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Optimal measurement times for observing a
Brownian Motion over a finite period using a
Kalman filter

Alexandre Aksenov, Pierre-Olivier Amblard, Olivier Michel, Christian Jutten

GIPSA-lab
11, rue des Mathmatiques, 38240, Saint-Martin d’Heres, France

Abstract. This article deals with the optimization of the schedule of
measures for observing a random process in time using a Kalman filter,
when the length of the process is finite and fixed, and a fixed number
of measures are available. The measure timetable plays a critical role
for the accuracy of this estimator. Two different criteria of optimality
of a timetable (not necessarily regular) are considered: the maximal and
the mean variance of the estimator. Both experimental and theoretical
methods are used for the problem of minimizing the mean variance. The
theoretical methods are based on studying the cost function as a ratio-
nal function. An analytical formula of the optimal instant of measure
is obtained in the case of one measure. Its properties are studied. An
experimental solution is given for a particular case with n > 1 measures.

Keywords: Random walk, Wiener process, Kalman filter

1 Introduction

When a latent phenomenon is observed through different acquisition methods,
more information can be acquired than from a single method, but making the
most of these measurements is a challenge [5]. This is due to discrepancies in
the nature of data, in particular in the sampling. The observer often cannot
control the instants of measure and makes regular measures with each of the
available sensors. In this case, controlling the delays between measurements with
different sensors can lead to a consequent gain in the quality of the estimator
[1]. One may also ask: what is the optimal (not necessarily regular) timetable of
measurements?

A model, where sensors are active during an interval of time, has been consid-
ered [3]. On the other hand, the model with instantaneous measures is considered
in this article. In this model one observes a scalar continuous latent variable on
a finite interval of time with noisy sensors, each having access to only one mea-
surement at one time instant and having its own measurement noise variance.
A Kalman filter based approach for estimating the hidden state is taken in this
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paper, and two ways of evaluating the quality of estimation are considered: the
maximal and the mean variance of the estimator over time.

The main theoretical result of this text is the optimal instant of measure
(with respect to the mean variance of the estimation error) given by (16) in the
case of one measure. The problem whether the variance of the estimator can be
maintained below a fixed limit over the whole interval is essentially solved. The
main experimental result is the numerical computation of the optimal schedules
in a particular case where 2 measures are available.

The paper is organized as follows. The general (multimodal, irregularly sched-
uled) Kalman estimation model is defined in Section 2. The maximal variance of
the estimator is used as the cost function in Section 3. In the formal treatment of
this problem, the maximal variance of the estimator is considered as a bound. It
is proved that the intuitive algorithm “measure when the error variance reaches
the bound” is globally optimal in this sense. An algorithm of this kind has been
proposed for a model of linear filtering in discrete time [2]. The more challenging
problem, where the mean variance of the estimator is used as the cost function,
is stated in Section 4. The only case where the optimal solution can be written
in closed form is the case of one measure, and this case is studied in detail in
Subsections 4.1 and 4.2.

2 Model Description

We assume that the estimation of the system state is done by computing the
time evolution of a parameter, and that the variance of the estimation grows
linearly between measurements. This simple assumption models the fact that
decreasing the measure frequency decreases the accuracy on the system state
estimation. In this purpose, we consider a real Brownian motion 6(t) (¢ € [0,T7]),
satisfying for ¢t>s, 6(t) —0(s) 2 N(0,0%(t—s)) i.e., the increments are Gaussian
with mean 0 and variance o2(t — s).

