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Abstract. In the context of Post-Nonlinear (PNL) mixtures, source sep-
aration can be performed in a two-stage approach, which encompasses
a nonlinear and a linear compensation part. In the former part, how-
ever, it is usually required the knowledge of the distribution type for all
sources, what may be difficult to attend. In view of this, in this work, we
propose a less restrictive approach, in which it is required the knowledge
of a single source distribution – here, chosen to be a colored Gaussian.
The other sources are only required to present a time structure. The
method combines, in a joint-based approach, the use of the second-order
statistics (SOS) and the matching of distributions, which shows to be
less costly than the classical method of computing the marginal entropy
for all sources. The simulation results are favorable to the proposal.
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1 Introduction

In the area of signal processing, the problem of retrieving a set of source sig-
nals from their mixtures has been intensively studied for three decades. Since
this task is performed with only the knowledge of some mixtures samples, this
problem is named Blind Source Separation (BSS) [1]. Most part of the initial
efforts were aimed at the standard linear and instantaneous mixture problem,
with the assumption that the sources are mutually independent. These studies
resulted in a well-founded and solid theoretical framework known as Indepen-
dent Component Analysis (ICA) [1]. Although it can count with a vast number
of practical applications, there are certain cases in which the linear assumption
is insufficient – e.g., smart chemical sensor arrays [2] and hyperspectral imag-
ing [3] – and nonlinear mixing models must be considered. Notwithstanding,
from a general nonlinear standpoint, the ICA framework may not provide the



sufficient information for performing source separation. Thus, the studies on this
topic were focused on a constrained set of nonlinear models in which the ICA
methods are still valid [4], like the so-called Post-Nonlinear (PNL) models [5].

The approaches for solving the PNL mixing problem can be roughly divided
in the joint and the two-stage approaches [6]. In the former case, an ICA-based
method is usually employed [5]. In the second case, the nonlinear part is solved
in a first step – e.g., via a Gaussianization method [7] – and, for the subsequent
step, there remains a linear BSS problem, which is a well studied issue [1]. Ad-
ditionally, if the sources present a temporal structure, a second-order statistics
(SOS) based approach can be employed in the second stage [7]. Notwithstand-
ing, these approaches may suffer some drawbacks: in the joint approach, it is
usually necessary the evaluation of the mutual information, which may be com-
putationally costly and also be susceptible to local minima convergence; in the
two-stage approach, the nonlinear compensation methods may depend on certain
assumptions over the distribution of all sources in order to exploit its statistical
features, which might imply in rather strong assumptions for some practical sce-
narios [6]. In view of this, in this work, we consider a less restrictive approach
by assuming the knowledge of the distribution shape of a single source, e.g., a
Gaussian distribution, and that the sources present temporal structure. In this
case, we propose a joint approach which allies a SOS-based cost function to a
density (Gaussian) matching which can be simply performed via kernel estima-
tors [8]. We also consider a robust metaheuristic known as Differential Evolution
(DE) [9] to avoid suboptimal convergence.

2 The Post-Nonlinear Mixtures

In the blind source separation (BSS) problem, the main objective is to retrieve
from the observed mixtures x(n) = Φ (s(n)) the original sources s(n), where
x(n) = [x1(n) · · · xM (n)]T is the observation vector of length M , s(n) =
[s1(n) · · · sN (n)]T is the source vector with N elements and Φ(·) is the mixing
function [1]. Classically, it is assumed that the mixing function can be described
as linear and instantaneous system of the type x(n) = As(n), where A is a
M×N matrix. However, this model is not sufficient for certain applications. In
that sense, the Post-Nonlinear (PNL) model rises as an emblematic and signifi-
cant step in nonlinear BSS [1],[5].

The PNL system comprises two stages of mixing: the linear and the nonlinear
stages. As illustrated in Fig. 1, the mixtures can be written as x(n) = f (As(n)),
being f(·) is a set of M component-wise functions. The separation system is a
mirrored version of that of mixing, being its output given by y(n) = Wg (x(n)),
where W is a N×M matrix and g(·) is a set of M component-wise functions,
ideally the inverse of f(·) [1].

2.1 Separation Techniques for PNL Mixtures

In the context of PNL mixtures, it is possible to classify the separation techniques
in two main classes: the joint and the two-stage approaches [6].



