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Abstract. In this article we study the minimum number κ of additional automata that a
Boolean automata network (BAN) associated with a given block-sequential update schedule
needs in order to simulate a given BAN with a parallel update schedule. We introduce a
graph that we call NECC graph built from the BAN and the update schedule. We show the
relation between κ and the chromatic number of the NECC graph. Thanks to this NECC
graph, we bound κ in the worst case between n/2 and 2n/3 + 2 (n being the size of the BAN
simulated) and we conjecture that this number equals n/2. We support this conjecture with
two results: the clique number of a NECC graph is always less than or equal to n/2 and, for
the subclass of bijective BANs, κ is always less than or equal to n/2 + 1.

Keywords: Boolean automata networks, intrisic simulation, block-sequential update
schedules.

1 Introduction

In this article, we study Boolean automata networks (BANs). A BAN can be seen as a set
of two-states automata interacting with each other and evolving in a discrete time. BANs
have been first introduced by McCulloch and Pitts in the 1940s [12]. They are common
representational models for natural dynamical systems like neural or genetic networks [6,9],
but they are also computing models with which we can study computability or complexity.
In this article we are interested in intrinsic simulations between BANs, i.e. simulations that
focus on the dynamics rather than the computing power. More concretely, given a BAN A
we want to find a BAN B satisfying some constraints and that reproduce the dynamics of A.
Intrinsic simulation of BANs has already been used in the 1980s [2,7,16,17]. But since then,
the notion has not produced much more literature [14,13]. Meanwhile, intrinsic simulation
of many other similar objects (cellular automata, tilings, subshifts, self-assembly, etc.) has
been really developing since 2000 [3,4,5,8,10,11,15].

A given BAN can be associated with several dynamics, depending on the schedule (i.e.
the order) we choose to update the automata. In this article, we will consider all block-
sequential update schedules: we group automata into blocks, and we update all automata
of a block at once, and iterate the blocks sequentially. Among these update schedules are
the following classical ones: the parallel one (a unique block composed of n automata)
and the n! sequential ones (n blocks of 1 automaton). The pair of a BAN and its update
schedule is called a scheduled Boolean automata network (SBAN).

For the last 15 years, people have studied the influence of the update schedules on the
dynamics of a BAN [1]. Here, we do the opposite. We take a SBAN, and try to find the
smallest SBAN with a constrained update schedule which simulates this dynamics. For
example, let N be a parallel SBAN of size 2 with 2 automata that exchange their values.



There are no SBANs N ′ of size 2 with a sequential update schedule which simulates N .
Indeed, when we update the first automaton, we necessairly erase its previous value. If
we did not previously save it, we cannot use the value of the first automaton to update
the second automaton. Thus, N ′ needs an additional automaton to simulate N under the
sequential update schedule constraint. Note that a SBAN N of size n with a parallel update
schedule can always be simulated by a SBAN N’ of size 2n with a given sequential update
schedule. Indeed, we just need to add n automata which copy all the information from the
original automata and then, we compute sequentially the updates of the originals automata
using the saved information. However, in this article, we will bound more precisely the
number of required additional automata, function of n, in the worst case.

In Section 2, we define BANs and detail the notion of simulation that we use. In Sec-
tion 3, we consider the dynamics of a BAN F with automata set V and the parallel update
schedule and we consider a block-sequential update schedule W . We focus on the minimum
number κ(F,W ) of additional automata that a SBAN needs to simulate this dynamics with
an update schedule identical to W on V . In Section 4, we define a graph which connects
configurations depending on a BAN F and a block-sequential update schedule W . We
prove that the chromatic number of this graph gives us the number κ(F,W ) defined in
the previous section. We also enunciate the following conjecture: κ(F,W ) is always less
than or equal to n/2, with n the size of the BAN F . In Section 5, we define another graph
constructed from the previous graph where we quotient the configuration which have the
same image. We prove that the chromatic number of this new graph is always greater than
that of the previous graph. Then, we find an upper bound for κ(F,W ) depending on n,
the size of F . In Section 6, we try to support our conjecture by making an upper bound
for the clique number of the graph defined in Section 4. Finally, in Section 7, we study
κ(F,W ) in the case where F is bijective.

2 Definitions and notations

2.1 BANs and SBANs

In this article, unless otherwise stated, BANs have a size n ∈ N, which means that they
are composed of n automata numbered from 0 to n − 1. Usually, we denote this set of
automata by V = {0, 1, . . . , n− 1} (which will be abbreviated by J0, nJ). Each automaton
can take two states in the Boolean set B = {0, 1}. Notice that for all b ∈ B, we denote by b
the negation of the state of b. In other words, 0 = 1 and 1 = 0. A configuration a Boolean
vector of size n such that each element of the vector is the state of one automaton of the
BAN. In other words, if x is a configuration, then x ∈ Bn and x = (x0, . . . , xn−1) with xi
the state of automaton i (for all i in V ). We also denote by x the negation of x such that
x = (x0, . . . , xn−1). And we denote by xi or xI the negation of x respectively restricted
to an automaton or a set of automata. So, if x′ = xI then ∀i ∈ V, if i ∈ I then x′i = xi
and x′i = xi otherwise. Furthermore, ∀I ⊆ V , we denote by xI the restriction of x in I. In
other words, if I = {i1, i2, . . . , ip} with i1 < i2 < · · · < ip then xI = (xi1 , xi2 , . . . , xip). We
also denote by xI the restriction of x in V \ I. In this article, we only study BANs with
block-sequential update schedules. A SBAN N = (F,W ) is characterised by two things:

- a global update function F : Bn → Bn which represents the BAN;
- a block-sequential update schedule W .

The global update function of a BAN is the collection of the local update functions of the
BAN. As a consequence, we have F (x) = (f0(x), . . . , fn−1(x)) with ∀i ∈ V, fi : Bn → B the
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local update functions of automata i. We also use the I-update function FI with I ⊆ V
which gives a configuration where the states of automata in I are updated and the other
are not. In other words, ∀i ∈ V, FI(x)i = fi(x) if i ∈ I and xi otherwise. And, for singleton,
we simply write Fi(x) = F{i}(x).

Remark 1. It is important not to confuse FI(x) and F (x)I . The first one is the I-update
function that we have just defined. The second is the configuration F (x) restricted to I.

A block-sequential update schedule is an ordered partition of V . The set ordered par-

tition of V is denoted by
−→
P(V ). Let W ∈

−→
P(V ). We make particular use of FW defined

as FW = FWp ◦ · · · ◦ FW0 . Let x ∈ Bn be the configuration of the BAN at time t. Then,
FW (x) is the configuration of the BAN at the time t+ 1. There are two particular kinds
of block-sequential update schedules:

1. the parallel mode where all automata are updated at the same time step. So, we have
W = [V ] (i.e. |W | = 1 and W0 = V ) and FW = F .