Suppose n sensors can make measurements at moments tq,...,t,. It is as-
sumed that each sensor k returns a measured value equal to X}, at time t; and
that 0 < ¢; < --- < t, < T. No subsequence of the sequence (t1,...,t,) is con-

strained to be regular in any sense. Suppose, the initial state 6(0) is a Gaussian
random variable of mean 6, and variance vg. Suppose that 6(0), the measure-
ment noise and the evolution of the Brownian motion (t) are independent. The
Kalman filter framework can apply with the state and measurement equations:

O(ty) = 0(ti_1) + wr, wi 2 N(0,02(ty —tr1)) (1)
X :9(tk)+nk, N iN(O,Uk). (2)
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By the theory of Kalman filtering (see [4]), the maximum likelihood estimate éﬁ:
of (tx) and its variance Fttlj are defined by the following recursive equations:

O = + K () (X — 071 (3)
O =007 )
Ly =T = Kt (5)
K(ty) = I} (Ff:” + vk)_l (6)
I = I 4 o2t — t), (7)

where éf; (I € {k—1,k}) is the maximum likelihood estimate of 0(¢;) condi-
tionally to the data available at time ¢;, and I; tt)i is the variance of the estimate
éf’k K (t) is the Kalman gain used for the update at time t5. In order for (7) to
make sense for k = 1, define t5 = 0 and Ftt(;) = vg.

Remark that, by (5),(6), using the fact that all quantities are scalar,

Ftk—l 2 Ftk—l _|_ v Ftk—l _ Z—vtk—l 2 th_1
tk . tr k tr tr . katk
Ftt:’l—i—vk F::71+vk 'Uk-l-]_‘tt:717

(®)

tr _ pitk—1
s =I,—"—

which is equivalent (by (7)) to

tr tp—1

() =gt + (Ftk*)f1 = ot (1 + 0Pt - t,H))fl .9

Therefore, each Ftt: is a rational function of 2,1, ..., t%, Vo, ..., Uk.

For each t € [0,T], denote v(t) the variance of f(t), i.e. the variance when
the last measurement was taken plus the uncertainty due to the time without
new feedbacks. It equals:

v(t) = th: + o%(t — ty,) where k = max{i|t; < t}. (10)

v(t) is a piecewise linear function composed of line intervals of slope o2. Two
examples of functions v(t) are shown Figure 1. In the first example, vy, ve, v3 are
equal, in the second example they are different.

In these and in all the other examples of this article, the value ¢ = 1 has
been taken. This can be done without loss of generality.

3 Controlling the Maximal Variance

In this section, the observer chooses the measurement instants ¢4, ...,¢, so that
the variance v(¢) of the maximum likelihood estimator of 6(¢) does not exceed a
fixed bound V:

YVt e [0,T] v(t) < V. (11)

The question is: how large can the length T of the process be so that the con-
straint (11) can be satisfied? The following lemma answers this question.
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Fig. 1. The function v(¢) in particular cases. In (a), ’U():%,’U1:’U2=U3:1,T =102 =
1 and ¢1=0.128,1,=0.369,¢3=0.611. In (b), vo=3,v1=1,v2=2,v3=3,T = 1,0° =1
and t1=0.241, t2=0.494, t3=0.641. The values of v1, v2, vs control the differences of the
variance before and after the measurement.

Lemma 1. Suppose that vy < V. The constraint (11) can be satisfied if and only
if

% Vo

V4o

n
T < 02110 + (Z (v, vk)> where a25(V,v) =V — (12)
k=1

One can remark that the time defined by (12) increases when V increases
and decreases when any of v; increases (i.e., if the sensors or the estimate of the
initial state are less accurate).

The proof of Lemma 1 (see Appendix) also implies that the intuitive algo-
rithm “measure when v(t) > V is reached” (which consists in iteratively apply-
ing (32) to define the instants of measure) keeps the estimation error variance
bounded by V' during as long time as possible. Remark that this algorithm is
also optimal in this sense when vy > V. Indeed, in this case the first measure
has to be done at the instant 0 in order to achieve v(0) < V.

It is interesting to remark that if v1 = ... = v,, this algorithm defines
a regular sampling. Conversely, if measurement accuracies differ, the optimal
solution leads to irregular sampling.

