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Abstract. Spectral Umixing (SU) in hyperspectral remote sensing aims
at recovering the signatures of the pure materials in the scene (endmem-
bers) and their abundances in each pixel of the image. The usual SU
chain does not take spectral variability (SV) into account, and relies on
the estimation of the Intrinsic Dimensionality (ID) of the data, related
to the number of endmembers (NOE) to use. However, the ID can be
significantly overestimated in difficult scenarios, and sometimes does not
correspond to the desired scale and application dependent NOE. Spuri-
ous endmembers are then frequently extracted and included in the model.
We propose an algorithm for SU incorporating SV, using collaborative
sparsity to discard the least explicative endmembers in the whole image.
We compute an algorithmic regularization path for this problem to select
the optimal set of endmembers using a statistical criterion. Results on
simulated and real data show the interest of the approach.

Keywords: Hyperspectral images, remote sensing, collaborative spar-
sity, Alternating Direction Method of Multipliers, regularization path,
Bayesian Information Criterion

1 Introduction
The fine spectral resolution of hyperspectral remote sensing images allows to
precisely identify and characterize the materials of the observed scene. However,
this spectral resolution comes at the price of having a coarser spatial resolution
than classical color or even multispectral images. Therefore, there are often sev-
eral materials of interest present at the same time in the Field of View (FOV) of
the sensor during the acquisition of a pixel, and the resulting observed spectrum
is a mixture of the contributions of these materials. Spectral Unmixing (SU) is
a (blind) source separation problem whose goal is to recover the spectral signa-
tures of the pure materials in the scene (called endmembers) and to estimate
their proportions in each pixel (called fractional abundances)[3]. To do that, a
Linear Mixing Model (LMM) is often considered, assuming as a first approxima-
tion that the contributions of each endmember in each pixel sum up in a linear
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2 Estimation of the number of endmembers in SU with collaborative sparsity

way, with the abundances as weights. In order to interpret the abundances as
fractions, they are usually constrained to be positive and to sum to one in each
pixel. The classical linear SU unmixing chain is usually divided into three steps:
i) Estimating the number of endmembers to use, which is a hard scale and ap-
plication dependent (not to mention somewhat subjective) task, using intrinsic
dimensionality (ID) estimation algorithms [2, 5], ii) Extracting the endmembers’
signatures, generally with geometric approaches, such as the Vertex Component
Analysis (VCA) [14] (usually assuming there are pure pixels in the image), and
iii) Estimating the abundances by constrained least squares, using for instance
the Fully Constrained Least Squares Umixing (FCLSU) algorithm of [10]. The
main two limitations of this strategy have been identified as nonlinearities [11]
and spectral variability (see [6] and references therein). Nonlinear mixtures can
occur when each ray of light received by the sensor has interacted with more than
one material (e.g. in tree canopies, urban scenarios or in particulate media, such
as sand). Dealing with spectral variability amounts to consider that each material
possesses a certain intra-class variability, which is not what the usual approach
does since it implicitly considers that every material is perfectly represented by
a single spectral signature. If these two limitations of the usual SU chain are
well identified and currently receiving a lot of attention, much less emphasis is
put on the estimation of the number of endmembers to use. This number is of-
ten considered to be the same as the ID concept. If these two quantities indeed
coincide when the LMM holds on simulated data, there is no such guarantee in
nonlinear scenarios or when spectral variability is significant. In addition, the
ID can be affected by outliers, which are usually not wanted in SU results. The
ID has been shown to be subject to overestimation for several algorithms in
difficult scenarios (small spatial dimensions, high spectral dimension, significant
noise level) [7]. The errors committed at this step are then propagated to the
whole unmixing chain, since spurious endmembers are extracted and incorpo-
rated to the model. In this paper, we propose an algorithm to perform linear
SU of hyperspectral data, incorporating spectral variability, while automatically
identifying the wrongly extracted endmembers and removing them from the pool
of endmembers during the SU process, in order to keep the most relevant only.
To this end, starting from the likely overestimated ID, we define an optimization
problem using collaborative sparsity [13], so that irrelevant endembers, usually
associated with sparse and meaningless abundance maps, do not contribute in
any pixel of the image. In order to select the appropriate number of endmembers
to retain, we compute an algorithmic regularization path [12] for the optimiza-
tion problem, providing a sequence of smaller and smaller candidate endmember
matrices. The sequence goes from the whole initial pool of endmembers to a fully
sparse model, each time removing the least explicative endmember in the current
matrix. The only step remaining is to select the most appropriate element of this
sequence for the problem at hand. We use the Bayesian Information Criterion
(BIC) to select the optimal model, favoring models reconstructing the data well
with a limited number of parameters.
The remainder of this paper is organized as follows: section 2 presents the pro-
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posed approach in detail, then section 3 shows the results of experiments con-
ducted on simulated and real data, and finally section 4 gathers some concluding
remarks.