2. the sequential modes where automata are updated one at the time. So, we have ∀i ∈
J0, pJ, |Wi| = 1 and |W | = n .

For all j ∈ J0, pK, we denote W<j =
j−1⋃
i=0

Wi. In particular, we have W<0 = ∅ and

W<p = V . For all i ∈ J0, pK, we also denote W<i = (W0,W1, . . . ,Wi−1). In particular, we
have W<0 = [ ] (the empty vector) and W<p = W .

Remark 2. We will often use the two following notations:

- FW<j
which is equal to FWj−1 ◦ · · · ◦ FW0 . It is the function which makes the j first

steps of the transition of the SBAN (F,W ).

- FW<j which is equal to FW0∪···∪Wj−1 . It is the function which updates only the automata
in the j first blocks of W .

2.2 Simulation

Here, we define the notion of simulation used in this article. We consider that a SBAN N
of size m simulates another SBAN N ′ of size n if there is a projection from Bm to Bn such
that the projection of the update in N ′ equals the update in N of the projection.

Definition 1. Let F : Bn −→ Bn and F ′ : Bm −→ Bm with m > n, V = J0, nJ and

V ′ = J0,mJ, W ∈
−→
P(V ) and W ′ ∈

−→
P(V ′). Let h : V −→ V ′ be an injective function.

And let us consider
ϕh : Bm → Bn

x 7→ (xh(i))i∈V
. We say that (F ′,W ′) h-simulates (F,W ) and

we write (F ′,W ′) Bh (F,W ) if ϕh ◦ F ′W
′

= FW ◦ ϕh. And we say that (F ′,W ′) simulates
(F,W ) and we write (F ′,W ′) B (F,W ) if there is a h such that (F ′,W ′) Bh (F,W ).

In this article we often use an id-simulation which is a h-simulation with h the identity
function (h(i) = i).
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3 Number of required additional automata

Here, we focus on finding a block-sequential SBAN (F ′,W ′) which simulates a parallel
SBAN (F, [V ]). We could as well study the problem of finding a block-sequential SBAN
(F ′,W ′) which simulates another block-sequential SBAN (G,W ). However, this problem
is in fact the same. Indeed, for all block-sequential SBAN (G,W ), the parallel SBAN
(GW , [V ]) id-simulate the SBAN (G,W ).

In this section, we define the main object of this article. Given a global transition
function F and a block-sequential update schedule W , we consider the smallest SBAN
(F ′,W ′) (where W ′ extends W by preserving its order) which simulates (F, [V ]) ([V ] being
the parallel update schedule). This new SBAN (F ′,W ′) often needs additional automata
to simulate the SBAN (F, [V ]). We denote by κ(F,W ) this number of additional automata
needed. And ∀n ∈ N, we denote by κn the maximum of κ(F,W ) for any SBAN (F,W ) of

size n. Let W ∈
−→
P(V ) be an update schedule. We know that each automaton of a block-

sequential SBAN is updated only once, in one step of the update schedule. We denote by
W (i) the step at which i is updated. More formally, ∀i ∈ V,W (i) is the number j ∈ J0, pJ
such that i ∈Wj .

From an update schedule W and a BAN of size n, we define the notion of update
schedule extending W for a bigger BAN of size m. Let V ′ = J0,mJ. Let h : V −→ V ′ be
an injective function. We denote by Eh(W,V ′) the set of update schedules W ′ extending
W such that each W ′ preserves the order of W for the projection by h of the automata
of V . That is to say, if two automata of V are updated at the same step in W , then
the projection of these automata are updated in the same step in W ′.Morever if one is
updated before another one, then the projection of these automata in V’ will preserve the

same update order in W ′. More formally, Eh(W,V ′) = {W ′ ∈
−→
P(V ′) | ∀i ∈ V,W (i) =

W (i′)⇐⇒W ′(h(i)) = W ′(h(i′)) and W (i) < W (i′) =⇒W ′(h(i)) < W ′(h(i′))}.

Definition 2. κ(F,W ) is the smallest k such that, ∃h : V −→ V ′ an injective function,
an update schedule W ′ ∈ Eh(W,V ′) extending W , a BAN F ′ : Bn+k −→ Bn+k such that
(F ′,W ′) Bh (F, [V ]) with V ′ = J0, n+ kJ. Furthermore, κn is the value of κ(F,W ) in the
worst case among all SBANs. In other words, κn = max({κ(F,W ) | F : Bn −→ Bn and

W ∈
−→
P(V )}).

The main objective of this article is to bound the values of κn.

4 NECCs set and NECC graph

To give an answer to this problem, we introduce a new concept: the not equivalent and
confusable configurations or NECCs and the NECC graph. Theorem 1 will show that the
logarithm of the chromatic number of the NECC graph of a SBAN and the κ of this SBAN
are equal. NECF or only NEC (the acronym standing for not equivalent configurations) is
the set of couple of configurations with different images by F . In other words,

NECF = {(x, x′) ∈ Bn × Bn | F (x) 6= F (x′)}

. We call confusable configurations and denote by CCF,W or only CC (the acronym standing
for confusable configurations) is the set of couples of configurations which become identical
when we update i first blocks of W (with i ∈ J0, pJ). So we have

CC = {(x, x′) ∈ Bn × Bn | ∃i ∈ J0, pJ, FW<i(x) = FW<i(x
′)}

.
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Definition 3. NECCF,W or only NECC (the acronym standing for not equivalent and
confusable configurations) is the set of couples of configurations which are confusable and
not equivalent at the same time, NECCF,W = CCF,W ∩NECF .

Also, for all x, x′ ∈ Bn, we denote by CCF,W (x, x′) (or just CCF,W (x, x′)) the set of
time steps i which make them confusable. More formally, ∀x, x′ ∈ Bn,CCF,W (x, x′) = {i ∈
J0, pJ | FW<i(x) = FW<i(x

′)}.

Remark 3. We have CC(x, x′) = ∅ if and only if (x, x′) 6∈ CC.

Definition 4. We call NECC graph and denote by (Bn,NECC) the graph which has the
set of configurations Bn as nodes and the set of NECC couples as edges.

We make a particular use of two concepts of graph theory. A valid coloration of G is a
coloration of all the nodes of G such that if there is an edge between two nodes then they
do not have the same color. We denote by χ(G) the chromatic number of the graph G,
namely the minimum number of colors of a valid coloration of G. We denote the chromatic
number of the NECC graph by χ(NECC) = χ((Bn,NECC)). We see in Lemma 1 that we
can get a valid coloration of the NECCF,W graph from the SBAN (F ′,W ′) which simulates
(F, [V ]). This coloration does not use more than 2k colors with k the number of additional
automata of F ′. We color the configuration of the NECC graph using the values of the
added automata after the update.

