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Divergent selection-induced obesity 
alters the composition and functional  
pathways of chicken gut microbiota
Jinmei Ding1†, Lele Zhao1,5†, Lifeng Wang3†, Wenjing Zhao1, Zhengxiao Zhai1, Li Leng2, Yuxiang Wang2, 
Chuan He1, Yan Zhang4, Heping Zhang3, Hui Li2 and He Meng1*

Abstract 

Background: The gastrointestinal tract is populated by a complex and vast microbial network, with a composition 
that reflects the relationships of the symbiosis, co-metabolism, and co-evolution of these microorganisms with their 
host. The mechanism that underlies such interactions between the genetics of the host and gut microbiota remains 
elusive.

Results: To understand how genetic variation of the host shapes the gut microbiota and interacts with it to affect the 
metabolic phenotype of the host, we compared the abundance of microbial taxa and their functional performance 
between two lines of chickens (fat and lean) that had undergone long-term divergent selection for abdominal fat pad 
weight, which resulted in a 4.5-fold increase in the fat line compared to the lean line. Our analysis revealed that the 
proportions of Fusobacteria and Proteobacteria differed significantly between the two lines (8 vs. 18% and 33 vs. 24%, 
respectively) at the phylum level. Eight bacterial genera and 11 species were also substantially influenced by the host 
genotype. Differences between the two lines in the frequency of host alleles at loci that influence accumulation of 
abdominal fat were associated with differences in the abundance and composition of the gut microbiota. Moreover, 
microbial genome functional analysis showed that the gut microbiota was involved in pathways that are associated 
with fat metabolism such as lipid and glycan biosynthesis, as well as amino acid and energy metabolism. Interestingly, 
citrate cycle and peroxisome proliferator activated receptor (PPAR) signaling pathways that play important roles in 
lipid storage and metabolism were more prevalent in the fat line than in the lean line.

Conclusions: Our study demonstrates that long-term divergent selection not only alters the composition of the gut 
microbiota, but also influences its functional performance by enriching its relative abundance in microbial taxa. These 
results support the hypothesis that the host and gut microbiota interact at the genetic level and that these interac-
tions result in their co-evolution.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The development of sequencing technologies for appli-
cation in metagenomics has increased our capacity to 
investigate the composition and dynamics of the micro-
bial communities that harbor diverse habitats [1]. The 

gastrointestinal tract is populated by a complicated and 
vast microbial network that influences the health and 
development of the host organism in numerous aspects 
[2, 3]. The gut microbial composition can be viewed as 
a polygenic trait, that not only produces essential prod-
ucts and forms a barrier against pathogens, but also has 
multiple functions in physiology, metabolism, immunity, 
development, and behavior of the host [4–6]. The gut 
microbiota causes the suppression of the circulating lipo-
protein lipase inhibitor that results in increased lipopro-
tein lipase activity, which in turn results in a significant 
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increase in body fat deposition in the host [7]. Suppres-
sion of the expression of these genes by direct action 
of the gut microbiota on the villi epithelia also causes 
increased lipoprotein lipase activity, which leads to 
increased triglyceride uptake and peripheral fat storage 
[8]. These findings are in agreement with previous stud-
ies in other chicken populations selected for high or low 
body fat [9, 10] and show that the gut microbiota affects 
energy uptake from the diet and energy storage in the 
host [7]. In our previous studies, in order to quantify the 
influence of genetic variation of the host on the structure 
of the gut microbiota, the abundance of gut microbiota 
was considered as a quantitative trait of the host, and we 
calculated the heritability of abundance of specific micro-
organisms in the gut microbiota. A few bacterial families 
of the microbiota had a moderate heritability, which indi-
cated that the host genetics has an effect on the compo-
sition of the gut microbiota. Concurrently, we calculated 
the genetic correlations between specific microorgan-
isms in the gut microbiota to examine if the genetics of 
the host is involved in the interactions between micro-
organisms in the gut microbiota. Significant genetic 
correlations between microorganisms in the gut micro-
biota were observed. Further analysis showed that such 
genetic correlations can be altered by genetic variation 
of the host. These results imply the importance of the 
host genetic background on the interactions between the 
microorganisms in the gut microbiota [11, 12]. However, 
the interactional mechanism between gut microbiota 
and genetic variation of the host genome has remained 
obscure. Until now, most studies focused on micro-
bial taxa instead of microbial functional performance to 
understand the interactions between host genetics and 
gut microbiota.