2 Proposed Approach

2.1 Extended Linear Mixing Model

Once the ID of the dataset has been estimated, one usually resorts to an end-
member extraction algorithm, such as the VCA to obtain the spectra of the
pure materials. The next step is the estimation of the abundances. For a hy-
perspectral image X ∈ RL×N , where L is the number of spectral bands, and N
is the number of pixels, an endmember matrix S0 ∈ RL×d has been extracted
(where d is the estimated ID). We denote the abundance matrix by A ∈ Rd×N .
In the usual linear SU setting, the abundances are estimated by nonnegative lin-
ear least squares, with the additional abundance sum to one constraint (ASC).
However, here, following [17], we change the mixing model to incorporate SV
into the unmixing at a negligible cost. We consider the following mixing model:

xk = ψk

d∑
p=1

apks0p + ek, (1)

where xk is the k
th

column of X, (i.e. the spectrum of pixel k), and s0p is the

p
th

column of S0 (i.e. the reference endmember for material p). ek is an ad-
ditive noise, usually assumed to be Gaussian. apk is the abundance coefficient
of endmember p in pixel k. Finally, ψk is a scaling factor, which models SV
effects in each pixel, e.g. locally changing illumination conditions in the image,
due to the topography of the imaged scene and to the photometric properties of
the materials. This model is a simplified version of the Extended Linear Mixing
Model (ELMM) [17, 8] (which considers distinct scaling factors for each mate-
rial). With this model, S0 is then a reference endmember matrix, and we can
define local endmember matrices in each pixel by computing Sk , ψkS0. If this
model holds, [17] shows that the quantity estimated by nonnegative least squares
in each pixel and for each material actually incorporates SV information, via the
product φkp , ψkakp. The model reduces to the LMM when all scaling factors
are equal to 1. CLSU (for Constrained Least Squares Unmixing) solves, for each
pixel:

arg min
φk≥0

1

2
||xk − S0φk||22, (2)

where φk ∈ Rd collects all the φkp for a given pixel k. If we sum all the entries
of φk, we obtain: d∑

p=1

φpk =

d∑
p=1

ψkakp = ψk

d∑
p=1

akp = ψk, (3)

by reintroducing the ASC on the actual abundances, and not their product with
the scaling factor. Then we can easily obtain ak = φk

ψk
.

2.2 Collaborative sparsity for hyperspectral unmixing

Our goal is to eliminate the wrongly estimated endmembers from the SU pro-
cess. To do that, we use collaborative sparsity [13]. This concept, also known
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as Multiple Measurement Vector (MMV), or joint sparsity in the signal pro-
cessing community, extends regular sparsity to a collection of signals which are
encouraged to share the same support. For our application, we would like the
abundances of the least explicative endmembers (and hence their product with
the scaling factors) to be zero on the whole image support. This can be done by
considering the following optimization problem:

arg min
Φ≥0

||Φ||row,0

s.t ||X− S0Φ||2F < δ (4)