Lemma 1. For any BAN F : Bn −→ Bn and any block-sequential update schedule WH ,
κ(F,W ) > dlog2(χ(NECCF,W ))e.

Proof. Let h : V −→ V ′ injective, W ′ ∈ Eh(W,V ′), let p = |W |, p′ = |W ′| and F ′ :
Bn+k −→ Bn+k such that (F ′,W ′) Bh (F, [V ]). We prove that k > dlog2(χ(NECC))e. Let
Vx = {h(i) | i ∈ V }, Vy = V ′ \ Vx and y = [0]k. First, let us prove that if (x, x′) ∈ NECC
then F ′(z)Vy 6= F ′(z′)Vy with zVy = z′Vy

= y, ϕh(z) = x and ϕh(z′) = x′. Let (x, x′) ∈
NECC. For the sake of contradiction, suppose we have F ′(z)Vy = F ′(z′)Vy . Since (x, x′) ∈
NECC, we have F (x) 6= F (x′) and ∃j ∈ J0, pK, FW<j (x) = FW<j (x

′). Let j′ ∈ J0, p′J be the

smallest number such that ∀i ∈W<j , h(i) ∈W ′<j′ . Let Z = F ′W
′<j′

(z) = F ′W ′
j′
◦· · ·◦FW ′0

(z)

and Z ′ = F ′W
′<j′

(z′) = F ′W ′
j′
◦ · · · ◦FW ′0

(z′). We have zVy = y = z′Vy
and F (z)Vy = F (z′)Vy

by hypothesis. Thus, ZVy = Z ′Vy
. Furthermore, we have ϕh(ZVx) = FW<j (x) = FW<j (x

′) =

ϕh(Z ′Vx
). As a result, ZVx = Z ′Vx

and Z = Z ′. Consequently, F ′(z) = FW ′p−1
◦· · ·◦FW ′0

(z) =

FW ′p−1
◦ · · · ◦ FW ′

j′
(Z) and F ′(z′) = FW ′p−1

◦ · · · ◦ FW ′0
(z′) = FW ′p−1

◦ · · · ◦ FW ′
j′

(Z ′). We

have then F ′(z) = F ′(z) (because Z = Z ′). However, (x, x′) ∈ NEC. Thus, F ′(z)Vx =
F (x) 6= F (x′) = F ′(z′)Vx . As a consequence, we have also F ′(z) 6= F ′(z′). There is a
contradiction. Consequently, if (x, x′) ∈ NECC then F (z)Vy 6= F (z′)Vy . In other words,
{F (z)Vy |zVy = y} has at least χ(NECC) different values. To encode these values, we need
to have k > dlog2(χ(NECC)e. So κ(F,W ) > log2(χ(NECC)).

We see in Lemma 2 that we can get a SBAN (F ′,W ′) which simulates (F, [V ]) from a
valid coloration of the NECCF,W graph.

Lemma 2. For any BAN F : Bn −→ Bn and any block-sequential update schedule W ,
κ(F,W ) 6 dlog2(χ(NECCF,W ))e
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Proof. Let k = dlog2(χ(NECC))e. We take W ′ such that first, we update the k last nodes,
and after, we update as W : W ′ = ({n}, {n+ 1}, . . . , {n+ k − 1},W0,W1, . . . ,Wp−1). Let
Vx = J0, nJ and Vy = Jn, n + kJ. Let color : Bn −→ N be a minimum coloration of
the NECC graph. For all x ∈ Bn, let COLOR(x) be the number color(x) encoded with a
Boolean vector of size k. It is possible to encode it with k Booleans because with k bits
we can encode 2k values and k = dlog2(χ(NECC))e so we can encode at least χ(NECC)
values and we have |{color(x)|x ∈ Bn}| = χ(NECC). For all z′ in Bn+k,let x′ ∈ Bn and
y′ ∈ Bk be respectively the first and the second parts of z′ (we denote by z′ = x′||y′). For
all j ∈ J0, pK. Let Aj(z

′) = {F (x)|x ∈ Bn and COLOR(x) = y′ and FW<j (x) = x′}. We
can prove that |A| 6 1. For the sake of contradiction suppose ∃F (x′), F (x′′) ∈ A, F (x′) 6=
F (x′′). Then, (x′, x′′) ∈ NEC. However, ∃j ∈ J0, pK|FW<j (x

′) = x = FW<j (x
′′). Then,

(x′, x′′) ∈ CC. So (x′, x′′) ∈ NECC. However, COLOR(x′) = y = COLOR(x′′). There
is a contradiction because if (x′, x′′) ∈ NECC then COLOR(x′) 6= COLOR(x′′). Let
∀i ∈ Jn, n + kJ, F ′(z)i = COLOR(x)i−n. Let F ′ : Bn+k −→ Bn+k such that for all
z′ ∈ Bn+k, FVy(z′) = COLOR(x) and ∀j ∈ J0, pK, F ′(z′)W ′k+j

= F (x)Wj if Aj(z
′) = {F (x)}

or [0]|Wj | otherwise. Now, we show that ∀z = x||y ∈ Bn+k, F ′W
′
(z)Vx = F (x). Let

z = x||y ∈ Bn+k. Let us show that ∀i ∈ J0, pK, F ′W ′
k+j

(z)Vx = FW<j (x). Let j = 0.

We have F ′W
′<k+j

(z)Vx = F ′W
′<k

(z)Vx = x (because in the k first steps of W ′ we only

update the automata of Vy) and FW<j (x) = FW<0(x) = x. So F ′W
′k+j ](z)Vx = FW<j (zVx).

Let j ∈ J0, pK. Let us say that F ′W
′<k+j

(z)Vx = FW<j (x). Let z′ = F ′W
′<k+j

(z). We

have F ′W
′<k+j+1

(z)Vx = F ′
W ′k+j+1(z′). Thus, F ′W

′<k+j

(z)V x\W ′k+j+1
= z′V x\W ′k+j+1

=

FW<j (x)V x\Wj+1
= FW<j+1(x)V x\Wj+1

. Furthermore, COLOR(x) = F (z)Vy = z′Vy
, and

by induction hypothesis, FW<j (x) = F ′W
′k+j

(z) = z′Vx
. Thus, F (x) ∈ Aj(z

′). As a con-

sequence, F ′W
′<k+j+1

(z)W ′k+j+1
= F ′

W ′k+j+1(z′)W ′k+j+1
= F (x)W ′k+j+1

= F (x)Wj+1 . As a

result, F ′W
′<k+j

(z)Vx = FW<j+1(x). Consequently, ∀z = x||y ∈ Bn+k, F ′W
′
(z)Vx = F (x).