Many factors influence the mechanism of the interac-
tions between the host and the gut microbiota [13, 14]. 
Thus, choosing a model organism that is maintained in a 
controlled environment should enhance our understand-
ing of the relationships between gut microbiota and host 
genetic factors. The chicken, which bridges the evolu-
tionary gap between mammals and reptiles, serves as an 
important experimental model organism for the extant 
avian species due to the characteristics of its less complex 
gut microbiota and minimal maternal effect. Here, we 
analyzed and compared the function and classification 
of gut microbiota from two divergently selected lines of 
chickens, i.e. a fat line and a lean line. These lines origi-
nated from a single commercial grandsire line and under-
went long-term (15 generations) divergent selection for 
abdominal fat percentage (AFP) and plasma very-low-
density lipoprotein (VLDL) concentration. At 7 weeks of 
age, the mean adipocyte diameter in the fat line was 1.3 
times wider than in the lean line, and the number of fat 

cells was 2.4 times larger in the fat line than in the lean 
line [15]. The long-term divergent selection also resulted 
in a 4.5-fold increase in abdominal fat pad weight in the 
fat line [16]. A total of 230 genes were found to be dif-
ferentially expressed in the lean and fat lines; these genes 
are mainly related to signal transduction, tumorigenesis, 
immunity, and lipid and energy metabolism [17]. The two 
lines carry two main haplotypes with completely oppo-
site single nucleotide polymorphism (SNP) alleles and a 
recombinant haplotype with nearly equal frequency in 
the 0.73-Mb PC1/PCSK1 region of the Z chromosome. 
Genome-wide association analysis revealed that nearly 
all regions with evidence of selection signatures had SNP 
effects on abdominal fat weight and percentage [18].

Methods
Animals and samples collection
Two chicken lines (fat and lean lines) that were diver-
gently selected for abdominal fat content (AFP) and 
plasma very-low-density lipoprotein (VLDL) were used 
in this study. Throughout all generations, they were 
maintained at the same location and reared on the same 
diets. Fecal samples were collected at 35  weeks of age 
from 29 fat line males, 26 lean line males, 27 fat line 
females, and 27 lean line females, for a total of 109 indi-
viduals from the 15th generation. The fecal samples were 
stored at −80 °C after collection. Animals were cared for 
in accordance with the Institute for Laboratory Animal 
Research (ILAR) guide for Care and Use of Laboratory 
Animals at Shanghai Jiao Tong University, China.

Gut microbial 16S rDNA sequencing
Fecal microbial genomic DNA extraction and 16S rDNA 
amplification and sequencing were performed as pre-
viously reported in [11]. A QIAmp DNA Stool Mini Kit 
(Qiagen, cat#51504) was used for microbial genomic 
DNA extraction. Extracted DNA was measured using a 
nanodrop spectrophotometer (Thermo Fisher Scientific) 
to assess DNA quantity and quality. The V4 hypervariable 
region of the 16S rDNA gene was PCR-amplified from 
microbiota genomic DNA using sample-specific sequence 
barcode fusion primers (forward 5′AYTGGGYDTAAA 
GNG 3′, reverse 5′ TACNVGGGTATCTAATCC 3′). PCR 
reactions and PCR product purification were performed 
as previously reported in [11]. Purified PCR products 
from the 109 samples were combined at equal concentra-
tions and used to construct a metagenomic library using 
Illumina TruSeq sample preparation kit (Illumina, USA) 
according to the manufacturer’s protocol. Sequencing was 
carried out by the Shanghai Personal Biotechnology Lim-
ited Company (Shanghai, P. R. China) using an Illumina 
MiSeq (Illumina, USA) sequencing platform. Sequence 
reads were quality-checked and removed based on the 
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following criteria: reads that (1) contained ambiguous 
bases, (2) had an average phred score lower than 25, (3) 
contained a homopolymer run that exceeded 6, (4) con-
tained mismatches in the primers, and (5) had sequence 
lengths that were outside the limits of 200 and 1000 bp. 
The filtered sequences with an overlap longer than 10 bp 
between Read 1 and Read 2 and without mismatches 
were assembled according to their overlapping sequences. 
Reads that could not be assembled were discarded. The 
barcode and sequencing primers were trimmed from each 
sequence.