4 Controlling the Mean Variance

In this section, the observer chooses the measurement instants t¢q,...,t, so that
the mean of the variance v(t) of the maximum likelihood estimator of 6(t) is
minimal. This implies that the following cost function is to be minimized under
the constraint 0<t1<to<. .. <, <T":

T
Jaz,T,vg,vl,...,vn(tlw-~atn) = / U(t)dt
0

o*t? o2 (ty —t1)?

2 2
o (T -t
= — -+t + (T —t)” | e

+Fttll(t27t1)+'“+f+[‘tn (T —tn).
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One can remark that the cost function (13) is rational in its 2n+3 parameters
O'Z,T,’Uo, “ee ,’Un,tl, ce ,tn.
Suppose that this function is minimized in a unique point

(tl,opt(027T7 VO, UlyeneyUn),ye - ,tnyopt(az,T, Vo, Uty -, Un))- (14)

These values are the optimal measurement instants. We can wonder where these
instants are located, and especially if some of them are equal to zero. The min-
imizer is indeed unique in the case n = 1, which is proved in Subsection 4.2.

We are also interested in the behavior of the optimal measurement times as
functions of T: monotonicity, asymptotic properties, etc. The dependency of the
optimal instants on T for n=2 and fixed values of 02, vg,v1,vs is shown Figure
2. Tt suggests that the optimal instants vary continuously, are monotonically
increasing and are close to piecewize-linear functions of T'. It also suggests that
some optimal instants are located at zero when T is small enough. When T
is large, the optimal instants are approximately equally spaced in time. These
properties are proved for n = 1 measure in Subsections 4.1 and 4.2.

s T
t2,0pt (T)
tl,opt (T)
4 s
3 s
2 €
1 i
‘ ‘ ‘ T

Fig. 2. Experimentally computed values of t1,pt(1,7,1,1,1) and t2,0pt(1,7,1,1,1)
(n=2) for T varying from 0.01 to 5. For example, 1 cpt(1,3,1,1,1) = 0.696 and
t2,0pt(1,3,1,1,1) = 1.763 define irregularly spaced measures.

4.1 The Optimal Instant in Case of One Measure: Qualitative
Results.

In this and the next subsections, the above problem is studied for the particular
case where n=1 measure can be performed. All questions listed above are solved
in terms of explicit formulas in Section 4.2.



6 Alexandre Aksenov et al.

The cost function (13) takes the form

0'225% UQ(T—tl)Q (02t1 —l—’Uo)’Ul(T—tl)
o2, T, vg,v t1) = - t .
e () = =57 F oot =5 o2ty + v + v

N

(15)

Its behavior is shown Figure 3, (a). Remark that the RHS term in equation (15)
2
can be split into two terms: the ”rectangular term” (v0t1 + %W)
242 2 2

and the "triangular term” (%tl + #), respectively accounting for the
contributions of the rectangular and triangular shaped area in the integral of v(t),
and shown on Figure 3, (b). Minimizing the cost function Jr 4, », (t1) constitutes
a tradeoff between minimizing these two terms.

‘vo:\/i
1)0:1.2

IS

vo = 0.6
wvo = 0.3
i vo =0
b L
tvn T t t
(a) (b) (©)

Fig. 3. (a):Jy2 14,0, (t1) as function of vo and t;. The parameters are v1 = 1,7 =
1,02 = 1. The cost function is minimized at ¢; = 0 if and only if vo > /2. (b):
An example of a function v(t) showing the geometric interpretation of the rectangular
and the triangular terms of the expression (15) of the integral cost function. (c): The
dependency of the function v(¢) in the interval ¢ € [t1,T] on the choice of ¢;. In this
example, n = 1, vo = v1 = 1, T = 1.2, > = 1, and ¢; takes values in [0, 1]. Each
straight line represents one possible function v(t). The slopes of all lines equal o? and
their left endpoints have coordinates (t1, Fttll )