Thus, (F ′,W ′) Bid (F, [V ]). Finally, κ(F,W ) 6 dlog2(χ(NECC))e.

Lemma 1 and Lemma 2 show that there is an equivalence between a coloration of
the NECCF,W graph and a SBAN (F ′,W ′) which simulates (F, [V ]). More precisely, from
the number of colors of the NECC graph, we can upper bound the number of required
additional automata of the SBAN. And reciprocally.

Theorem 1. For any BAN F : Bn −→ Bn and any block-sequential update schedule W ,
κ(F,W ) = dlog2(χ(NECCF,W ))e.

In Lemma 3, using the example of n/2 automata which exchange their values, we find
a lower bound for κn. We use the fact that if we take the good update schedule W , this
NECCF,W graph has a big clique number.

Lemma 3. ∀n ∈ N, κn > bn/2c.

Proof. We suppose that n is even. However, if it is not, we just have to add a use-
less automaton and the result is the same. Let us consider the BAN F such that:
∀i ∈ J0,

n

2
J, fi(x) = xi+n/2 and ∀i ∈ J

n

2
, nJ, fi(x) = xi−n/2. We also consider the sim-

ple sequential update schedule W . Let X = {x ∈ Bn|xJn/2,nJ = [0]n/2}, and x, x′ ∈ X
such that x 6= x′. When we update the first half of the automata, x and x′ both become
the configuration full of 0. Then, for i = n/2, we have FW<i(x) = [0]n = FW<i(x

′). Thus,
(x, x′) ∈ CC. We also have x 6= x′. So ∃i ∈ Jn/2, nJ such that xi 6= x′i and fi+n/2(x) = xi
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and fi+n/2(x
′) = x′i. Consequently, fi+n/2(x) 6= fi+n/2(x

′). Then, F (x) 6= F (x′) and
(x, x′) ∈ NEC. As a result, we have (x, x′) ∈ NECC. We know that X is a clique.
Moreover, X is a clique of size 2n/2. Thus, the chromatic number of the NECC graph is at
least 2n/2 and κ(F,W ) > n/2.So ∀n ∈ N, κn > n/2.

We conjecture that bn/2c is the upper bound as well. This conjecture had not been
proven yet, but Theorem 3 supports it by giving an upper bound to the clique number of
a NECC graph.

Conjecture 1. ∀n ∈ N, κn 6 bn/2c.

5 INECC graph

In this section, we define the INECC graph which is the NECC graph after we quotiente its
configurations which have the same image. We can prove that INECC has a bigger chro-
matic number than the NECC graph, find an upper bound of the INECC graph chromatic
number and then have an upper bound of the NECC graph chromatic number as well.

Definition 5. The INECC graph nodes are the image of the configurations of the NECC
graph that is to say: {F (x) | x ∈ Bn}. Two images y and y′ are in relation in the INECC
graph if they have each one a fiber that are in relation in the NECC graph. That is to say
if ∃x, x′ ∈ Bn such that F (x) = y, F (x′) = y′ and (x, x′) ∈ NECC then y and y′ are in
relation in the INECC graph.

Now we prove that we can use a valid coloration of the INECC graph to color a NECC
graph.

Lemma 4. We have χ(INECC) > χ(NECC).

Proof. We partition the configurations into sets of equivalent configurations (i.e. configu-
rations which have the same image) E1, E2, . . . , Ek. And we denote by Yi ∈ Bn the image of
the configurations of Ei for each i ∈ J0, kJ. In other words, ∀i ∈ J0, kJ,∀x ∈ Ei, F (x) = Yi.
Let color : J0, kJ−→ N∗ be an optimal coloration of the INECC graph. In the NECC graph,
we can color all the configurations of a set Ei by the color of Yi in the INECC graph. Let
x, x′ ∈ Bn. If x and x′ have the same color:

1. either x and x′ are in the same set Ei, and then (x, x′) 6∈ NECC because they are
equivalent;

2. or they are in two distinct sets Ei and Ei′ . In this case (x, x′) 6∈ NECC otherwise Yi
and Yi′ would be connected in the INECC graph and they would have different colors.

So, the coloration is a valid coloration and does not need more colors than the INECC
graph coloration: χ(INECC) > χ(NECC).

Remark 4. We can see that if we take two SBANs (F,W ) and (F,W ′) with W ′ a sequen-
tialised version of W (i.e. an update schedule that breaks the blocks of W into blocks of
size 1), the chromatic number of the NECC graph of (F,W ) are always greater than or
equal to the chromatic number of the NECC graph of (F,W ). Indeed, the set of edges of
the NECC graph of (F,W ) is included in the set of edges of the NECC graph of (F,W ′),
thus the chromatic number of the latter is greater. Furthermore, the same reasoning ap-
plies to the INECC graph. As a result, if we want to find an upper bound to the chromatic
number of the NECC or INECC graph, we can restrict our study to SBAN with sequential
update schedule.
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Remark 5. We can see that if we have a SBAN (F,W ), with W a sequential update
schedule, we can find another SBAN (F ′,W ′) with W ′ the simple update schedule
({0}, {1}, · · · , {n − 1}) which will have the same NECC and INECC graphs up to per-
mutation. As a consequence, their NECC and INECC graphs chromatic number are equal.
Thus, if we want to find an upper bound to the chromatic number of the NECC or INECC
graph, we can restrict our study to SBAN with the simple sequential update schedule
({0}, {1}, · · · , {n− 1}).

We now find an upper bound to the INECC graph chromatic number by defining a
colouring method of the graph based on a greedy algorithm.

Lemma 5. χ(INECC) 6 22n/3+2.

Proof. We consider the BAN F : Bn −→ Bn and the simple sequential update schedule
W = ({0}, {1}, · · · , {n − 1}). We partition the configurations into sets of equivalent con-
figurations E1, E2, . . . , Ek. We denote by Yi ∈ Bn the images of the configurations of Ei for
each i ∈ J1, kK. In other words, ∀i ∈ J1, kK, ∀x ∈ Ei, F (x) = Yi. We denote the neighbour
of the ith image by V (i). So

V (i) = {i′ | ∃x ∈ Ei, x
′ ∈ Ei′ , (x, x′) ∈ NECC}

. The degree of the ith image is denoted by D(i) = |V (i)|. We sort the images by decreasing
degree so that ∀i < i′, D(i) > D(i′). To choose the color of Yi, we apply a greedy algorithm:
we use the smallest color not already used by a neighbour of Yi. color(Yi) = min(N∗ \
{color(Yi′)|i′ < i and i′ ∈ V (i)}).

