
HAL Id: hal-01479227
https://hal.science/hal-01479227

Submitted on 28 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Genomic evaluation by including dominance effects and
inbreeding depression for purebred and crossbred

performance with an application in pigs
Tao Xiang, Ole Fredslund Christensen, Zulma Gladis Vitezica, Andres Legarra

To cite this version:
Tao Xiang, Ole Fredslund Christensen, Zulma Gladis Vitezica, Andres Legarra. Genomic evaluation
by including dominance effects and inbreeding depression for purebred and crossbred performance with
an application in pigs. Genetics Selection Evolution, 2016, 48 (1), pp.92. �10.1186/s12711-016-0271-4�.
�hal-01479227�

https://hal.science/hal-01479227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Xiang et al. Genet Sel Evol  (2016) 48:92 
DOI 10.1186/s12711-016-0271-4

RESEARCH ARTICLE

Genomic evaluation by including 
dominance effects and inbreeding depression 
for purebred and crossbred performance 
with an application in pigs
Tao Xiang1,2*  , Ole Fredslund Christensen1, Zulma Gladis Vitezica3 and Andres Legarra2

Abstract 

Background:  Improved performance of crossbred animals is partly due to heterosis. One of the major genetic bases 
of heterosis is dominance, but it is seldom used in pedigree-based genetic evaluation of livestock. Recently, a trivari-
ate genomic best linear unbiased prediction (GBLUP) model including dominance was developed, which can distin-
guish purebreds from crossbred animals explicitly. The objectives of this study were: (1) methodological, to show that 
inclusion of marker-based inbreeding accounts for directional dominance and inbreeding depression in purebred and 
crossbred animals, to revisit variance components of additive and dominance genetic effects using this model, and 
to develop marker-based estimators of genetic correlations between purebred and crossbred animals and of correla-
tions of allele substitution effects between breeds; (2) to evaluate the impact of accounting for dominance effects 
and inbreeding depression on predictive ability for total number of piglets born (TNB) in a pig dataset composed of 
two purebred populations and their crossbreds. We also developed an equivalent model that makes the estimation of 
variance components tractable.

Results:  For TNB in Danish Landrace and Yorkshire populations and their reciprocal crosses, the estimated propor-
tions of dominance genetic variance to additive genetic variance ranged from 5 to 11%. Genetic correlations between 
breeding values for purebred and crossbred performances for TNB ranged from 0.79 to 0.95 for Landrace and from 
0.43 to 0.54 for Yorkshire across models. The estimated correlation of allele substitution effects between Landrace and 
Yorkshire was low for purebred performances, but high for crossbred performances. Predictive ability for crossbred 
animals was similar with or without dominance. The inbreeding depression effect increased predictive ability and the 
estimated inbreeding depression parameter was more negative for Landrace than for Yorkshire animals and was in 
between for crossbred animals.

Conclusions:  Methodological developments led to closed-form estimators of inbreeding depression, variance 
components and correlations that can be easily interpreted in a quantitative genetics context. Our results confirm 
that genetic correlations of breeding values between purebred and crossbred performances within breed are positive 
and moderate. Inclusion of dominance in the GBLUP model does not improve predictive ability for crossbred animals, 
whereas inclusion of inbreeding depression does.
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Background
Crossbreeding is primarily and intensively applied in 
meat production systems [1], especially for swine and 
poultry. Crossbreeding capitalizes on heterosis effects 
and complementarity between breeds, and results in an 
increased performance of crossbred animals compared 
to purebred animals [1]. In terminal crossbreeding sys-
tems, selection on purebred animals to maximize their 
crossbred performance is the ultimate goal [2, 3]. Due to 
the existence of genotype-by-environment interaction 
effects and non-additive genetic effects in combination 
with different allele frequencies in different breeds [3, 4], 
the genetic correlation of breeding values between pure-
bred and crossbred performances (rPC) is usually lower 
than 1 [1, 5], and therefore, purebred performance under 
nucleus conditions may not be an optimal predictor for 
crossbred performance in commercial animals [4, 6].

One of the major genetic bases of heterosis is domi-
nance [7, 8]. At the level of gene action, dominance is due 
to interactions between alleles at the same locus [9]. In 
pedigree-based genetic evaluation, dominance is rarely 
included because large-scale datasets that comprise a 
high proportion of full sibs are required to obtain accu-
rate estimates and because the computational complexity 
is high [10]. With the recent availability of single nucleo-
tide polymorphism (SNP) information and the develop-
ment of genomic selection, estimation of the dominance 
effects of SNPs has become more feasible [11, 12].

Genomic evaluation has been successfully used in 
purebred [13, 14] and crossbred populations [15–17]. 
However, these studies generally ignore the dominance 
effects. A number of studies have been carried out on 
genomic evaluation including dominance effects using 
either simulated [18] or real purebred data [9, 12].

Recently, several studies [19, 20] have tried to extend 
genomic evaluation including dominance effects from 
purebred performance to crossbred performance. How-
ever, they either used genomic information on pure-
bred animals only [19] or applied a genomic model that 
assumed that all animals belong to a single population, 
and thus the variance components were estimated based 
only on the genotyped crossbred animals [20]. Neverthe-
less, combining purebred and crossbred information is 
essential to implement genetic evaluation for crossbred 
performance [1, 19]. Furthermore, because of genotype-
by-environment interaction effects and different pat-
terns of linkage disequilibrium (LD) between SNPs and 
quantitative trait loci (QTL), the effects of SNPs may be 
breed-specific [21]. To overcome these issues, a trivari-
ate genomic best linear unbiased predictor (GBLUP) 
model that explicitly distinguishes between purebred 
and crossbred data and includes dominance was recently 
developed by Vitezica et al. [22]. This model allowed the 

estimation of different, yet correlated, additive and domi-
nance marker effects in crossbred and purebred indi-
viduals. However, the empirical predictive ability of the 
trivariate GBLUP model has not been evaluated yet.