where || · ||row,0 is the row-wise L0 norm (computing the number of nonzero rows
of its matrix argument) of the whole matrix Φ ∈ Rd×N , || · ||F is the Frobenius
norm, and δ is a desired data fit value. This problem allows us to discard entire
rows of the feature matrix Φ, but is nonconvex, combinatorial and NP-hard. In
order to obtain a more friendly formulation, we consider the following convex
relaxation:

arg min
Φ

1

2
||X− S0Φ||2F + λ||Φ||2,1 + IRd×N

+
(Φ), (5)

where IRd×N
+

is the indicator function of the positive orthant of Rd×N , and λ is

a regularization parameter. The quantity || · ||2,1 is the mixed L2,1 norm, defined
for any matrix Φ ∈ Rd×N as:

||Φ||2,1 =

d∑
i=1

 N∑
j=1

|φij |2
 1

2

=

d∑
i=1

||φi||2, (6)

where φi is the ith row of Φ.
The L2,1 norm encourages row-wise sparsity in the feature matrix, because it
is the L1 norm of a vector made of the L2 norms of the rows of this matrix.
Consequently, many of these L2 norms will be zero (or close to zero), which
will produce the desired effect of nulling the coefficients of irrelevant endmem-
bers in all pixels.This problem can be readily solved using proximal algorithms,
for instance the Alternating Direction Method of Multipliers (ADMM) [4]. To
use it, we introduce split variables to decouple the different terms in the opti-
mization. We then rewrite problem (5) in an equivalent formulation using linear
constraints, which are suitable for the ADMM:

arg min
Φ

1

2
||X− S0Φ||2F + λ||U||2,1 + IRd×N

+
(V)

s.t. U = Φ, V = Φ. (7)

The ADMM uses an Augmented Lagrangian (AL) approach to split the hard
nondifferentiable problem of Eq. (5) into several easier subproblems w.r.t. the
two blocks of variables U and V, and a so-called dual update of the introduced
Lagrange mutlipliers (called C and D below), all with closed form solutions,
which can be iterated until convergence. Collaborative sparsity then seems like
a good candidate to discard the unwanted spurious endmembers. However, there
are two problems with this approach. The first is that since the linear constraints
of the ADMM are only satisfied asymptotically, we have no guarantee that all the
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entries of the supposedly discarded rows of the feature matrix Φ will be exactly
zero (and this actually happens in practice). Then an arbitrary thresholding step
is required to eliminate endmembers with a small contribution [13, 1]. The sec-
ond is that in order to obtain the appropriate sparsity level, the regularization
parameter λ needs to be optimized through a grid search, which is computation-
ally very costly, and requires a criterion to select the best run of the algorithm.
The next section provides solutions for both issues.