We now prove that it is a proper colouring. Let us prove that if (Yi, Yi′) ∈ INECC then
color(Yi) 6= color(Yi′). Let (Yi, Yi′) ∈ INECC. With no loss of generality, let us say that
i′ < i. By definition of INECC, ∃(x, x′) ∈ NECC such that F (x) = Yi and F (x′) = Yi′ .
So i′ ∈ V (i), and by definition of color, color(Yi) 6= color(Yi′). As a consequence, that is
a proper colouring. Now, let c be the biggest color used and k′ the index of (one of) the
images which have c as color. We have c 6 D(Ek′) + 1 and c 6 k′. ∀i, we denote by
`i = blog2(D(Ei) + 1)c and ` = `k′ . Since c 6 D(Ek′) + 1, we have c 6 2`+1. Consider

L(i) = V (i) \ {i′ | YiJ0,n−`i+1J = Yi′J0,n−`i+1J}.

We have |{i′ | YiJ0,n−`i+1J = Yi′J0,n−`i+1J}| 6 2`i−1. We know that i ∈
{i′ | Yi′J0,n−`i+1J = Yi′J0,n−`i+1J}. So L(i) = (V (i)∪{i})\{i′ | Yi′J0,n−`i+1J = Yi′J0,n−`i+1J}.
We also know that i 6∈ V (i). As a consequence, |V (i) ∪ {i}| = D(Ei) + 1 > 2`i . Then,
|L(i)| > 2`i − 2`i−1. So |L(i)| > 2`i−1.

We have ∀i′ ∈ L(i),∀x′ ∈ Ei′ ,∃x ∈ Ei|(x, x′) ∈ NECC. However, ∀x ∈ Ei, {x′ ∈ Ei′ |i′ ∈
L(i) and (x, x′) ∈ NECC} ⊆ {x′|xJn−`i+1,nJ = x′Jn−`i+1,nJ}. So ∀x ∈ Ei, |{x′ ∈ Ei′ |i′ ∈ L(i)

and (x, x′) ∈ NECC}| 6 2n−`i+1. So ∀i, |Ei| > 2`i−1/2n−`i+1. So ∀i, |Ei| > 22`i/2n+2.

Furthermore,
k′∑
i=1
|Ei| 6 2n and ∀i 6 k′, |Ei| > 22`i/2n+2 > 22`/2n+2. So k′×22`/2n+2 6 2n.

So k′ 6 22n+2/22`. Then, c 6 22n+2/22`. However, we have also c 6 2`+1. An upper born
for c is reached when 2`+1 = 22n+2/22` (see Figure 1). In other words, when 23` = 22n+1. In
other words, when 2` = 2(2n+1)/3. Then, c 6 2(2n+1)/3+1. Then, c 6 22n/3+2. Furthermore,
χ(INECC) 6 c. As a result, χ(INECC) 6 22n/3+2.

From lemma 4 and Lemma 5, we can deduce an upper bound for the chromatic number
of a NECC graph. Furthermore, using the relation between the chromatic number of a
NECCF,W graph and κ(F,W ), we can find an upper bound for κn.
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Fig. 1: Upper bound for c.
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Fig. 2: INECC and NECC graphs of (F,W ).

Theorem 2. ∀n ∈ N, κn 6 2n/3 + 2.

Proof. Let F : Bn −→ Bn and W ∈
−→
P(V ). Thanks to Lemma 4 and Lemma 5, we

know that χ(NECCF,W ) 6 χ(INECCF,W ) and χ(INECCF,W ) 6 22n/3+2. As a consequence
χ(NECCF,W ) 6 22n/3+2 and log2(χ(NECCF,W )) 6 2n/3 + 2 and then κ(F,W ) 6 2n/3 + 2.

We have ∀F : Bn −→ Bn and W ∈
−→
P(V ), κ(F,W ) 6 2n/3 + 2. By definition of κn, we

have κn 6 2n/3 + 2.

Remark 6. The chromatic number of the INECC graph gives an upper bound of the NECC
graph. However, the NECC graph can have a smaller chromatic number. For instance, let
us consider the following BAN. Let F : B4 −→ B4 such that F ((0, 0, 0, 0)) = (0, 0, 0, 0),
F ((1, 1, 0, 0)) = (0, 0, 0, 0), F ((1, 0, 0, 0)) = (0, 1, 0, 0), F ((0, 1, 0, 0)) = (0, 1, 0, 1), and
for all other x ∈ B4, F (x) = (1, 1, 1, 1). And let W be the simple sequential schedule
({0}, {1}, {2}, {3}). Figures 2a and 2b respectively show that the chromatic number of the
INECC and NECC graphs are 3 and 2.

So, even if the worst INECC graph had a chromatic number equal to 22n/3, it would
not disprove the the conjecture. We can still hope that the worst NECC graph has a better
chromatic number. Indeed, we can color some equivalent configurations differently.

6 Clique Number in the NECC graph

The clique number of a graph G (denoted by ω(G)) is the size of the biggest clique of
G. We denote by ω(NECC) the clique number of the NECC graph. In this part, we find
the maximum value that ω(NECC) can get. It is important because we know that the
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chromatic number is bigger that the clique number. So, if in a NECC graph the clique
number is bigger than 2n/2 then the chromatic number is bigger as well and the conjecture
is wrong. However, if the clique number is smaller than 2n/2 then we cannot deduce
anything about the conjecture.

Lemma 6 proves that the set of steps at which two configurations are confusable is an
interval.

Lemma 6. Let (x, x′) ∈ CC. Let I = CC(x, x′). If a = min(I) and b = max(I) then
I = Ja, bK.

Proof. Since a = min(I) and b = max(I), we have I ⊆ Ja, bK. For the sake of contradiction,
let us suppose that ∃j ∈ Ja, bK such that j 6∈ I. Let j be the smallest such number. So
FW<j (x) 6= FW<j (x

′). We know that j 6= a because a ∈ I. Then, j−1 ∈ Ja, bK. Furthermore,
j − 1 does not valid this propriety (because j is the smallest number which valid it).
As a consequence, FW<j−1(x) = FW<j−1(x′) and FW<j (x) 6= FW<j (x

′). So F (x)Wj−1 6=
F (x′)Wj−1 . Furthermore, FW<b

(x)Wj−1 = F (x)Wj−1 because j 6 b (and then Wj−1 ⊆W<b)
and FW<b

(x′)Wj−1 = F (x′)Wj−1 . So FW<b
(x)Wj−1 6= FW<b

(x′)Wj−1 and thus FW<b
(x) 6=

FW<b
(x′). As a consequence, b 6∈ I which is a contradiction. As a result, I = Ja, bK.

Lemma 7 shows that if two configurations are confusable with a third configuration at
one step, then they are also confusable between themselves at this step.