Thus, the current study had the following objectives: 
(1) to show how genomic inbreeding can be meaningfully 
included in GBLUP, even for crossbred animals; (2) to esti-
mate the variance components of additive and dominance 
genetic effects by using data on total number of piglets 
born (TNB) in two Danish purebred and one crossbred 
pig populations using the trivariate GBLUP model; (3) to 
show how to derive, from variance component estimates, 
estimated genetic correlations of breeding values between 
purebred and crossbred performances in each pure breed, 
and also correlations of allele substitution effects between 
the two pure breeds; and (4) to evaluate the impact of 
dominance effects from genomic information on genomic 
evaluation by comparing accuracies of estimated genomic 
values in different cross-validation scenarios.

Methods
Animals and genotypes
We begin this section with a short presentation of the 
data used in the study, with the aim of defining the nota-
tion for the methodological developments that follow. 
For this study, all datasets were provided by the Danish 
Pig Research Centre. Data from three Danish pig popula-
tions were analyzed simultaneously: Landrace (L), York-
shire (Y) and their reciprocal crosses (LY). Only data on 
TNB data for the first parity of sows in the three popula-
tions were used. In total, there were 2126, 2218 and 5143 
genotyped sows with own records on TNB for L, Y and 
LY, respectively. Instead of using original records, cor-
rected phenotypic values of TNB were used as depend-
ent variables for the trivariate GBLUP model, because 
the pre-correction for non-genetic effects, such as herd-
year-season, month at farrowing, and service sire was 
more accurately achieved on a larger dataset (293,339 L, 
180,112 Y, and 10,974 LY). Among the crossbred animals, 
7407 LY had a Landrace sire and a Yorkshire dam, while 
3567 LY had a Yorkshire dam and a Landrace sire; L and 
Y populations were from nucleus farms and LY from a 
commercial farm. The litters of purebred sows were both 
purebred and crossbred litters. The relationship between 
LY-L and LY-Y are comparable since, in both cases, par-
ents of the F1 animals are in the purebred datasets; fur-
ther details about the model used for the pre-correction 
are in [17]. All the purebred sows had first farrowing 
dates between 2003 and 2013, while the crossbred sows 
first farrowed between 2010 and 2013. Only five of these 
purebred L and Y sows were dams of the LY.

The pedigrees for both purebred and crossbred sows 
were available and all crossbred animals were traced 
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back to their purebred ancestors until 1994 by the DMU 
Trace program [23], as was done for the larger dataset 
used for pre-correction. Consequently, 8227 L, 9851 Y 
and 5143 LY individuals were in the pedigree. The dataset 
of pre-corrected TNB records for genotyped individuals 
is termed “full genomic dataset” throughout the whole 
paper, and it should not be confused with the larger data-
set used to do the pre-correction.

For the “full genomic dataset”, purebred sows were 
genotyped with the Illumina PorcineSNP60 Genotyp-
ing BeadChip [24], while the crossbred sows were geno-
typed with a 8.5 K GGP-Porcine Low Density Illumina 
Bead SNP chip [25]. SNP quality controls (such as: call 
rate for individuals ≥80%; call rate for SNPs ≥90%; 
minor allele frequencies ≥0.01; etc.) were applied on 
the same dataset in a previous study [26], which pro-
vides more details. Then, for the crossbred individuals, 
imputation from low density to moderate density was 
done by using a joint reference panel of the two pure 
breeds [26] using the software Beagle version 3.3.2 [27] 
(imputation accuracies ≥95% in terms of correlation 
coefficients and ≥99% in terms of correct rates between 
imputed and true genotypes). Finally, 41,009 SNPs were 
available for all the recorded purebred and crossbred 
sows.

Considering genomic inbreeding and heterosis
Inbreeding can be defined as the proportion of homozy-
gous SNPs across all loci for each animal, as suggested 
by several authors (e.g., [28]). If there is directional 
dominance causing inbreeding depression [29], then 
inbreeding should be considered in the genetic evalua-
tion models [30]. Otherwise, using pedigree or marker 
data, estimates of genetic parameters are inflated [30, 31]. 
In Vitezica et  al. [22], genomic inbreeding was fitted as 
a covariate and, in the current study, we prove this rea-
soning by using a parametric genomic model, such as a 
GBLUP.

Theory and evidence of directional dominance (equiva-
lently, inbreeding depression) suggest that dominance 
effects of genes (here associated to markers) should have 
a priori a positive value for traits that exhibit inbreeding 
depression or heterosis. If we call d the vector of domi-
nance marker effects, the following prior distribution is 
plausible:

where μd is the overall mean of dominance effects, which 
should be positive if there is heterosis due to dominance. 
A typical model for genomic prediction is that in Toro 
and Varona [11]:

(d) ∼ N
(

1µd , Iσ
2
d

)

,

(1)y = Xβ+ Za +Wd + e,

where y contains phenotypic values; Xβ stands for fixed 
effects and random effects other than additive and domi-
nance effects; a is the vector of “biological” additive SNP 
effects, d is the vector of “biological” dominance SNP 
effects for each of the markers; matrix Z has entries 1, 0, 
−1, for SNP genotypes AA, Aa and aa, respectively, while 
matrix W has entries 0, 1, 0 for SNP genotypes AA, Aa 
and aa, respectively. e is the vector of overall random 
residual effects.