Analysis of classification and abundance
Based on the V4 region of the 16S rDNA sequence that 
passed the quality criteria, 2,301,532 amplicons were 
used for this study, with an average of 21,115 amplicons 
for each sample (ranging from 12,137 to 30,067) [see 
Additional file 1: Table S1]. The average sequenced ampli-
con length was 225  bp. Following filtering, each sam-
ple’s trimmed and filtered sequences were submitted to 
Metagenome Rapid Annotation using Subsystem Tech-
nology (MG-RAST) [19] and compared to the Riboso-
mal database project databases (RDP) [20] using the best 
hit classification option to classify the abundance count 
of each taxon. The metagenome sequences used in this 
paper are publicly available from MG-RAST under the 
project name “fatandleanchicken”. Data were generated 
at the species level, using cutoffs for the parameter clas-
sification at 8 for maximum e-value, 98% for minimum 
percentage identity, and 120  bp for minimum alignment 
length. A total of 37,590 taxa on the phylum, class, order, 
family, genus and species levels were annotated [see Addi-
tional file 2: Table S2]. Taxa that were present in at least 
28 samples were considered as commonly existing classi-
fications; 51 genera and 109 species met that criterion and 
their abundance counts were used for further analysis.

The taxon abundance counts were log2 transformed 
and normalized by subtracting the mean of all trans-
formed values and dividing by the standard deviation of 
all log-transformed values for the given sample. After this 
procedure, the abundance profiles for all samples exhib-
ited a mean of 0 and a standard deviation of 1. In order 
to detect if host genetic factors influence gut microbiota, 
T test was performed between fat and lean lines for spe-
cific microbes using Microsoft Excel, with adjustment of 
p values by Benjamini Hochberg FDR (FDR < 0.05) [21]. 
Alpha-diversity analysis was performed in mothur 1.31.2 
[22] with the alpha-diversity.py script to calculate the 
index of chao1 and Shannon.

Sequencing of the whole microbial genome
Microbial genomic DNA of three females from each 
fat and lean line was used to construct whole microbial 

genome sequencing libraries with insert sizes of 300 and 
400 bp. Each library was sequenced by high-throughput 
sequencing at 2 × 100 bp using the Illumina HiSeq 2000 
(Illumina, USA). Eighty percent of the whole micro-
bial genome sequence data with paired-end Illumina 
sequences were accounted for across all samples. A data 
cleaning process was applied to all samples. Low-quality 
reads, and low-compositional-complexity reads were 
removed. An average of 37.9  million reads per sample 
were used in the analysis. The DNA sequences are pub-
licly available in MG-RAST under the project name 
“Hiseqchicken-six”.

Annotation of microbial function
Quality-filtered reads were submitted to MG-RAST 
and compared to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database [23] using the ‘all annota-
tion’ option for functional annotation with a maximum 
e-value cutoff of 1e-5, a minimum percent identity cut-
off of 90%, and a minimum alignment length cutoff of 20 
amino acids. Functional pathways, which had a relative 
abundance that was greater than 0.1% and for at least two 
samples, were chosen for further analysis. The relative 
abundance of each functional pathway was normalized 
within each sample. Clustering analysis was performed 
by Cluster 3.0 and Java Treeview [24] and differential 
analysis was evaluated by STAMP v2.0 [25] between fat 
and lean lines for abundance of each functional pathway 
by applying the two-side Welch’s t-test [26] and Benja-
mini-Hochberg FDR correction (FDR < 0.05).