Fig. 1. Mixing and separating systems in the PNL model.

In the former, the main idea is to jointly adjust g(·) and W by minimizing
a given statistical dependence measure; generally, the use of the ICA framework
represents an efficient methodology for performing separation, but issues like
local convergence and constrained adaptation of the nonlinearities require special
attention – e.g., it is necessary that f(·) and g(·) be bijective pairs [6].

On the other hand, for the two-stage approach, the linear and the nonlinear
mixing stages are addressed separately, i.e., two different but “simpler” prob-
lems need to be solved: g(·) is adapted so that the nonlinear part of the mix-
tures are completely suppressed and, then, W is adjusted to solve the classic
linear BSS problem. There are a number of methods for adapting g(·) – the
first stage –, which are based on some a priori information, for instance, sparse
and bandlimited [10] signals, but the most common approach is that based on
Gaussianization: from the perspective of the central limit theorem, the resultant
random variables after the linear mixing stage will tend to be “more” Gaussian.
In that sense, the most intuitive idea for adapting g(·) is to turn its output z(n)
Gaussian again [7]. This strategy reveals to be more effective when the number
of sources N is large – according to the central limit theorem – or when the
sources are Gaussian distributed. One can also include among these ideas the
notion of the matching of probability distributions, which was one of the first
methods in the PNL two stage approaches [11]. In this case, the nonlinearity
compensation is accomplished when the distributions associated with u(n) and
with z(n) are matched – note, however, that the knowledge of the distribution
of u(n) is required as a priori information. This idea will also be relevant for
the present work.

The second stage, i.e., the adaptation of the linear term W, is usually
solved with classical ICA methods [1],[6], which encompasses high-order statis-
tics (HOS). However, when the sources are temporally colored, methods based
on second-order statistics (SOS) can be applied, since they are known for its
robustness and reliable simplicity. In the work [7], this idea is exploited by using
a Gaussianization method in the first stage followed by a temporal decorrelation
separation (TDSEP) method [1] in the second stage. In fact, this approach is
important because it merges the simplicity of the second-order framework to
the complexity of the nonlinear mixtures, which can allow us to improve the
perception of this problem.



Although both approaches present its own particular advantages, in this
work, we propose the use of a joint approach which is able, to a certain extent,
to ally the benefits of a Gaussianization method – by means of a probability
density matching – with the simplicity of the separation techniques based on
SOS. The method will be described in the next section.

3 Proposed Separation Method

The separation method for PNL mixtures proposed in this work is based on a
criterion that allies the use of SOS and the matching of a (Gaussian) probability
density. We start from the assumptions: (i) that at least one source is Gaus-
sian; (ii) that the sources are jointly wide-sense stationary, present a temporal
structure (in other words, temporally colored) and are mutually independent;
(iii) f(·) is a set of invertible nonlinear functions; and (iv) all the linear mixing
coefficients are non-null.

Since we aim at the joint approach, we seek for a single separation criterion
which should be able to jointly adapt g(·) andW. Notwithstanding, this criterion
will be composed of two parts, whose concepts can be understood separately –
as we intend to show – but not its modus operandi.

3.1 Second-Order Statistics for Blind Separation

The first part of the criterion is based on the temporal structure of the sources.
More precisely, we make use of the classical second-order joint diagonalization
methods for linear BSS, which were the starting points for approaches and al-
gorithms like SOBI, AMUSE, TDSEP and modified versions [1].

In this case, the SOS are exploited through time lagged covariance matrices:

Ry,ds
= E

[

y(n)yT (n−ds)
]

, (1)

being ds a constant lag. The main idea is to simultaneously diagonalize the
lagged covariance matrices corresponding for different values of ds previously
chosen, which can be summarized in the following cost [1]:

JSOS(θ) =
∑

ds∈S

off (Ry,ds
) =

∑

ds∈S

∑

i6=j

(E [yi(n)yj(n−ds)])
2
, (2)

being off(·) the sum of the squares of the off-diagonal elements of a given ma-
trix; S the set of chosen delays and θ the set of parameters to be adjusted,
viz., θ = {g(·),W}. An additional normalization term (E

[

y2i (n)
]

− 1)2 for
i = {1, . . . , N} is considered, since there are no whitening step for the nonlinear
case. For separation purposes, it is desired that JSOS(θ) be minimized under a
constraint over the linear separating matrix W – in order to avoid convergence
to the trivial solution.