Typically, genetic models require a and d to have zero 
means, which is not true for d when directional domi-
nance exist. Defining d∗ = d − E(d), then E(d∗) = 0, and 
Eq. (1) can be written as:

The term W1µd is actually an average of dominance 
effects for each individual and is equal to hµd , where 
h = W1 contains the row-sums of W, i.e. individual het-
erozygosities (it should be noted that W has a value of 1 
at heterozygous loci for an individual). Inbreeding coef-
ficients f can be calculated as:

where N is the number of SNPs. Then, the prior means 
hµd can be rewritten as:

The term 1Nµd is confounded with the overall mean 
of the model (μ), while the term f(−Nµd) models the 
inbreeding depression and b = (−Nµd) is the inbreed-
ing depression parameter summed over the SNPs, which 
has to be estimated. Thus, the linear model including 
genomic inbreeding is, finally:

Thus, we have proven why fitting overall homozygosity 
for the individual as a measure of inbreeding depression 
accounts for directional dominance.

Estimating genetic (co)variances of markers with additive 
and dominance effects
A trivariate model based on “biological” (genotypic) 
additive and dominance effects of SNPs [22, 32], and 
including genomic inbreeding as above, was applied con-
sidering TNB as a different trait in each population:

where yL, yY  and yLY  contain corrected phenotypic val-
ues for purebred L, purebred Y and crossbred LY sows, 

y = Xβ+ Za +W
(

d∗ + E(d)
)

+ e

= Xβ+ Za +Wd∗ +W1µd + e.

f = 1− h/N ,

hµd = (1− f)Nµd = 1Nµd + f(−Nµd).

y = Xβ+ fb+ Za +Wd∗ + e.

(2)

yL = 1µL + fLbL + ZLaL +WLdL + eL,

yY = 1µY + fY bY + ZY aY +WYdY + eY ,

yLY = 1µLY + fY bY + ZLY aLY +WLYdLY + eLY ,
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respectively; µL, µY  and µLY  are the respective means; aL , 
aY  and aLY  are the “biological” additive SNP effects and 
dL, dY  and dLY  are the “biological” dominance SNP effects 
for each of the SNPs for L, Y and LY, respectively; matri-
ces Z and W are as above; fLbL, fY bY  and fLY bLY  model 
the inbreeding depression for L, Y and LY populations; 
eL , eY  and eLY  are the overall random residual effects.

Note that “biological” is used here to refer to the gen-
otypic additive and dominance values of the SNPs, to 
distinguish them from the traditional treatment of quan-
titative genetics in terms of “statistical” effects (breeding 
values and dominance deviations) [32].

The above equations can be reformulated to geno-
typic values of individuals instead of SNPs, in order to be 
compatible with the classical GBLUP model and animal 
breeding software, such as BLUPF90 [33] and DMU [34]:

Note that u and v are vectors of genotypic additive and 
dominance effects and therefore cannot be directly com-
pared to breeding values and dominance deviations in 
the pedigree-based genetic evaluation. In addition, f is 
a vector of genomic inbreeding coefficients and b is a 
population-specific inbreeding depression parameter 
per unit of genomic inbreeding, respectively. Note that 
there is potentially inbreeding depression at the level of 
the crossbred animals, although, first, the numeric values 
of the vector f should be smaller since crossbred animals 
have a higher level of heterozygosity, and second, the esti-
mates of the inbreeding depression parameters (b) do not 
need to be identical across the three populations, which 
thus gives considerable flexibility.

In terms of the genotypic additive effects u, the vari-
ances within each breed are:

where σ 2
aL

, σ 2
aY

 and σ 2
aLY

 are the additive variances of SNP 
effects in breeds L, Y and LY, respectively. The covari-
ances between the genotypic additive effects u are:

where σaL,Y , σaL,LY  and σaY ,LY  are the additive covariances 
of SNP effects between populations L and Y, populations 

(3)

yL = 1µL + fLbL + uL + vL + eL,

yY = 1µY + fY bY + uY + vY + eY ,

yLY = 1µLY + fLY bLY + uLY + vLY + eLY .

Var(uL) = var(ZLaL) = ZLZ
′

Lσ
2
aL
,

Var(uY ) = var(ZY aY ) = ZYZ
′

Y σ
2
aY
,

Var(uLY ) = var(ZLY aLY ) = ZLYZ
′

LY σ
2
aLY

,

(4)

Cov





uL

uY

uLY





=







ZLZ
′

L
σ 2
aL

ZLZ
′

Y
σaL,Y ZLZ

′

LY
σaL,LY

ZYZ
′

L
σaL,Y ZYZ

′

Y
σ 2
aY

ZYZ
′

LY
σaY ,LY

ZLYZ
′

L
σaL,LY ZLYZ

′

Y
σaY ,LY

ZLYZ
′

LY
σ 2
aLY






,

L and LY, and populations Y and LY, respectively. Analo-
gous structures exist for dominance genotypic effects:

Estimation of marker‑based variance components using an 
equivalent model
The variance components σ 2

aL
, σ 2

aY
, σ 2

aLY
 and σaL,Y , σaL,LY , 

σaY ,LY  in Eq. (4) cannot be estimated by regular methods 
or software (i.e. REML or Gibbs sampling) because they 
cannot be factorized out from Eq. (4). To fit such a multi-
variate structure, we used an equivalent model. Additional 
effects need to be defined, even if they are of no interest 
per se. For instance, the vectors of hypothetical geno-
typic additive effects of the genotypes of the L breed on 
the scale of breed Y (uL,Y) and LY (uL,LY) have variance–
covariance matrices ZLZ

′

Lσ
2
aY

 and ZLZ
′

Lσ
2
aLY

, respectively. 
Thus, as a whole, the genetic variance and covariance 
structure for the genotypic additive effects u are:

where matrix Z contains elements 1, 0, −1 for the three 
genotypes, and is defined across the three breeds, 

Z =





ZL

ZY

ZLY



.