2.3 Computing a regularization path

In order to tackle both the regularization parameter issue and the inexact spar-
sity of the collaborative sparse regression at once, we would like to obtain the
regularization path of the solution, as a function of λ. Regularization paths can
sometimes be computed cheaply, for instance on the LASSO (for Least Absolute
Shrinkage Selection Operator) problem [9]. However, for more complex problems,
such as ours, there is no way, to our knowledge, to obtain this regularization path
easily. A convenient workaround for this is to compute a so-called ADMM algo-
rithmic regularization path, introduced in [12]. This approach is able to use the
ADMM to quickly approximate the sequence of active supports of the variable of
interest, when the regularization parameter increases, for certain sparsity regu-
larized least squares problems. Even though there are as of today no theoretical
guarantees on the efficiency of this algorithm, it was experimentally shown to be
able to efficiently approximate the true sequence of active sets on several prob-
lems [12], including the LASSO. Here, we extend this algorithm to collaborative
sparsity.
Since exactly solving the optimization problem for a large number of regulariza-
tion parameters would be too time consuming, we are more interested in finding
the active set of endmembers when the weight of the sparsity term increases
w.r.t. this of the data fit term. The idea is to find a sequence of endmember
matrices, whose number of endmembers is decreasing from d to zero (when the
model is fully sparse). Each new matrix contains the same endmembers as the
previous one, except for the one (or the few ones) which is going to be discarded
next, when the weight of the sparsity term gets more important. We modify the
ADMM in order to quickly obtain the support of the regularization path. An
iteration of the ADMM is carried out for a very small value of the regularization
parameter (guaranteeing a fully dense solution). Then, the variables obtained
after this iteration are used as a warm start for another iteration with a new
slightly higher regularization parameter. By repeating this for several iterations
with higher and higher regularization parameters, the split variable U, which
undergoes a block soft thresholding (the proximal operator of the L2,1 norm [4])
becomes increasingly sparse. Since we are using warm starts, and because regu-
larization parameters vary slowly, even if the ADMM is not fully converged at
each iteration, the support of the active set is encoded in U, often in one itera-
tion only, long before this active set is propagated to Φ (this will be the case only
at convergence, when the constraints of problem (7) are satisfied). With these
modifications, we obtain Algorithm 1. ρ is the barrier parameter of the ADMM,
which we fix to 1 throughout the paper, so that it does not interfere with the
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tuning of the regularization parameter. softτ denotes the block soft thresholding
operator with scale parameter in index. If u ∈ RN , softτ (u) = (1 − τ

||u||2 )+u,

where ·+ = max(·, 0) (and we have softτ (0) = 0). This operator is applied row-
wise to a matrix. projRd×N

+
denotes the projection onto the positive orthant (a

simple thresholding). Here, we are using a geometric progression for γ (previ-
ously denoted as λ1), whose common ratio is t. This value should be small to
approximate the active sets of the regularization path well enough. The regular-
ization space can be explored very quickly since the algorithm provides around
d endmember subsets of the full endmember set extracted by VCA, that need
to be tested after this process.

Data: X, S0

Result: The sequence of Ui, i = 0, ..., imax
Initialize Φ0 and choose γ0 and t > 0 ;
while ||Ui||row,0 6= 0 do

γi ← tγi−1 ;
Ui ← softγi/ρ(Φ

i−1 −Ci−1) ;

Φi ← (S>0 S0 + 2ρId)
−1(S>0 X + ρ(Ui + Vi−1 + Ci−1 + Di−1)) ;

Vi ← projRd×N
+

(Φi −Di−1) ;

Ci ← Ci−1 + Ui −Φi ;
Di ← Di−1 + Vi −Φi ;
i← i+ 1

end

Algorithm 1: ADMM algorithmic regularization path for problem (7).

2.4 Selecting the best model
Using the active sets Ui, we can recover a sequence of sparser and sparser candi-
date endmember matrices (whose ith element is denoted as Si0). The last step is
to select the optimal endmember matrix in the sense of some criterion. We use
the Bayesian Information Criterion (BIC) [16], which helps choosing from a set
of candidate models, by favoring those with an important likelihood, and penal-
izing those with a high number of parameters. This criterion assumes that the
noise is Gaussian, spectrally and spatially white, a strong but still widely used
assumption. A candidate model Mi is made of one of the Si0 and the correspond-
ing estimated feature matrix with CLSU. For our problem, the BIC writes [15]:

BICi = ln(L)Pi + L ln

(
||X− Si0Φ̂

i||2F
L

)
, (8)

where Pi is the number of endmembers in Si0 ∈ RL×Pi . Φ̂i is the abundance
matrix estimated by CLSU using the data and the endmember matrix Si0. The
best model is simply the one minimizing the BIC value, providing P ≤ d end-
members and abundance maps. The endmembers which do not contribute much
to the data fit have been discarded.

3 Results
In this section, we show the results of the proposed approach on a simulated
and a real dataset. We compare the obtained results to those of the classical

1 We changed the notation of this regularization parameter, because we do not com-
pletely solve the optimization problem (7).
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SU chain, using the Hyperspectral Subspace Identification by Minimum Error
(HySIME) algorithm [2] for ID estimation, VCA for endmember extraction, and
nonnegative least squares and the normalization detailed in section 2.1 for the
abundance and scaling factor estimation, so that the results follow the ELMM.
We call this approach HySIME + S-CLSU (for Scaled CLSU).