Different situations are possible as it can be seen on Figure 3, (a). One can
define the regime 1 as the set of situations when ¢, =0 is the optimum. Similarly,
define the regime 2 as the set of situations where the optimal ¢; is in the interior
of the interval [0, T]. Then, the optimal ¢; is the point where the derivative of
the cost function (15) vanishes. Its value is given by (20). Remark that in the

regime 2, the optimal ¢; can be larger than %



Optimal measurement times in a Kalman filter 7

The distinction between these two regimes is justified by the following ana-
lytic property: the function, which defines the optimal ¢4,

2 _ .
tl,opt (U , T, vo, Ul) = argtmln JUQ,T,vO,vl (tl)
1

—3up — 3 2T 2T 501)2 — (4v1)?
~ e (0, vg — vy + 0 +\/5102 + o + 5v1) (4v1) )7 (16)
o

is differentiable everywhere except at the border between the regions which cor-
respond to the two regimes.

4.2 Derivation and Properties of (16).

One can decide whether a local minimum is achieved at t;=0 by computing the
corresponding partial derivative:

9J52,1,00,0: (t1) - (vo—azT( U +1>)- (17)

3151 [t1=0 Vo —+ 11 Vo + v

The partial derivative at a point ¢;=t' has a similar expression:

8J027T,vo,v1 (t1) v+ o2t/ o
oty [t =t N vy + v1 + o2t
2,7 2 / U1
t'—o*(T—t) | —————5+1) ). (18
(Uo+0 o?( )(Uo+v1+02t,+ )) (18)
Remark that the RHS of (18) is a product of two increasing (with respect

to t') factors, the first of which (%) is positive. Therefore, the locus of
oJr (tl)

nonnegativity of B, is an interval of the form [tq opt, 7], where t1 opt

=t
may equal zero or be str‘icltly positive.

Consequently, two different behaviors of the cost function are possible. In
the first case (regime 1), it is increasing near t; = 0 (its derivative at zero (17)
is nonnegative). Then, the cost function Jp(¢1) is increasing and convex on the
whole interval [0, T, and its global minimum is ¢ op¢(7°) = 0. According to (17),
this situation corresponds to

o
; .
ot (i +1)
Remark that T, is an increasing function of vy and a decreasing function of vy
and of o2.
Intuitively, this behavior is observed when T is small or vg is large, which
means that the prior information is poor. In this case, it is penalizing not to

take a measure immediately in order to get better information. More formally,
the rectangular term has an order of magnitude O(T") when T tends to zero,

T < Tcrit = (19)
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while the triangular term has an order of magnitude O(T?). Therefore, when T
is small enough, choosing t;=0 should minimize both the rectangular term and
the sum.

In the second case (regime 2), the cost function is decreasing near t; = 0.
This is observed when (19) does not hold, i.e. T is large or vy is small. Then, the
minimum of the cost function is reached at the only nonzero point ¢ opt, where
its derivative (18) equals zero. By equating the derivative (18) to zero, one gets
the following expressions for ¢; op¢ and for T

—3vy — 3v1 + 02T + \/(02T + v + 5v1)? — (4vq)?
402

(20)

tl,opt =

and
203

Vo + U2t1,opt + 21}1 -

T = 202t1’0pt +v9 — vy + (21)
Remark that the function ¢ op (") defined by (20) is concave and increasing.
When T — o0, one gets the asymptotic expansion

o?T + v — v 1
t1,opt(T) = o2 to (T) 5 (22)

the function being always smaller than its asymptote:

o?T + v — vy

tLOPt (T) < 202

(23)

The following intuitive argument can be given for the order of magnitude of the

optimal instant: t1,op¢(7) ~ £ (by (22)). When T is large, the triangular terms

become more important than the “rectangular terms”. Therefore, the minimum

of the sum should be close to the value %, which minimizes the triangular term.
Using (19) and (20), it is easy to check that

—3v0 — 3v1 4+ 02 eit + /(02T it + vo + 5v1)% — (4v1)?2

tl,opt (Tcrit) = do2

= O’
(24)
i.e., both formulas of regime 1 and regime 2 coincide if the values of the param-
eters lie on the boundary. This proves (16).
Remark that the dependence of ¢1 pt in 0% and T is simplified by the relation

2
g
t1,opt(— aT,vo, v1) = aty opt (02, T, vo,v1), (25)

therefore, the ratio ¢ opt/7" depends only on 02T, vy and v;.