To construct a relationship matrix similar to the 
classical G-matrix of GBLUP [35], Vitezica et  al. [22] 
introduced a normalized genomic relationship matrix 
G = ZZ′

{tr[ZZ′]}/n
, where n is the number of animals across 

the three populations and the division by 
{

tr
[

ZZ′
]}

/n 
scales the matrix such that the average of the diagonal 
elements equals 1. This alters the variances across geno-
typic additive effects u in the following way:

Cov





vL

vY

vLY





=







WLW
′

L
σ 2
dL

WLW
′

Y
σdL,Y WLW

′

LY
σdL,LY

WYW
′

L
σdL,Y WYW

′

Y
σ 2
dY

WYW
′

LY
σdY ,LY

WLYW
′

L
σdL,LY WLYW

′

Y
σdY ,LY

WLYW
′

LY
σ 2
dLY






.

Var(u) = var






















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



























= var
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






















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ZY aY

ZY aLY

ZLY aL

ZLY aY
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





























=







ZLZ
′

L
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Y
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LY
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L
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′

Y
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′
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L
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Y
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′
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




⊗


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aL
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
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⊗


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σ 2
aL
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σaY ,L σ 2

aY
σaY ,LY

σaLY ,L σaLY ,Y σ 2
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
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where G0 are variance components associated to the 
genotypic additive effects u. This structure (a Kronecker 
product) is compatible with animal breeding software 
for BLUP and REML and the variance–covariance com-
ponent G0 can be estimated in a straightforward manner. 
Then, the (co)variances of additive genotypic effects of 
SNPs across populations can be obtained as:

The variances across genotypic dominance effects v are 
altered in a similar way:

where D0 contains variances and covariances asso-
ciated to the genotypic dominance effects v and 
D = WW′

{tr[WW′]}/n
, where the matrix W contains ele-

ments 0, 1, 0 for the three genotypes, and is defined 

(5)

Var(u) = var

























uL
uL,Y
uL,LY
uY ,L

uY
uY ,LY

uLY ,L

uLY ,Y

uLY

























= ZZ′ ⊗





σ 2
aL

σaL,Y σaL,LY
σaY ,L σ 2

aY
σaY ,LY

σaLY ,L σaLY ,Y σ 2
aLY





=

�

G×

�

tr
�

ZZ′
��

n

�

⊗





σ 2
aL

σaL,Y σaL,LY
σaY ,L σ 2

aY
σaY ,LY

σaLY ,L σaLY ,Y σ 2
aLY





= G⊗





σ 2
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σALAY σALALY

σAY AL σ 2
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σAY ALY

σALALY σAY ALY σ 2
ALY



 = G⊗G0,

(6)





σ 2
aL

σaL,Y σaL,LY
σaY ,L σ 2

aY
σaY ,LY

σaLY ,L σaLY ,Y σ 2
aLY



 = G0/
�

tr
�

ZZ
′
��

/n

=





σ 2
AL

σALAY
σALALY

σAY AL
σ 2
AY

σAY ALY

σALALY
σAY ALY

σ 2
ALY



/
�

tr
�

ZZ
′
��

/n.

(7)

Var(v) = var

























vL
vL,Y
vL,LY
vY ,L

vY
vY ,LY

vLY ,L
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vLY

























= D⊗





σ 2
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σDLDY σDLDLY

σDYDL σ 2
DY

σDYDLY

σDLDLY σDYDLY σ 2
DLY



 = D⊗D0,

across the three breeds 



W =





WL

WY

WLY







 and 

W′ =
[

W
′

L W
′

Y W
′

LY

]

. Then, the (co)variances of domi-
nance genotypic effects of SNPs are:

This approach, which is an extension of Vitezica et  al. 
[22], makes it possible to estimate (co)variances of 
genotypic effects of SNPs in purebred and crossbred 
populations under a genomic model with additive and 
non-additive (dominance) inheritance.

Matrices Z and W, their crossproducts and the inverses 
of G and D were built using own programs. Genetic param-
eters were estimated by using average information REML 
with software airemlf90 [33]. Standard errors on functions 
of genetic parameters (i.e. standard errors on correlations) 
were estimated from the average information matrix using 
the REML-MVN method of Houle and Meyer [36].

Additive and dominance variances in purebred 
and crossbred populations
The additive and dominance (co)variances of genotypic 
effects of SNPs, either within breed or between breeds, 
were calculated using Eqs. (6) and (8), respectively. Using 
these calculated additive and dominance (co)variances of 
SNPs across all the SNPs, the corresponding traditional, 
individual-based genetic parameters can be obtained as 
follows. The genetic parameters obtained are directly 
comparable to pedigree-based estimates [32].

Consider the allele substitution effect α = a+ (q − p)d .  
According to [32], the additive genetic variances for pure-
bred performance (mating animals in the same breed) for 
breed L (σ 2

APL
) and Y (σ 2

APY
) are:

where σ 2
a  and σ 2

d  are the variances of additive and domi-
nance genotypic effects of SNPs in either breed L or Y; 
pi and qi are allele frequencies for SNP i; indices L and Y 
denote the breeds Landrace and Yorkshire, respectively. 
For crossbred performance of say, Landrace, the allele 
substitution effect is αACL = aACL +

(

qY − pY
)

dACL . 
Thus, the additive genetic variances within purebred L 
and Y for crossbred performance (due to gametes from 

(8)






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
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
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
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∑
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∑
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)

σ 2
dL
,

σ 2
APY

=
∑
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)
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∑
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Y
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)2
)

σ 2
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,
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the L or Y individuals in the crossbred population) are 
equal to:

where the σ 2
ACL

 represents the additive genetic variance 
of animals in breed L when mated to animals in breed Y; 
the σ 2

ACY
 represents the additive genetic variance of ani-

mals in breed Y when mated to animals in breed L; and 
σ 2
aLY

 and σ 2
dLY

 are the variances of additive and dominance 
genotypic effects of SNPs in the crossbred LY population, 
respectively. The additive genetic variance for animals 
in the crossbred LY population (σ 2

ACLY
) is the sum of the 

additive genetic variance of Landrace alleles and that of 
Yorkshire alleles in the crossbred animals [22] as follows:

Note that this variance is not the additive genetic vari-
ance of the crossbred animals acting as reproducers (i.e., 
creating an F2) [37].