Lemma 7. Let x, x′, x′′ ∈ Bn. We have CC(x, x′) ∩ CC(x, x′′) ⊆ CC(x′, x′′).

Proof. Let i ∈ CC(x, x′) ∩ CC(x, x′′). So we have i ∈ CC(x, x′) and i ∈ CC(x, x′′). Then,
FW<i(x) = FW<i(x

′) and FW<i(x) = FW<i(x
′′). As a consequence, FW<i(x

′) = FW<i(x
′′)

and then i ∈ CC(x′, x′′). We have ∀i ∈ CC(x, x′) ∩ CC(x, x′′), i ∈ CC(x′, x′′). We conclude
that CC(x, x′) ∩ CC(x, x′′) ⊆ CC(x′, x′′).

Lemma 8 shows that if two configurations are confusable with a third configuration,
the two are not confusable if and only if they are never confusable with the third at the
same steps.

Lemma 8. Let x, x′, x′′ ∈ Bn such that: (x, x′) ∈ CC and (x, x′′) ∈ CC. We have:
CC(x, x′) ∩ CC(x, x′′) 6= ∅ ←→ (x′, x′′) ∈ CC.

Proof. Let us suppose that CC(x, x′) ∩ CC(x, x′′) 6= ∅. By Lemma 7 we know we have:
CC(x, x′) ∩ CC(x, x′′) ⊆ CC(x′, x′′). So CC(x′, x′′) 6= ∅. As a result, (x′, x′′) ∈ CC. Now, let
us suppose we have (x′, x′′) ∈ CC. Let Ja, bK = CC(x, x′) and Ja′, b′K = CC(x, x′′). For the
sake of contradiction, let us consider that CC(x, x′)∩CC(x′, x′′) = ∅. So Ja, bK∩ Ja′, b′K = ∅.
With no loss of generality, let us consider that b < a′. So 0 6 a 6 b < a′ 6 b′ 6 p − 1
(with p = |W |). Let j ∈ CC(x′, x′′). Thus, FW<j (x

′) = FW<j (x
′′). We can show that

j 6∈ Ja, bJ and j 6∈ Ja′, b′J. Indeed, if j ∈ Ja, bJ, then j ∈ CC(x, x′) and FW<j (x) = FW<j (x
′).

So FW<j (x) = FW<j (x
′′) (because, by definition of j, we have FW<j (x

′) = FW<j (x
′′))

and, as a consequence, j ∈ CC(x, x′′) and thus j ∈ CC(x, x′) ∩ CC(x, x′′). As a result,
CC(x, x′) ∩ CC(x, x′′) 6= ∅. There is a contradiction, so j 6∈ Ja, bJ. Similarly, we can prove
that j 6∈ Ja′, b′J. Now, let us prove that j 6∈ J0, aJ. For the sake of contradiction let us
say that j ∈ J0, aJ. Then, ∃j′ ∈Kj, aJ, F (x′)Wj′ 6= F (x′′)Wj′ . Otherwise we would have
FW<a(x′′) = FW<a(x′) = FW<a(x) and then Ja, bK ∩ Ja′, b′K 6= ∅. Furthermore, we know
that FW<a(x′) = FW<a(x) (because a ∈ CC(x, x′)) and Wj′ ⊆ W<a (because j′ < a) so
F (x′)Wj′ = F (x)Wj′ and thus F (x′′)Wj′ 6= F (x)Wj′ . As a consequence, FW<a′ (x

′)Wj′ 6=
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FW<a′ (x)Wj′ (because Wj′ ⊆ W<a′ because j′ < a < a′). So a′ 6∈ CC(x, x′′). That is a
contradiction, so j 6∈ J0, aJ. Now, let us prove that j 6∈Kb, a′J∪Kb′, pJ. If j ∈Kb, a′J∪Kb′, pJ
then j > b. We know that F (x)Wb

6= F (x′)Wb
(else we would have FW<b+1

(x) 6= FW<b+1
(x′)

and then b + 1 ∈ CC(x, x′)). However, we have F (x)Wb
= F (x′′)Wb

because Wb ⊆ W<a′

because b < a′. So F (x′)Wb
6= F (x′′)Wb

. Thus, FW<j (x
′) 6= FW<j (x

′′) because W<j because
b < j.That is a contradiction. As a consequence, j 6∈Kb, a′J∪Kb′, pJ. As a result, j does not
exist. Thus, CC(x′, x′′) = ∅. Finally, (x′, x′′) 6∈ CC.

Lemma 9 shows that all cliques of the NECC graph have at least one step during which
all the configurations of the clique are simultaneously confusable.

Lemma 9. Let X be a clique of the NECC graph. Then, ∃i,∀x, x′ ∈ X, i ∈ CC(x, x′).

Proof. Let x ∈ X and k = |X|. Let X1, X2, . . . , Xk be the configuration of X. So we
have X = {X1, X2, . . . , Xk}. Let I1 = CC(x,X1), I2 = CC(x,X2), . . . , Ik = CC(x,Xk). Let
I = I1 ∩ I2 ∩ · · · ∩ Ik. We can prove that all intervals intersect each other two by two.
In other words, ∀i, i′ ∈ J0, kJ, Ii ∩ Ii′ 6= ∅. Let us assume, for the sake of contradiction
that there are disjoint intervals. In other words, we would have x′, x′′ ∈ X such that
CC(x, x′)∩CC(x, x′′) = ∅. So by Lemma 8, we would have (x′, x′′) ∈ CC. However, x′, x′′ ∈
X so (x′, x′′) ∈ CC. There is a contradiction so all intervals intersect each other two by
two. And we know that if a set of intervals intersect each other two by two then they have
an interval in common. So I 6= ∅.

Let i ∈ I. Now we prove that ∀x′, x′′ ∈ X, i ∈ CC(x′, x′′). Let x′, x′′ ∈ X. We have
i ∈ CC(x, x′) and i ∈ CC(x, x′′). Consequently, FW<i(x) = FW<i(x

′) and FW<i(x) =
FW<i(x

′′). Thus, FW<i(x
′) = FW<i(x

′′). As a result, i ∈ CC(x′, x′′). As a consequence,
∀x′, x′′ ∈ X, i ∈ CC(x′, x′′).

Using Lemma 9, Theorem 3 shows that the clique number of any NECC graph is less
than or equal to 2n/2.

Theorem 3. ω(NECC) 6 2bn/2c.

Proof. Let X be the biggest clique of the NECC graph, x ∈ X and i such that ∀x, x′ ∈
X, i ∈ CC(x, x′) (Thanks to Lemma 9, we know there is one). In other words, ∀x′ ∈
X,FW<i(x

′) = FW<i(x). So ∀x, x′ ∈ X,xW<i
= x′

W<i
and F (x)W<i = F (x′)W<i . Let

x ∈ X. There are 2 cases:

- |W<i| < n/2. Then, we have |W<i| > n/2. Thus, |{x′|x′
W<i

= xW<i
}| < 2n/2. And since

X ⊆ {x′|x′W<i
= xW<i}, we have |X| < 2n/2.