3.1 Results on simulated data

For the simulated data, we voluntary put ourselves in a case where ID estima-
tion algorithms are prone to overestimation, namely an image with small spatial
dimensions, a high spectral dimension, and non negligible noise values [7]. 6
endmembers were randomly selected from the United States Geological Survey
(USGS) specral library, containing in-situ acquired spectra of various minerals.
We built synthetic abundance maps for 6 materials using Gaussian Random
Fields. We also computed scaling factor maps for each material using mixtures
of Gaussians. These two quantities are shown in Fig. 1. Since the actual con-
tribution of a material to a pixel is the product between the abundance and
the scaling factor, the effect of either quantity will only be noticeable when the
other is sufficient. For example, significant SV for a material with a small abun-
dance will be very hard to recover. We mixed the data using the (full) ELMM
of [17, 8] and finally added white Gaussian noise, such that the SNR was 25
dB. This resulted in a 40 × 40 × 300 hyperspectral image. The HySIME algo-

Fig. 1. True abundance (top row) and scaling factor (bottom row) maps for the syn-
thetic data.

rithm estimated the ID of this dataset to be 16, whereas only 6 endmembers
were used in the data generation (as a comparison, the Random Matrix Theory
(RMT) based algorithm of [5] returned an ID value of 25). We show the abun-
dance estimation results for our approach and the classical one in Fig. 2. We
can see that the HySIME + S-CLSU approach is able to recover correctly 4 of
the 6 abundance maps. However, the last two abundances are split in 11 differ-
ent maps, which correspond to unnecessary (because very close between them)
signatures extracted by the VCA. The proposed approach (with the parameters
empirically tuned to γ0 = 10−4 and t = 1.01) only retained 6 endmembers in
that case, all of which are associated with abundance maps which are very close
to the real ones. We do not show the scaling factor maps here for lack of space,
but they are very similar in both cases, and each pixel value accounts for the
scaling factor of the predominant material. In a scenario where the full ELMM
would be used, the scaling factors would probably be much easier to interpret
for our approach, because we would be able to distinguish the contributions of
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each material, and better explain what happens in heavily mixed pixels. Fig. 3
shows the BIC values we get for the obtained sequence of candidate endmember
matrices. While the data fit term decreases continually every time we add an
endmember, the decrease is marginal after 6 endmembers, while the number of
parameters is more and more penalized. The BIC then reaches a minimum for
6 endmembers. This shows that the unnecessary endmembers only fitted the
noise, while being difficult to interpret. For each material, we also computed
a Root Mean Squared Error (RMSE) on the abundances for material p, with

aRMSE = 1
N

∑N
k=1 ||atrue,pk − âpk||2, with âpk the closest abundance map to

the true one in the results of one of the two algorithms (see Table 1). We see
that except for material 2 (the materials are numbered from left to right in
Fig. 1), where the proposed approach recovers a slightly noisy abundance map,
the abundances are better recovered by the proposed method.

Material 1 2 3 4 5 6

Proposed method 1.0× 10−3 1.1× 10−3 5.9× 10−4 9.2× 10−4 4.2× 10−4 5.5× 10−4

HySIME + S-CLSU 4.6× 10−3 8.9× 10−4 7.3× 10−4 1.4× 10−3 5.2× 10−4 7.5× 10−4

Table 1. aRMSE values between the true abundance maps and the closest one of the
two competing approaches. The best value is in red.