The additive genetic covariances between purebred and 
crossbred performances within breeds L (σAPL,ACL) and Y 
(σAPY ,ACY) are:

σ 2
ACL

=
∑

(

2pLi q
L
i

)

σ 2
aLY

+
∑

(

2pLi q
L
i

(

qYi − pYi
)2
)

σ 2
dLY

,

σ 2
ACY

=
∑

(

2pYi q
Y
i

)

σ 2
aLY

+
∑

(

2pYi q
Y
i

(

qLi − pLi
)2
)

σ 2
dLY

,

σ 2
ACLY

=
1

2
σ 2
ACL

+
1

2
σ 2
ACY

.

Correlations of allele substitution effects between two 
breeds
The breeding value of an individual includes the allele 
substitution effects of all genes and the allele frequencies. 
For purebred performance, the allele substitution effects 
of one locus for breed L and Y are:

where a is the additive effect and d is the dominance effect 
for each SNP; pi and qi are allele frequencies for SNP i, 
with superscripts denoting breeds L or Y. In the case of 
purely additive gene action, the covariance between αL 
and αY  is σαL,Y , which can be interpreted as a genetic cor-
relation among populations [38–40]. Then, the covariance 
between the allele substitution effects of one locus is:

where σaL,Y  and σdL,Y  are the additive and dominance 
covariances of SNP effects between breeds L and Y for 
additive and dominance, respectively. If we assume that 

αL = aL +
(

qLi − pLi
)

dL,

αY = aY +
(

qYi − pYi
)

dY ,

cov(αL,αY ) = cov
(

aL +
(

qLi − pLi
)

dL, aY +
(

qYi − pYi
)

dY
)

= cov(aL, aY )+
(

qLi − pLi
)(

qYi − pYi
)

cov(dL, dY )

= σaL,Y +
(

qLi − pLi
)(

qYi − pYi
)

σdL,Y ,

σAPL,ACL =
∑

(

2pLi q
L
i

)

σaL,LY +
∑

(

2pLi q
L
i

(

qLi − pLi
)(

qYi − pYi
))

σdL,LY ,

σAPY ,ACY =
∑

(

2pYi q
Y
i

)

σaY ,LY +
∑

(

2pYi q
Y
i

(

qYi − pYi
)(

qLi − pLi
))

σdY ,LY
,

where σaL,LY  and σdL,LY  are the covariances of SNP effects 
between purebred L and crossbred LY populations for 
additive and dominance, respectively; σaY ,LY  and σdY ,LY

 
are the covariances of SNP effects between purebred 
Y and crossbred LY populations for additive and domi-
nance, respectively.

Therefore, the genetic correlations of breeding val-
ues between purebred and crossbred performances 
within L (rPCL) and Y (rPCY) are: rPCL =

σAPL ,ACL
√

σ 2
APL

σ 2
ACL

 and 
rPCY =

σAPY ,ACY
√

σ 2
APY

σ 2
ACY

.

According to [22], the dominance genetic variances within 
purebred populations L and Y are σ 2

DL
=

∑
(

2pLi q
L
i

)2
σ 2
dL

 
and σ 2

DY
=

∑
(

2pYi q
Y
i

)2
σ 2
dY

, respectively. The domi-
nance genetic variance in crossbred LY animals is 
σ 2
DLY

=
∑

(

4pLi q
L
i p

Y
i q

Y
i

)

σ 2
d.

The broad sense heritabilities for purebred perfor-
mance (H2

P) were calculated as the ratio of total genetic 
variances for purebred performance (σ 2

AP + σ 2
D) to phe-

notypic variances (σ 2
AP + σ 2

D + σ 2
e ).

SNP effects (both additive and dominance) are independ-
ent across loci, then the covariance between the allele 
substitution effects across all n loci is:

Also, the variances of allele substitution effects across all n 
loci for breeds L and Y are:

where σ 2
a  and σ 2

d are the additive and dominance vari-
ance of SNPs. Then, the correlation of allele substitution 
effects for purebred performance between populations L 
and Y is rαPL,αPY =

σαL,Y
σαLσαY

. If there is no dominance vari-
ation, the rαPL,αPY relates to additive genetic variances as 
rαPL,αPY =

σaL,Y
σaLσaY

.
The correlation of allele substitution effects for cross-

bred performance between populations L and Y is similar 

cov(αL,αY ) = σαL,Y = σaL,Y +
1

n

∑

((

qLi − pLi
)(

qYi − pYi
))

σdL,Y .

var(αL) = σ 2
αL

= σ 2
aL

+
1

n

∑

(

(

qLi − pLi
)2
)

σ 2
dL
,

var(αY ) = σ 2
αY

= σ 2
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+
1

n

∑

(

(

qYi − pYi
)2
)

σ 2
dY
,
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to that for purebred performance, but the allele frequen-
cies are swapped, as:

Gen_ADM
The statistical model includes additive and dominance 
effects as in Eq.  (3). Genomic information was used to 

rαCL,αCY =
σαL in LY ,Y in LY

σαL in LY σαY in LY

=
σ 2
aLY

+ 1
n

∑
((

qLi − pLi
)(

qYi − pYi
))

σ 2
dLY

√

σ 2
aLY

+ 1
n

∑

(

(

qYi − pYi
)2
)

σ 2
dLY

√

σ 2
aLY

+ 1
n

∑

(

(

qLi − pLi
)2
)

σ 2
dLY

,

where σ 2
aLY

 and σ 2
dLY

 are the additive and dominance vari-
ance of SNPs in the crossbred LY population. If there 
is no dominance variation, the rαCL,αCY  is equal to 1, by 
assumption in the model.