Source separation based only on SOS are known to provide sufficient statis-
tical information in the linear mixing case, however, in the nonlinear problem,
additional statistics might be necessary.



3.2 Matching of Gaussian Distributions

Since we consider that at least one of the sources is Gaussian, this statistical
information can be used in the second part of the criterion. In literature, there
can be found several methods for Gaussianization [6],[7], however, in this work,
as we aim at a more general density matching approach to be held in a multi-
dimensional context (and encompass the temporal structure), we consider the
quadratic divergence between densities via kernel density estimators [8].

Basically, the idea is to force one of the recovered sources, say y1(n), to be
Gaussian and to present a given temporal correlation (from a covariance matrix).
This approach is somehow analogous to the supposition of autoregressive (AR)
models for one of the sources, however, in this case, we are not interested in
the AR parameters, just in the resultant covariance matrix. This point will be
clarified in the following.

In order to use the temporal information, we compose vectors of the type:

y1(n) = [y1(n) y1(n−1) . . . y1(n−dm)]
T
, (3)

where dm is the maximum number of delays considered. Note that we are only
considering samples of the first output y1(n). In this case, the temporal covari-
ance matrix of y1(n) is Ry

1
= E

[

y1(n)y
T
1 (n)

]

. For AR models, the matrix Ry
1

is used for estimating the AR parameters, but in our case, it suffices that y1(n)
is associated to a Gaussian distribution with covariance matrix Ry

1
.

Based on this premise, we can formulate a criterion that aims at the match of
an estimated multivariate density to a multivariate Gaussian distribution with
zero mean and covariance matrix Ry

1
.

JGM (θ1) =

∫

D

(

fY 1
(v)−GRy1

(v)
)2

dv

=

∫

D

f2
Y 1

(v)dv +

∫

D

G2
Ry1

(v)dv − 2

∫

D

fY 1
(v)GRy1

(v)dv

(4)

where fY 1
(v) is the multivariate density associated to the vector y1(n) at point

v;GRy1
(v) is a Gaussian distribution with covariance matrixRy

1
,D ∈ R

dm+1×dm+1

and θ1 = {g(·),w1}, being w1 the vector corresponding to the first row of W.
For estimation of fY 1

(v), we consider a kernel density estimation method [12]
allied to the choice of Gaussian functions as kernels, which will lead to further
simplifications in our case. Hence, the fY 1

(v) can be estimated as:

f̂Y 1
(v) =

1

L

L
∑

i=1

GΣ (v − y1(i)) , (5)

where L is the number of vector samples of y1(n) and

GΣ (v − y1(i)) =
1

√

(2π)dm+1|Σ|
exp

[

−1

2
(v − y1(i))

TΣ−1(v − y1(i))

]

, (6)



is the multivariate symmetric Gaussian kernel with covariance matrix Σ = σ2I,
being I the identity matrix of order dm+1 and σ2 the kernel size; |Σ| is the
determinant of Σ. Substituting the estimation fY 1

(v) into Eq. (4), it is possible
to write, after some algebraic manipulation:

ĴGM (θ1) =
1

L2

L
∑

i=1

L
∑

j=1

G2Σ (y1(i)− y1(j)) +G2Ry1
(0)−

2

L

L
∑

i=1

GΣ+Ry1
(y1(i)) .

(7)
Thus, we wish to minimize the cost ĴGM (θ1) so that, ideally, ĴGM (θ1) = 0 and

f̂Y 1
(v) will be the desired Gaussian distribution – in this case, no constraints

over θ1 are necessary. It is also expected that, in the optimization process, Ry
1

converges to a scaled version of Rsk , the temporal covariance matrix of a Gaus-
sian source sk(n) – this point will be explained ahead.

It is worth mentioning that this method requires the adjustment of the kernel
size σ, which, since we face Gaussian distributions, the Silverman’s rule can be
successfully applied [13]. Hence, the optimal value for σ – in a squared error

sense – is σo = σy1
(4/(L (2(dm+1) + 1)))

1/(dm+5)
, where σy1

is the standard
deviation of y1(n). The number of delays, dm, is recommended to be small in
order to avoid an elevated computational cost.

