excellent and could be viewed as a mutual validation of the
two approaches of the given capillary problem.

In Bashforth’s work, we may distinguish different levels of representation of the
physical phenomenon concerned. Experimentation and measurement lead to what
I call an “experimental model” of the forms of drops. In parallel, the mathema-
tization of the problem gives birth to what we would call today a “mathematical
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model”. This model is non-operative because we cannot integrate the differen-
tial equation analytically, so it is necessary to discretize this equation to obtain a
“numerical model”. This process of discretization is not a simple translation. It
would be an error to consider the continuous mathematical model and the discrete
numerical model as being obviously equivalent. In fact, a discretization process
often introduces significant changes in the informational content of the original
model, because a numerical algorithm may be divergent, may suffer from numeri-
cal instability, and may be unadapted to the available instruments of calculation.

Carl Størmer, the second character in my story, was a Norwegian mathematician
trained in Kristiania, Paris and Göttingen. For many years until his retirement,
he was professor of mathematics at Kristiania University. Up to his death, the
major part of his research was devoted to the study of the curious phenomenon
of polar aurora, called also “aurora borealis” or “northern lights”, on which he
published almost 150 papers.

Understanding that polar auroras are caused by electrically charged particles
coming from outer space, Størmer decided to determine the trajectories of these
particles under the action of terrestrial magnetism. In order to track these trajec-
tories step by step from the Sun to the Earth, he had to develop new techniques
of numerical integration of differential equations, inspired by those of Adams-
Bashforth and British astronomers, but best suited to his specific problem. With
his students, he calculated a multitude of different trajectories during three years.
He himself estimated that this huge task required more than 5000 hours of work.

After that, Størmer and his assistants constructed several wire models to vi-
sualize the numerical tables issued from the calculations. These material models
showed that the charged particles coming from the Sun concentrate around the
polar circle, in accordance with observation. These models also explained in a
convincing way why the northern lights can appear on the night side of the Earth,
at the opposite of the Sun.

A few years before, a Størmer’s colleague, Kristian Birkeland, professor of
physics at Kristiania University, had realized a physical simulation of the po-
lar aurora. For that, he was sending cathode rays through an evacuated glass
container against a small magnetic sphere representing the Earth, which he called
“terrela”. Birkeland’s simulations showed two illuminated bands encircling the
poles, in agreement with the behavior of northern lights and also with the com-
puted trajectories obtained later by Størmer.

Finally, the physical phenomenon of polar aurora has been studied by three
ways. First, by direct observations and measurements, secondly by Birkeland’s
simulation, which we can consider as an “analog model”, and thirdly by Størmer’s
mathematization with a continuous mathematical model consisting in a system
of differential equations, a numerical model obtained by discretization and a wire
material model representing concretely the trajectories. The coherence of the
results obtained by these three approaches validates strongly the initial hypothesis
of charged particles deviated by terrestrial magnetism.
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My third and last part is devoted to the astrophysicist Georges Lemâıtre and
his research on cosmic rays. At this time, an important problem addressed by Mil-
likan was to explain the origin and nature of the cosmic rays detected by balloons
or mountain observatories. There were two rival conceptions of these cosmic rays,
one principally advocated by Millikan and the other by Arthur Compton. While
Millikan held the rays to consist of high-energy photons, Compton and his collab-
orators argued that they were charged particles of extragalactic origin. Lemâıtre
was interested in these cosmic rays because he saw in them the fossil traces of his
“Primeval Atom hypothesis”, an ancestor of the Big Bang theory, so he wanted
to prove the validity of Compton’s conception. In collaboration with the Mexican
physicist Manuel Sandoval Vallarta, Lemâıtre engaged in complicated calculations
of the energies and trajectories of charged particles in the Earth’s magnetic field.

At first, Lemâıtre and Vallarta tried to integrate numerically the differential
equations of the trajectories with the Adams-Bashforth method, but this was not
convenient. Later, they discovered the Størmer method in the literature and began
to use it, but the calculations were very tedious to perform. Finally they thought
of the differential analyzer constructed by Vannevar Bush at the MIT [2]. A
differential analyzer is a mechanical analog machine conceived for the integration
of differential equations. It is constituted by algebraic mechanisms that perform
the algebraic operations and mechanical integrators that realize the integrations.
Once suitably prepared, the machine is in exact correspondence with the given
differential equation and when it moves from an initial given state, it traces exactly
an integral curve of this equation.

For the use of the differential analyzer, Lemâıtre and Vallarta were helped by
Samuel Hawks Caldwell, an assistant of Bush who managed the differential an-
alyzer for the specific problem of cosmic rays. Thanks to this instrument, they
could obtain hundreds of trajectories within a reasonable time. In this third sit-
uation, we find again the notions of experimental, mathematical and numerical
models already analyzed in Basforth’s and Størmer’s researches, but the novelty is
in the role played by the differential analyzer: this instrument being a mechanical
analog model of the differential equation, it appears also, indirectly, as an analog
model of the physical phenomenon of cosmic rays.

In the three situations we have studied, we encountered several representations –
experimental, analog, mathematical, numerical, graphical, material – of a physical
phenomenon that validate each other through the consistence and coherence of
their results. Each of them brings specific information about the real phenomenon.
In fact, these representations make sense when they are considered together, so I
am tempted to say that this is this system of representations considered as a whole
which constitutes a “model” of the phenomenon. Concretely, we can only reason
and calculate in this multifaceted model, whereas the reality of the phenomenon
remains definitively hidden.

3



References

[1] F. Bashforth, An attempt to test the theories of capillary action by comparing the theoretical

and measured forms of drops of fluid, Cambridge: At the University Press, 1883.

[2] V. Bush, The differential analyzer. A new machine for solving differential equations, Journal
of The Franklin Institute 212 (1931), 447–488.
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