Scenarios
Variance components, genetic correlations of breeding 
values between purebred and crossbred performances 
(rPC) within each pure breed and correlations of allele 
substitution effects for purebred (rαPL,αPY) and cross-
bred (rαCL,αCY) performance between two pure breeds 
were first investigated using the full genomic dataset. To 
explore the effects of using genomic information and the 
inclusion of dominance deviation on the genetic evalu-
ation of crossbred performance in the trivariate model, 
three different scenarios were compared.

Nogen
The statistical model was a trivariate BLUP model, simi-
lar to Eq. (3), but the dominance deviation was excluded. 
Instead of using a genomic relationship matrix, a single 
relationship matrix A was constructed across the three 
breeds, assuming that they form a single population. Thus, 
the genetic (co)variances of additive genetic effects u were:

where A0 were variance components associated to genetic 
additive effects and not the genotypic additive effects in 
Eq.  (5). Pedigree-based inbreeding depression was also 
included in the model. The pedigree-based inbreeding 
coefficients were calculated as in [41] using the software 
inbupgf90 [33].

Gen_AM
The statistical model was similar to Eq.  (3), but without 
dominance deviations. Genomic information was used to 
construct the additive genomic relationship matrix.

Var(u) = A ⊗





σ 2
AL

σALAY σALALY

σAY AL σ 2
AY

σAY ALY

σALALY σAY ALY σ 2
ALY



 = A ⊗ A0,

construct the additive and dominance genomic relation-
ship matrices.

To explore the impact of genomic information and 
dominance effects on genomic evaluation for crossbred 
performance, the full genomic dataset was split into 
training and validation populations and the predictive 
ability for crossbred animals in the validation popula-
tion was investigated in different scenarios. The farrow-
ing date of January 1, 2013 was used as the cut-off date 
to divide recorded purebred and crossbred sows into 
training and validation populations. As a result, 6769 
sows (1270 L, 1405 Y and 4094 LY) were included in the 
training population, while the remaining 2716 sows (854 
L, 813Y and 1049 LY) were included in the validation 
population. Predictive ability of crossbreds was measured 
as the correlations cor

(

yc, ŷ
)

 in the validation population 
for each scenario, where yc is the corrected phenotypic 
records of TNB for crossbred animals; ŷ is the predicted 
corrected observations of TNB for crossbred animals and 
is equal to the sum of the estimated population mean (µ̂ ), 
inbreeding ( f b̂) and genotypic values ( ĝ); the genotypic 
value ĝ was calculated as the sum of additive and domi-
nance genetic effects in the scenario Gen_ADM. In the 
other two scenarios, the genotypic value ĝ only included 
the additive genetic effect. Hotelling–Williams t test at a 
confidence level of 5% was applied to evaluate the signifi-
cance of the differences in validation correlations in each 
scenario. Furthermore, to detect the possible biases in 
the predictions, the regression coefficients of yc on ŷ were 
explored. Note that no bias implies that a regression coef-
ficient equals 1. In addition, to measure the uncertainty 
associated with the predictions, 1000 bootstrap samples 
[42] was applied to estimate the means and standard 
errors.

For comparison, the predictive ability of crossbred ani-
mals was also investigated in a model without inbreeding 
depression effects, for all three scenarios. The predictive 
ability was measured as the correlation cor

(

yc, ŷ
)

, where 
ŷ is the sum of the estimated population mean (µ̂) and 
genotypic value ( ĝ).
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Results
Variance components, heritabilities and correlations
Table  1 shows the estimates of variance components for 
additive genetic effects for purebred (σ 2

AP) and crossbred 
(σ 2

AC) performance in different scenarios, and dominance 
variations (σ 2

D) in the Gen_ADM scenario. For all sce-
narios, the additive genetic variances for purebred per-
formance (σ 2

AP) were larger than those for their crossbred 
performance (σ 2

AC). Estimated variance components in 
the scenarios Gen_AM and Gen_ADM were very close, 
but different from those obtained in scenarios without 
using genomic information. In general, estimates had large 
standard errors in all scenarios, but no obvious differences 
in standard errors were detected between different scenar-
ios. Residual variance for purebred animals (σ 2

e ) was larger 
than for crossbred animals (σ 2

eLY
) in each scenario. For the 

scenario Gen_ADM, the ratios of dominance genetic vari-
ance to additive genetic variance ranged from 5 to 11% for 
both purebred and crossbred populations.