- |W<i| > n/2 then, we have {F (x′)|x′ ∈ X} ⊆ {x′|F (x′)W<i = F (x)W<i} and
|{F (x′)|F (x′)W<i = F (x)W<i}| 6 2n/2. And since all configurations of X are not equiv-
alent, we have ∀x, x′ ∈ X,x 6= x′ −→ F (x) 6= F (x′). Thus, |X| 6 |{F (x′)|x′ ∈ X}|. As
a consequence, |X| 6 2n/2.

In all cases, we have |X| 6 2n/2. So ω(NECC) 6 2n/2.

This result supports Conjecture 1 because the NECC graphs with the biggest chromatic
number we succeeded to build are graph with big clique number. It seems we reached the
limit of this technique.
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7 Class of bijective BANs

In this part, we study BAN whose global transition function is bijective. That is to say, we
study BAN whose dynamic with a parallel update schedule is only composed of recurent
configurations. For this class of BAN we can prove a result which is really close to the
conjecture. However, to prove this result, we first need to prove two general results.

The first one is that if two configurations are confusable then either the first parts of
the two images are equal or the second parts of the two configurations are.

Lemma 10. If W = (0, 1, . . . , n) then ∀(x, x′) ∈ CC, F (x)J0,n/2J = F (x′)J0,n/2J or
xJn/2,nJ = x′Jn/2,nJ.

Proof. Let (x, x′) ∈ CC. So ∃i ∈ J0, nJ, FJ0,iJ(x) = FJ0,iJ(x
′). Let i be the smallest such

number. So we have F (x)J0,iJ = F (x′)J0,iJ and xJi,nJ = x′Ji,nJ. Two cases:

- i 6 n/2. Then, Jn/2, nJ⊆ Ji, nJ. Thus, xJn/2,nJ = x′Jn/2,nJ.

- i > n/2. Then, J0, n/2J⊆ J0, iJ. Thus, F (x)J0,n/2J = F (x′)J0,n/2J.

The second general result, and a simple consequence of Lemma 10 is that if we take
the neighbours of a configuration in a NECC graph, and we take the set of images of these
configurations when we apply F , then this set has less than 2n/2+1 − 2 elements.

Lemma 11. If W ′ = (0, 1, . . . , n) then ∀x ∈ Bn, |{F (x′) | (x, x′) ∈ NECC}| 6 2n/2+1 − 2.

Proof. Let x ∈ Bn. According to Lemma 10: ∀x′ ∈ BnF (x)J0,n/2J = F (x′)J0,n/2J
or xJn/2,nJ = x′Jn/2,nJ. Then, {x′|(x, x′) ∈ NECC} ⊆ {x′|xJn/2,nJ = x′Jn/2,nJ} ∪
{x′|F (x)J0,n/2J = F (x′)J0,n/2J}. So {F (x′)|(x, x′) ∈ NECC} ⊆ {F (x′)|xJn/2,nJ = x′Jn/2,nJ} ∪
{F (x′)|F (x)J0,n/2J = F (x′)J0,n/2J}. Thus, |{F (x′)|(x, x′) ∈ NECC}| 6 |{F (x′)|xJn/2,nJ =
x′Jn/2,nJ}| + |{F (x′)|F (x)J0,n/2J = F (x′)J0,n/2J}|. We have |{F (x′)|F (x)J0,n/2J =

F (x′)J0,n/2J}| 6 2n/2. Furthermore, |{x′|xJn/2,nJ = x′Jn/2,nJ}| 6 2n/2. As a consequence,

|{F (x′)|xJn/2,nJ = x′Jn/2,nJ}| 6 2n/2. So |{F (x′)|(x, x′) ∈ NECC}| 6 2n/2+1. Furthermore,

F (x) ∈ {F (x′)|xJn/2,nJ = x′Jn/2,nJ} and F (x) ∈ {F (x′)|F (x)J0,n/2J = F (x′)J0,n/2J} but

F (x) 6∈ {F (x′)|(x, x′) ∈ NECC}. So |{F (x′)|(x, x′) ∈ NECC}| 6 2n/2+1 − 2.

Using the fact that we are talking about a bijective function, and thanks to Lemma 11,
we bound the degree of every configuration in the NECC graph. Then, we deduce a bound
for the chromatic number of the NECC and then a bound for κ.

Theorem 4. If F : Bn −→ Bn is a bijective function then κ(F,W ) 6 n/2 + 1.

Proof. Let F : Bn −→ Bn be a bijective function. ∀x ∈ Bn, let d(x) be the degree of x
in the NECC graph. In other words, ∀x, d(x) = |{x′|(x, x′) ∈ NECC}|. Let x ∈ Bn be
the configuration with the biggest degree. We know by Lemma 11 that |{F (x′)|(x, x′) ∈
NECC}| 6 2n/2+1 − 2. However, since F is a bijective function, we have |{F (x′)|(x, x′) ∈
NECC}| = |{x′|(x, x′) ∈ NECC}|. And then d(x) 6 2n/2+1−2. So χ(NECC) 6 2n/2+1−1.

Thus, log2(χ(NECC)) 6
n

2
+ 1. As a result, κ(F,W ) 6

n

2
+ 1.
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8 Conclusion and future research

In this article, we were interested in the minimal number (κ) of additional automata that
a SBAN with a sequential update schedule needs to simulate another given one with a
parallel update schedule. The maximum value that κ can take for all SBAN of size n is
denoted by κn. To answer this matter we introduced the concept of NECC graph, a graph
built from the SBAN. We proved that the log of the chromatic number of this graph and
the κ of a SBAN were equals. We achieve to bound κn in the intervals [n/2, 2n/3 + 2] and
we conjectured that κn is equal to n/2. And, to support this conjecture, we showed that
the maximum clique number that a NECC graph can have is equal to 2n/2. That means
that the NECC graph of a SBAN which would have a κ greater than n/2 would have a
NECC graph with a chromatic number greater than the clique number. Finally, we showed
that the conjecture is true (up to one extra automaton) if we restrain to SBAN whose
global transition function is bijective.

More work is left to do to bound κn more precisely. There is a related problem where,
given a SBAN with a parallel update schedule, we search the number of additional au-
tomata needed for a SBAN with any sequential update schedule (that is to say, we do
not impose any order on the update schedule) to simulate the first SBAN. We can see
that for some BAN this number is really smaller that when we impose an order. We can
take the example used in Lemma 3. The BAN has n/2 couple of automata that exchange
their values. If the mandatory order is to update one automaton only of every couple of
automata and then the other we need n/2 additional automata. But if the order is free
then we can update all couple of automata one at the time and do with only one additional
automaton. The problem to find an upper bound better than κn is still open.