Results
Diversity of gut microbial composition between the fat 
and lean lines
16S rDNA amplicon sequencing was used to analyze the 
microbial diversity and abundance in the gut microbiota 
of the fat and lean chicken lines. Alpha diversity results 
suggested that the richness and diversity of gut microbi-
ota were influenced by the long-term divergent selection 
[see Additional file 3: Figure S1]. Four major phyla domi-
nated the chicken gut bacterial community; Firmicutes 
was the most predominant phylum, followed by Proteo-
bacteria, Fusobacteria, and Actinobacteria (Fig. 1a). Con-
sistent with previous studies related to avian microbial 
diversity, Firmicutes and Proteobacteria were the main 
ubiquitous members in the gut microbiota, but more 
Fusobacteria were classified compared with several other 
avian gut microbial studies [27–29]. The gut microbial 
composition differed between the fat and lean lines. The 
percentage of Fusobacteria was significantly lower in the 
fat line (8%) than in the lean line (18%). Conversely, the 
percentage of Proteobacteria was 33% in the fat line and 
approximately 24% in the lean line (Fig. 1a). At the genus 
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level, Gallibacterium, which belongs to the phylum of 
Proteobacteria and comprises the Gallibacterium ana-
tis species, was the most abundant genus in chicken gut 
microbiota (Fig. 1c). The genus Fusobacterium, belonging 
to the phylum of Fusobacteria, was in lower proportion 
in the fat line (9%) than in the lean line (20%) (Fig. 1b). 
The analysis showed that one (Proteobacteria) of the 
eight phyla [see Additional file 4: Table S3], eight of the 
52 genera (Table 1) and 11 species [see Additional file 5: 
Table S4] were significantly influenced by the genetics of 
the host.

The effect of host genetics on gene functional enrichment 
of gut microbiota
In order to investigate the influence of host genetic varia-
tion on the functional performance of the microbiota, we 
sequenced the whole gut microbial genome using three 

biological replicates from each line. Based on the asso-
ciated KEGG orthologous group markers, we compared 
predicted microbial functions between the fat and lean 
lines and detected that amino acid metabolism, energy 
metabolism, lipid metabolism, and cell motility were 
nearly twofold more enriched in the lean line than in the 
fat line (Fig. 2). Pathways that were more enriched in the 
fat line included translation, signal transduction mecha-
nisms, metabolism of terpenoids and polyketides, pro-
tein folding and degradation, biosynthesis of secondary 
metabolites, and cancers (Fig. 2). These results are con-
sistent with the previous findings of a study on obese rats 
[30].

Based on the analysis of whole microbial genome 
sequencing data, we observed that enriched markers 
were frequently involved in the functional pathways of 
inositol phosphate metabolism, antigen processing and 

Fig. 1 Aggregate microbiota composition at different levels in the fat and lean lines. a Phylum level, b genus level, c species level. Only major 
taxonomic groups are shown
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presentation, and phosphonate and phosphinate metabo-
lism in the lean line. In contrast, the gut microbiota of the 
fat line showed enrichment in citrate cycle, other types of 

o-glycan biosynthesis, peroxisome proliferator activated 
receptor (PPAR) signaling pathway, carbon fixation in 
photosynthetic organisms, ribosomes, and cell adhesion 
molecules (Fig. 3). A hierarchy cluster heatmap was gen-
erated to visualize the distribution of microbial functions 
in the fat and lean lines (Fig. 4). The microbial functions 
were also matched to the microbial metabolic pathway 
results from the study on obese mice [31]. The heatmap 
results suggested that aminotransferase, arginine decar-
boxylase, cytochrome o ubiquinol oxidase subunit III, 
and 1-phosphatidylinositol-3-phosphate 5-kinase, which 
are involved in amino acid metabolism, energy metabo-
lism, and carbohydrate metabolism respectively, were 
more abundant in the lean line than in the fat line (Fig. 4) 
and [see Additional file  6: Table S5]. Compared to the 
lean line, the gut microbiota in the fat line had a higher 
functional performance related to bacitracin transport 
system permease protein, citrate (pro-3s)-lyase ligase, 
and ribonucleoside-diphosphate reductase alpha chain, 

Table 1 Comparison of  bacterial genus abundance in  the 
gut microbiota between the fat and lean lines

a + fat/lean; − lean/fat

Phylum Genus Relative fold 
changea

Fat versus lean line

p value 
(*p < 0.05, 
**p < 0.01)

Actinobacteria Rothia 1.28 0.004**

Micrococcus 1.20 0.009**

Bacteroidetes Bacteroides −1.08 0.019*

Proteobacteria Gallibacterium 1.25 0.011*

Tenericutes Acholeplasma −1.19 0.03*

Firmicutes Aerococcus 1.14 0.037*

Pectinatus −1.27 0.003**

Selenomonas 1.17 0.04*

Fig. 2 Distribution of KEGG metabolic pathways in the fat and lean lines. Profile bar plots show the relative proportion of each metabolic pathway. 
The pathways labeled in black were differentially expressed (fold change >1.5)
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which are respectively involved in immune system dis-
eases, signal transduction and nucleotide metabolism 
(Fig. 4) and [see Additional file 6: Table S5].