The broad sense heritabilities for purebred and cross-
bred animals, genetic correlations between breeding 
values for purebred and crossbred performances within 
pure breeds and correlations of allele substitution 
effects across the two breeds are in Table 2. In different 
scenarios, the heritabilities of purebred performance 
(H2

P) ranged from 0.07 (0.03) to 0.08 (0.03) and from 
0.06 (0.03) to 0.10 (0.03) for breeds L and Y, respectively. 
Standard errors of H2

P were almost consistent across 
scenarios. Estimated genetic correlations of breeding 
values between purebred and crossbred performances 
(rPC) increased from 0.76 (0.20) (Nogen) to 0.95 (0.06) 
(Gen_AM) for breed L and from 0.43 (0.22) (Gen_ADM) 
to 0.54 (0.30) (Nogen) for breed Y. The rPC was higher for 
breed L than for breed Y in all scenarios, but the stand-
ard errors of rPC were always higher for breed Y than 
for breed L. With genomic information, the correlations 

of allele substitution effects between purebred (rαPL,αPY)  
and crossbred (rαCL,αCY) performance between breeds L 
and Y were estimated, as shown in Table  3. For pure-
bred performance, rαPL,αPY  was equal to 0.14 and 0.19 
in Gen_AM and Gen_AMD, respectively. However, the 
standard errors were large, around 0.2 in both scenar-
ios. For crossbred performance, rαCL,αCY  was equal to 
0.98 in Gen_ADM. This high correlation is a byproduct 
of assuming that additive biological effects in cross-
bred animals are the same regardless of the Yorkshire or 
Landrace origin of the allele. However, the same allele 
has potentially different effects in the respective Lan-
drace or Yorkshire genetic backgrounds, and the dif-
ference is modeled through the correlations, hence the 
low values of rαPL,αPY . Without including the dominance 
effects in the model Gen_AM, rαCL,αCY  was equal to 1 by 
definition.

Table 1  Variance components of additive and dominance genetic effects for purebred and crossbred animals

Numbers in brackets are the standard errors of the corresponding parameters

σ 2
AP is the additive genetic variance for purebred performance; σAP,AC is the additive genetic covariance between purebred and crossbred performance; σ 2

AC is the 
additive genetic variance for crossbred performance; σ 2

D is the dominance genetic variance for either purebred animals; σ 2
e  is the residual variance for purebred 

animals; σ 2
ACLY

 is the additive genetic variance for the F1 crossbred animals LY; σ 2
DLY

 is the dominance genetic variance for the F1 crossbred animals LY; and σ 2
eLY

 is the 
residual variance for the F1 crossbred animals LY

L Landrace, Y Yorkshire breeds

Scenario Breed σ
2
AP

σAP,AC σ
2
AC

σ
2
D

σ
2
e σ

2
ACLY

σ
2
DLY

σ
2
eLY

Nogen L 0.99 (0.31) 0.17 (0.07) 0.05 (0.02) – 10.82 (0.43) 0.05 (0.02) – 7.35 (0.15)

Y 1.07 (0.33) 0.15 (0.07) 0.05 (0.02) – 8.96 (0.38)

Gen_AM L 0.87 (0.22) 0.47 (0.10) 0.28 (0.07) – 10.89 (0.38) 0.28 (0.07) – 7.11 (0.15)

Y 0.55 (0.20) 0.17 (0.10) 0.28 (0.07) – 9.42 (0.33)

Gen_ADM L 0.86 (0.21) 0.46 (0.10) 0.28 (0.06) 0.04 (0.03) 10.86 (0.38) 0.28 (0.06) 0.02 (0.01) 7.11 (0.15)

Y 0.54 (0.18) 0.17 (0.09) 0.28 (0.06) 0.06 (0.05) 9.35 (0.33)

Table 2  Heritabilities and  genetic correlations 
between breeding values for purebred and crossbred per-
formances

Numbers between brackets are the standard errors of the corresponding 
parameters

rPC is the genetic correlation of breeding values between purebred and 
crossbred performances within the Landrace or Yorkshire breeds; H2

P is the broad 
sense heritability for purebred performance for the Landrace and Yorkshire 
breeds in different scenarios

L Landrace, Y Yorkshire

Scenario Breed rPC H
2
P

Nogen L 0.76 (0.20) 0.08 (0.03)

Y 0.54 (0.30) 0.10 (0.03)

Gen_AM L 0.95 (0.06) 0.07 (0.03)

Y 0.44 (0.20) 0.06 (0.03)

Gen_ADM L 0.93 (0.05) 0.08 (0.03)

Y 0.43 (0.22) 0.06 (0.03)
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Predictive abilities
Predictive abilities for crossbred pigs in the validation 
population are in Table  4. The correlation between the 
corrected phenotypic values and the predicted obser-
vations for TNB (cor

(

yc, ŷ
)

) ranged from 0.010 in the 
scenario Nogen to 0.056 in scenarios Gen_AM and Gen_
ADM. Standard errors of cor

(

yc, ŷ
)

 based on 1000 boot-
strap samples were equal to 0.03 across all scenarios. No 
significant differences in predictive ability between sce-
narios were detected by the Hotelling–Williams t test at 
the confidence level of 5%.

The regression coefficients of corrected pheno-
typic values on the predicted corrected observations 
for TNB are in the second row of Table  4. Regression 
coefficients were smaller than 1 for the three scenar-
ios. Among these scenarios, regression coefficients for 
scenarios with genomic information (Gen_AM and 
Gen_ADM) were slightly closer to 1 than that for the 
pedigree-based scenario (Nogen). Except for the Nogen 
scenario, standard errors of regression coefficients were 
around 0.39. For the Nogen scenario, the standard error 
was around 5 times larger than that for other scenarios. 
Overall, there was no clear trend towards a scenario 
with less bias.

For comparison, predictive abilities cor
(

yc, ŷ
)

 for cross-
bred pigs in the validation population for the models 
without the inbreeding depression effect were equal to 
−0.08 in scenario Nogen, 0.045 in scenario Gen_AM and 
0.046 in scenario Gen_ADM. In all cases, these are lower 
than the predictive abilities in Table 4, and these differ-
ences are statistically significant according to the Hotel-
ling–Williams t test.