Finally, with both costs ĴSOS(θ) and ĴGM (θ1) at hands, we can define a
combined criterion by minimizing J(θ) = ĴSOS(θ) + ĴGM (θ1), w.r.t. θ. The
other parameters that requires (pre-)adjustment are the number of samples and
of time delays for both costs.

4 Some Aspects of the Proposal

Although it might seem at a first glance that the two costs JSOS(θ) and JGM (θ1)
– Eqs. (2) and (7), respectively – are not closely related, they perform together
an essential role for nonlinear BSS separation. In the sequence, we consider
some illustrative cases that might be further clarifying, however, for the sake of
briefness, we appeal to certain intuitive properties within the BSS problem.

We start by considering the sole minimization of JGM (θ1) and, for simplicity,
we assume the N=2 sources case, with the following possible types of sources:
(i) only one of the sources is Gaussian distributed and (ii) both sources are
Gaussian and temporally colored. In the scenario (i), we know that at the end
of the linear mixing problem (with all linear coefficients non-null), u(n) will tend
to have a joint Gaussian distribution, but not exactly Gaussian due to one of
the sources being not Gaussian. After the nonlinearities f(·), it is expected that
x(n) drives even more away from the Gaussian distribution. By forcing y1(n)
to be Gaussian via minimization of JGM (θ1), it is expected that the nonlin-
ear separating functions g(·) are able to produce a Gaussian-like distribution
for z(n), so that the linear separating structure W1 will be able to extract a
Gaussian source, but not necessarily the desired one. Hence, in this case (i), the
minimization of the cost JSOS(θ) must perform an important role to make the
Gaussian convert to the correct one. Notwithstanding, in scenario (ii), since the



mixtures of Gaussian distributions remains Gaussian, we have that u(n) would
be jointly Gaussian. The nonlinearity f(·), again, will push the distribution of
x(n) away from Gaussianity. By minimizing JGM (θ1) in this case, it is expected
that nonlinearities be compensated, but the linear part will be unable to sepa-
rate between two Gaussian sources. Now, if we also consider the minimization
of JSOS(θ), we know from the linear BSS theory that Gaussian distributions
can be separated and, the estimation of the temporal covariance matrix Ry

1

will be more precise. Undoubtedly, it is not possible to determine which of the
Gaussian source will be recovered at y1(n), but since the BSS problem admits
permutation of the solutions this is not an issue.

On the other hand, by considering only the minimization of JSOS(θ), we
know it is sufficient for linear mixtures, but this might not hold for nonlin-
ear mixtures [1]. Indeed, if the nonlinearities f(·) are not compensated by g(·),
possibly an infinite number of independent solutions can be achieved – i.e., de-
pending on the degree of freedom of the combined nonlinearities f ◦ g. However,
by constraining one of the sources to be Gaussian, it is expected a single possible
solution for JSOS(θ), which is the desired one. In fact, the bond between both
criteria happens in the temporal information used in both costs, where there is
an important sinergy: the minimization of the Ry,ds

diagonals aids the conver-
gence of Ry

1
to Rsk – the temporal covariance matrix of a Gaussian source – in

addition, the information that the source y1(n) is Gaussian can also contribute
to it; in turn, when Ry

1
tends to Rsk , it can aid the the second-order inde-

pendence in Ry,ds
. To better illustrate it, in the next section, we present some

simulation results.

5 Simulation Results

In order to test our proposed method, we consider two simulation scenarios
and a performance comparison along with the methods: SOS (joint approach)
and Gaussianization followed by SOS (two-stage approach [7]). For the Gaus-
sianization, it was considered the maximization of the Shannon’s entropy, us-
ing (univariate) Gaussian kernel estimators [14]. In the first scenario, we con-
sider two Gaussian sources that are temporally colored by the finite impulse
response (FIR) filters h1(z) = 1+0.5z−1 + 0.2z−2 and h2(z) = 1−0.8z−1, one
for each source. The mixtures were the result of x(n) = (As(n))3, being A =
[0.25 0.86;−0.86 0.25]. For the separating structure, we considered parametric
functions for g(·) of the type zi(n) = gi,1xi(n) + gi,2sign(xi(n))

3

√

|xi(n)|, where
the operator sign(·) returns a +1 if xi(n) ≥ 0 or a −1 if xi(n) < 0; followed by
a 2× 2 matrix W.