Furthermore, we could study the issue presented in this article with other kinds of
update schedule (which update many times each automata for instance) or other kinds of
simulations (where many automata can represent one simulated automaton for example).

These results could also help to create new SBANs, the smallest possible, which would
work the same way as other SBANs with different update schedule. Associated with the
concept of functional modularity, we could also use them to replace a little functional
module which have an unexpected behaviour in some situations by another module more
robust to schedule variations.
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A Appendix

In Lemma 12 we show that, for a couple (F,W ), if we take the block sequential mode W
and we transform it into a sequential one, the κ can only increase. Differently stated, if
we want to study κn we can study only SBAN with sequential update schedule.

Lemma 12. Let F : Bn −→ Bn, W ∈
−→
P(V ) and W ′ ∈

−→
P(V ) be a sequential schedule

such that if i is updated before i′ in W it be updated before i′ in W ′. Then, we have
κ(F,W ′) > κ(F,W ).

Proof. We show that NECCF,W ⊆ NECCF,W ′ . Let (x, x′) ∈ NECCF,W . We have
F (x) 6= F (x′) and ∃i ∈ J0, pJ|FW<i(x) = FW<i(x

′). Let i′ = |W<i|. We have W ′[i′] = W<i.
So F (x) 6= F (x′) and ∃i ∈ J0, p′J|FW ′[i′](x) = FW ′[i′](x

′). Then, (x, x′) ∈ NECCF,W ′ .
So NECCF,W ⊆ NECCF,W ′ . Then, χ(NECCF,W ′) > χ(NECCF,W ). Finally, κ(F,W ′) >
κ(F,W ).

Definition 6. Let T ∈
−→
P(V ). We denote by Hh(T ) ∈

−→
P(V ) the update schedule such

that if W = Hh(T ) then:

- |W | = |T |;
- ∀i ∈ J0, |T |J, |Wi| = |Ti|;
- ∀i ∈ J0, |T |J,∀j ∈Wi, h(j) ∈ Ti.

Lemma 13 says that if two SBANs are equivalent up to permutation and if they have the
same configurations up to the permutation and if we update the first i blocks of automata
of the two SBANs then the configurations stay equivalents up to the permutation.

Lemma 13. Let h : V −→ V be a bijective function, T ∈
−→
P(V ), G : Bn −→ Bn,

W = Hh(T ) and F : Bn −→ Bn such that ϕh◦G = F ◦ϕh. We have ∀j ∈ J0, pJ, ϕh◦GT<j =
FW<j ◦ ϕh.

Proof. Let j ∈ J0, pJ, let x ∈ Bn. Let us prove that: ϕh ◦ GT<j (x) = FW<j ◦ ϕh(x). Let
i ∈ V . There are two cases:

- i 6∈W<j . So FW<j (ϕh(x))i = ϕh(x)i = xh(i).
Furthermore, h(i) 6∈ T<j . Thus, (ϕh ◦GT<j (x))i = GT<j (x)h(i) = xh(i). Consequently,
(FW<jϕh(x))i = (ϕh ◦GT<j (x))i.

- i ∈ W<j . So FW<j (ϕh(x))i = (F ◦ ϕh(x))i = (ϕh ◦ G(x))i = G(x)h(i). Furthermore,
h(i) ∈ T<j . Consequently, (ϕh ◦ GT<j (x))i = (GT<j (x))h(i) = G(x)h(i). As a result,
(FW<j ◦ ϕh(x))i = (ϕh ◦GT<j (x))i.

So ∀i ∈ V, (FW<j ◦ ϕh(x))i = (ϕh ◦GT<j (x))i. Thus, FW<j ◦ ϕh = ϕh ◦GT<j .

Lemma 14 says that if two SBANs are equivalent up to permutation, then their NECC
graph are equivalent up to permutation.

Lemma 14. Let h : V −→ V be a bijective function, T ∈
−→
P(V ), G : Bn −→ Bn,

W = Hh(T ) and F : Bn −→ Bn such that ϕh ◦ G = F ◦ ϕ. (x, x′) ∈ NECCG,T ←→
(ϕh(x), ϕh(x′)) ∈ NECCF,W .
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Proof. (x, x′) ∈ NECCG,T ←→ (x, x′) ∈ NECG and (x, x′) ∈ CCG,T

←→ G(x) 6= G(x′) and ∃j ∈ J0, |W |J|GT<j (x) = GT<j (x
′)

←→ G(x) 6= G(x′) and ∃j ∈ J0, |W |J|ϕh ◦GT<j (x) = ϕh ◦GT<j (x
′)

←→ F (x) 6= F (x′) and ∃j ∈ J0, |W |J|FW<j ◦ ϕh(x) = FW<j ◦ ϕh(x′)
←→ (ϕh(x), ϕh(x′)) ∈ NECF and (ϕh(x), ϕh(x′)) ∈ CCF,W

←→ (ϕh(x), ϕh(x′)) ∈ NECCF,W .

Lemma 15 says that if two SBANs are equivalent up to permutation, then their κ are
equivalent up to permutation.

Lemma 15. Let h : V −→ V be a bijective function, T ∈
−→
P(V ), G : Bn −→ Bn,

W = Hh(T ) and F : Bn −→ Bn such that ϕh ◦G = F ◦ϕh. So we have κ(F,W ) = κ(G,T ).

Proof. Lemma 14 says that the NECC graph of (F,W ) and (G,T ) are equivalent up to
permutation (It is only a projection by ϕh). Thus, they have the same chromatic number.
As a result, κ(F,W ) = κ(G,T )

Using the fact that the sequential update schedule is the one with the biggest κ, and
Lemma 15 which says that we can do a permutation of a SBAN without changing its κ,
we see that we can compute κn with a SBAN with the simple sequential update schedule
as update schedule.

Lemma 16. Let W be the simple sequential update schedule (W = ({0}, {1}, . . . , {n−1})).
There is a F : Bn −→ Bn such that: κn = κ(F,W ).

Proof. Let G : Bn −→ Bn and T ∈
−→
P(V ) a sequential update schedule such that κ(G,T ) =

κn. We know we can take T sequential because of Lemma 12.
Let h : V −→ V be the bijective function such that: ∀i ∈ V, h(i) = j such that Tj = {i}.

Let F : Bn −→ Bn such that ϕh ◦G = F ◦ϕh and W = Hh(T ). W is the simple sequential
update schedule.

And by Lemma 15, we know that κ(F,W ) = κ(G,T ). As a resut, κ(F,W ) = κn.
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