Discussion
Previous studies reported that the genetics of the host 
can influence the abundance and composition of gut 
microbiota. In this study, significant differences in 11 
microbial species were observed between the fat and lean 
lines [see Additional file 5: Table S4]. Among these spe-
cies, Pectinatus frisingensis, Lactobacillus salivarius, and 
Micrococcus sp. SMCC ZAT352 were found to be associ-
ated with adipogenesis. For example, P. frisingensis syn-
thesizes lipopolysaccharide with polymeric O-specific 
chains that are related to host obesity [32], L. salivarius 
can modify the fecal microbiota, which in turn affects 
metabolic pathways in obese chickens and humans [33, 
34], and Micrococcus is involved in lipolytic activity, 
which shows a positive correlation with fatty acid bio-
synthesis [35]. Although 16S rDNA amplicon sequencing 
was the primary method used to analyze microbial diver-
sity, we also used the computation tool PICRUSTs [36] to 
predict microbial community functions [see Additional 
file 7]. Functional prediction results revealed that signal 
transduction mechanisms and fatty acid biosynthesis 
were more abundant in the fat line than in the lean line 
and this was consistent with the results of the microbial 

composition of the gut microbiota [see Additional file 5: 
Table S4 and Additional file 8: Figure S2].

Several studies have shown that multiple transcription fac-
tors and signaling pathways are involved in the regulation of 
adipogenesis [37–39]. PPAR plays an important role in adi-
pogenesis, adipocyte gene expression, and fat cell differentia-
tion, which promote lipid storage and metabolism [40, 41]. 
Moreover, the PPAR signaling axis is also a potential target 
for the modulation of adipogenesis [42]. Interestingly, our 
whole microbial genome sequencing results suggested that, 
compared to the lean line, the PPAR signal pathway of gut 
microbiota in the fat line had a significantly higher functional 
performance (Fig.  4). This suggests the possibility that the 
PPAR signal pathway may also be involved in lipid storage. 
The citrate cycle is another key metabolic pathway that uni-
fies carbohydrate, lipid, and protein metabolism. A signifi-
cant correlation between citrate synthase level and obesity, 
together with a decreased activity of this enzyme in the mito-
chondria of human omental adipose tissue, were reported 
in obese humans [43]. Previous studies showed that citrate 
synthase activity was suppressed in obese mice, resulting in 
excessive carbon flow into the citrate cycle prompting energy 
storage [44]. Gut microbiota appears to play a key role in 
the development and progression of obesity, together with 
changes in citrate synthase activity [45, 46]. In this study, 
analysis of the results of whole microbial genome sequenc-
ing suggested that enrichment in the microbial function that 

Fig. 3 Significant differences in microbial metabolism pathways between the fat and lean lines
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relates to citrate cycle was significantly different between 
the fat and lean lines (Fig.  4). We have reasons to believe 
that microbes undertake many metabolic tasks, and that 
functional interactions between host genetic factors and gut 
microbiota are inevitable.

Conclusions
We found that long-term divergent selection for 
abdominal fat has considerable influence on the abun-
dance and composition of gut microbiota by altering 

the frequencies of obesity-related alleles. Furthermore, 
whole microbial genome sequencing results revealed 
that functional activities of the microbiota, such as 
those related to the citrate cycle and PPAR signal-
ing pathway, differed significantly between the fat and 
lean lines and were affected by the gut microbiota 
and by differences in frequencies of host alleles. Our 
results provide further evidence for the hypothesis that 
host genetic factors interact and co-evolve with gut 
microbiota.

Fig. 4 Heatmap of microbial function pathways in the fat and lean lines. Colors reflect relative abundance from low (green) to high (red); detailed 
categories for each gene are in Table S5 [see Additional file 6: Table S5]
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