Common to all considered methods, the SOS cost – defined in Eq. (2) – was
chosen to encompass 3 delays with S = {0,1,2} and to be estimated from 500,000
samples of y(n) (for higher accuracy). Hence, for the entropy and for the density
matching – Eq. (4) –, since they are more complex methods, it were considered
500 samples of z(n) and y1(n), respectively – note that the density matching
requires a lower number of samples.



To perform the optimization of the weights (nonlinear and linear), we adopted
the metaheuristic known as Differential Evolution (DE) [9]. The DE parameters
were chosen to be NP = 300 (population size), F = 0.7, CR = 0.7 and 100
iterations – for more details, please refer to [9]. For the joint approaches, a single
run of the DE adapts all coefficients, while, for the two-stage approach, it is
necessary two DE runs, one for the nonlinear and other for the linear part.
After training, the performance of the best individual in the population was
measured in terms of SIR (after the sign and variance correction), defined as
SIR = 10 log

(

E[yi(n)
2]/E[(si(n)− yi(n))

2]
)

, and displayed in Tab. 1. The joint
SOS has not performed well and attained low values of SIR, which indicates, as
expected, that its sole criterion is not sufficient for separation. For the two-step
Gaussianization+SOS method, one of the sources was estimated with SIR of
70.28 dB, but the other source showed a poorer quality with SIR of 19.49 dB.
For the proposed method, both sources were recovered with a high SIR value.

Table 1. Performance in terms of SIR [dB]

SOS (joint) Gaussianiz. Density M.
Sources + SOS + SOS

Scenario 1
Gaussian h1(z) - Source 1 10.3715 19.4858 61.5618
Gaussian h2(z) - Source 2 -3.3308 70.2770 75.0141

Scenario 2
Gaussian h1(z) - Source 1 -0.5136 21.3580 38.4945

Uniform - Source 2 5.7545 34.0684 39.6601

Fig. 2 shows the scatter plot and histogram of outputs for the last two meth-
ods (the red scatter plots are the output samples for the entropy and for the
density matching). It is possible to see that the Gaussianization step (in the two-
stage approach) provided two Gaussian distributions, however, the first Gaussian
could not converge to the desired temporal correlation in the linear step (in this
case, the cost JSOS(θ) could not achieve its lowest value), probably due to a
small nonlinear residual. For the proposed method, the joint approach helped
obtaining the first Gaussian and to turn it uncorrelated to the second source,
what contributed to a better performance.

In a second scenario, we consider the sources: one uniformly distributed with
no temporal structure and one temporally correlated Gaussian (by the filter
h1(z)). The mixture was kept the same. We repeated the procedure and obtained
the results shown in Tab. 1. Again, the joint SOS has not performed well, but the
other methods reached a reasonable good performance in terms of SIR. As shown
in Fig. 3, the Gaussianization+SOS method carried a higher residual nonlinear
error due to the presence of the uniform distribution in the mixture, what caused
a reduction on the performance. On the other hand, since the proposed method



(a) Gaussianization+SOS. (b) Proposed Method

Fig. 2. Scenario 1 - Temporally colored Gaussian sources.

does not encompass any assumption on the distribution shape of the sources
different from the one that is Gaussian, it can obtain better results.

(a) Gaussianization+SOS. (b) Proposed Method

Fig. 3. Scenario 2 - Uniform and Gaussian Sources.

6 Conclusions

In this work, we have proposed a joint approach for source separation in the PNL
model. The method allies the use of the second-order statistics to the density
matching approach. By only assuming temporal colored sources and that at least
one source is Gaussian distributed, this method is able to perform the separation
based on less restrictive requirements than the usual two-stage methods, whose
assumptions applies to all sources, and it can be computationally simpler than
estimating mutual independence in the classical ICA framework. Along with
the use of the DE metaheuristic, the simulations indicated that the proposed



method is more robust than the Gaussianization method in the case of two
Gaussian sources and in the case of one Gaussian and one uniformly distributed
source.

Since this work is still incipient, there are plenty of possibilities for future
works. We consider, for instance, the analysis of the conditions for the exten-
sion to a higher number of sources; the assumption that one of the sources has
a known distribution, but is not Gaussian; and, finally, the proposition of a
gradient-based algorithm.
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