3.2 Results on real data

To confirm the soundness of our approach, we apply it to a 100×100 subset of the
Washington DC mall dataset, acquired over the National Gallery of Art (shown
in Fig. 4, with the endmembers extracted by VCA displayed as red crosses) by the
HYDICE sensor, comprising 191 spectral bands in the visible and near infrared,
with a spatial resolution of 2.8 m. HySIME estimated the ID to be 38 (the RMT
algorithm returned 65). We show the estimated abundance maps in Fig. 5. We see
that the abundance maps on the left are very hard to interpret, because many are
very sparse and related to outlier pixels, while the proposed approach allowed to
retain only the most important. Only one visually relevant endmember retained
by HySIME+S-CLSU is not present in the proposed approach, corresponding
to marble (stairs and dome of the museum). The scaling factor maps, shown in
Fig. 4, are relatively similar in both cases, except in the grass part, where some

Fig. 2. Abundance maps extracted by HySIME + S-CLSU for the synthetic data (left),
and by the proposed approach (right).
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Fig. 3. Data fit term of the BIC (left), parameter term (middle) and BIC value (right),
for the simulated data.

Fig. 4. RGB composition of the real dataset used (left), with the endmembers extracted
by VCA in red crosses, and extracted scaling factor maps for Hysime + S-CLSU (mid-
dle) and the proposed approach (right).

geometrical structures appear for HySIME+S-CLSU, which could correspond
to artifacts captured as one of the endmembers. Otherwise, the maps explain
well the variability of the scene, with low values for the shadowed trees and
structures, and higher for parts of the roofs exposed to the sun, for example.

Rooftop 1 Gravel Grass

Trees Rooftop 2 Rooftop 3

Concrete

Fig. 5. Abundance maps extracted by HySIME + S-CLSU for the real data (left), and
by the proposed approach (right).

4 Conclusion

We have presented a technique to overcome the likely overestimation of the num-
ber of endmembers to use in spectral unmixing of hyperspectral data, accounting
for spectral variability. It is based on computing an approximate regularization
path for a collaborative sparse regression problem, which allows to select the
most relevant endmember signatures, and to discard the spurious ones. We con-
firmed the interest of the proposed approach on a synthetic dataset and a real
one. Future work will include the full ELMM (one scaling factor per material)
to the framework of the proposed approach.
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[7] Drumetz L, Veganzones MA, Gómez RM, Tochon G, Dalla Mura M, Licciardi GA,
Jutten C, Chanussot J (2016) Hyperspectral local intrinsic dimensionality. IEEE
Transactions on Geoscience and Remote Sensing 54(7):4063–4078

[8] Drumetz L, Veganzones MA, Henrot S, Phlypo R, Chanussot J, Jutten C (2016)
Blind hyperspectral unmixing using an extended linear mixing model to address
spectral variability. IEEE Transactions on Image Processing 25(8):3890–3905

[9] Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. The
Annals of statistics 32(2):407–499

[10] Heinz D, Chang CI (2001) Fully constrained least squares linear spectral mix-
ture analysis method for material quantification in hyperspectral imagery. IEEE
Transactions on Geoscience and Remote Sensing 39(3):529–545

[11] Heylen R, Parente M, Gader P (2014) A review of nonlinear hyperspectral un-
mixing methods. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 7(6):1844–1868

[12] Hu Y, Chi E, Allen GI (2015) ADMM algorithmic regularization paths for sparse
statistical machine learning. arXiv preprint arXiv:150406637

[13] Iordache MD, Bioucas-Dias JM, Plaza A (2014) Collaborative sparse regression for
hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing
52(1):341–354

[14] Nascimento J, Bioucas Dias J (2005) Vertex component analysis: a fast algorithm
to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sens-
ing 43(4):898–910

[15] Priestley MB (1981) Spectral analysis and time series. Academic press
[16] Schwarz G (1978) Estimating the dimension of a model. Ann Statist 6(2):461–464
[17] Veganzones MA, Drumetz L, Marrero R, Tochon G, Dalla Mura M, Plaza A,

Bioucas-Dias J, Chanussot J (2014) A new extended linear mixing model to ad-
dress spectral variability. In: Proc. IEEE Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS)