5 Conclusion and Perspectives

A simple model is studied, where the variance about the system parameters
(here a single parameter) evolving over a finite period of time grows linearly in
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the absence of measure. The properties of the optimal measure timetable are
studied.

In Section 4, the particular case, where the instant of exactly 1 measure is to
be chosen, is studied in detail. The system can behave in one of the two different
regimes. If the duration of the process is larger than a critical value, the optimal
instant is inside the interval and is asymptotically close (when T is large) to %
If the duration of the process is smaller than the critical value, the sampling at
time 0 turns out to be optimal. These results are in a closed form, therefore they
are more precise than the results obtained for the model considered in [3].

One goal of the future research is to find the optimal measurement instants
when the number of measures is n > 1. Partial analytic results, which explain
some properties of Figure 2, are available. These extend the case n = 1. The

main method is the following: in a subproblem where the instants ¢1,...,¢,_1
are fixed, one can find the optimal instant ¢, using the results of this article,
then check whether the given instants tq,...,t,_1 are locally optimal.

In this problem, the order of the measures is fixed. It is also possible to allow
it to vary. The main property of this problem is the fact that the cost function
is no longer rational, but piecewise-rational.

Another objective of the future research is to consider more complex models
than the real Brownian motion considered presently.

Appendix: Proof of Lemma 1.

The following intuitively clear result is important for the proof.

Lemma 2. The variance I})} = ﬁ (see (9) for k =1) satisfies

v1 o2ty tug

oryr

oty

The proof is done by a direct computation. An interpretation of this inequality
is the following: in a setting with n = 1 measure, the variance of the estimator
of O(T) equals v(T) = o?(T —t1) + I'}} and decreases when the instant ¢; of the
measure approaches T'. This is represented Figure 3, (c).

We prove Lemma 1 by induction on n (the number of measures). If n = 0,
the function v(¢) has a simple form: v(t) = vy + 0?t. Therefore, the constraint
(11) is expressed as v(T) = vg + 0>T <V, which is equivalent to (12).

Now we are going to prove the Lemma for n+1 measures supposing that it is
valid for n measures. The first instant ¢; must be chosen in the interval [0, %]
in order for (11) to hold for ¢ € [0, ¢1]. The function v(¢) in the interval [t1,T] is
also defined by (3)-(10), but with the following parameters:

(26)

Nnew = 1, Tnew = dold — ty (27)
2
_rh (v0,01d + 0°t1 01d)V1,01d (28)
V0o,new = ti,old — ’U T ot n 5
0,0ld T 0711,0ld T VU1,0ld

Vk,new = Vk+1,0ld and thnew = tht1,01d — L1 for k € {1, RN n} (29)
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By applying the induction hypothesis to the new function, we obtain that
the constraint (11) can be satisfied if and only if

n+1
AT —t) <V -TI} +0° (ZCS(VJ%)) (30)
k=2

(all quantities here are the “old” ones, i.e. with respect to the initial problem),
which is equivalent to

n+1
I —o® <V —o?T +0° <Z (v, vk)) : (31)
k=2

The RHS of (31) is independent of ¢;. By Lemma 2, the LHS is a strictly de-
creasing function of ¢;. Therefore, (31) can be satisfied if and only if it holds

for v
— v
t = ——5—. (32)
g

After replacing t; by its value (32) in (31) and applying the definition (12) of
0(V,v1), one gets

n+1
UZTQV—U0+0'2 (Zé(v;&) s (33)

k=1

which is Lemma 1.
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