Inbreeding depression
Marker-based and pedigree-based inbreeding coefficient 
(f) for each population and their estimated correspond-
ing inbreeding depression parameters (b) in the differ-
ent scenarios are in Table  5. Marker-based inbreeding 
coefficients were almost identical for breeds L and Y, but 
they were larger than those for LY, which was expected 
because crossbred animals have a higher level of hete-
rozygozity than purebred animals. However, according to 
the pedigree-based inbreeding coefficients, the Landrace 
population was slightly more inbred than the Yorkshire 
population. In terms of inbreeding depression parameters 
(b), they were all negative (thus, genomic inbreeding has 
detrimental effects for TNB even in crossbred animals) 
but not of the same magnitude across the three popula-
tions. Note that for the scenario Nogen, b was estimated 
based on the pedigree-based inbreeding coefficients. As 
a whole, breed L had the most negative b, while breed Y 
had the least negative b, regardless of the scenario. Thus, 
TNB was more negatively affected by inbreeding in breed 
L than in breed Y and population LY.

Table 3  Correlations of allele substitution effects for pure-
bred and  crossbred performance between  Landrace 
and Yorkshire breeds

Numbers between brackets are the standard errors of the corresponding 
parameters

rαPL ,αPY is the correlation of allele substitution effects for purebred performance 
between the Landrace and Yorkshire breeds; rαCL ,αCY is the correlation of allele 
substitution effects for crossbred performance between the Landrace and 
Yorkshire breeds. For Gen_AM, rαCL ,αCY is equal to 1 by definition

Scenario rαPL ,αPY rαCL ,αCY

Nogen – –

Gen_AM 0.14 (0.22) 1

Gen_ADM 0.19 (0.24) 0.98 (0.02)

Table 4  Predictive ability for crossbred animals in the vali-
dation population

Numbers between brackets are the standard errors of the corresponding 
parameters
a  Predictive ability (cor

(

yc, ŷ
)

) is given by the correlation coefficient between the 
corrected phenotypes (yc) and their predictions (ŷ) for total number of piglets 
born (TNB) in crossbred animals
b  Regression coefficient of the corrected phenotypes (yc) on the predicted 
observations (ŷ) in crossbred animals

Nogen Gen_AM Gen_ADM

cor
(

yc , ŷ
)

a 0.010 (0.031) 0.056 (0.031) 0.056 (0.031)

Regression coefficientb 0.703 (2.218) 0.736(0.386) 0.730 (0.385)

Table 5  Marker-based and  pedigree-based inbreeding 
coefficients f and estimated inbreeding depression param-
eter b (piglets per 100% of inbreeding) in different scenar-
ios for each breed

The inbreeding coefficient is the mean inbreeding coefficient across individuals 
within each breed

Numbers between brackets are the standard deviations of the mean inbreeding 
coefficient

For Nogen, the inbreeding depression parameter b is the regression of 
phenotype on pedigree-based inbreeding. For Gen_AM and Gen_ADM, the 
inbreeding depression parameter b is the regression of phenotype on marker-
based inbreeding
a  Calculated as the proportion of homozygous loci per individual
b  Calculated as in Meuwissen and Luo [41]

L Y LY

Marker-based inbreeding 
coefficient fa

0.695 (0.019) 0.698 (0.020) 0.565 (0.012)

Pedigree-based inbreeding 
coefficient fb

0.111 (0.032) 0.078 (0.031) 0

Nogen (b) −4.821 −3.561 0

Gen_AM (b) −9.656 −1.924 −5.122

Gen_ADM (b) −9.731 −1.878 −5.055
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Discussion
This study extended the trivariate GBLUP model of Vite-
zica et al. [22] in order to obtain (co)variances of effects 
of SNPs, genetic correlations of breeding values between 
purebred and crossbred performances and correlations 
of allele substitution effects under dominance. We also 
evaluated this model using different scenarios for the 
genetic evaluation of crossbred performance in Danish 
purebred and crossbred pigs. Scenarios that included or 
not genomic information were studied to estimate the 
genetic correlations of breeding values between purebred 
and crossbred performances. To our knowledge, this is 
the first study to report correlations of allele substitution 
effects between two breeds in the presence of dominance 
effects. The results show that the Vitezica model [22] is a 
tool that can be used for the genomic evaluation of cross-
bred performance in genotyped animals. In this study, for 
TNB, models with dominance deviations did not improve 
the genomic evaluation of crossbred performance with 
regard to both predictive ability and unbiasedness, but 
the inclusion of an inbreeding depression effect in the 
models significantly improved predictive ability.

Phenotypic variances were larger for purebred animals 
(11.76 for breed L and 9.99 for breed Y) than for cross-
bred animals (7.30 for LY). This could be the reason why 
the estimated additive genetic variances for purebred 
performance (σ 2

AP) were larger than those for crossbred 
performance (σ 2

AC). However, compared to results in a 
previous study that used a much larger Danish pure-
bred and crossbred dataset [17], both estimated additive 
genetic variances and phenotypic variances in the cur-
rent study were smaller, which is due to three reasons. (1) 
The dataset in the current study was a genotyped subset 
of the population used in the previous study. Purebred 
genotyped individuals were pre-selected and their per-
formances were more homogeneous than that of the 
whole population. The preselection process resulted in 
a loss of about 15% of the purebred phenotypic varia-
tion. However, the genotyped crossbred animals were an 
almost random sample of the whole population and there 
was only a small loss of about 5% of phenotypic varia-
tion for crossbred animals. (2) The phenotypic values for 
TNB in the current study were pre-corrected for fixed 
and non-genetic random effects. This pre-correction 
led to a loss of about 11 and 17% of phenotypic varia-
tion for purebreds and crossbreds, respectively. (3) Dur-
ing the pre-correction, some genetic variation may have 
been allocated to other random effects (e.g. service boar 
effects), in particular because TNB is a lowly heritable 
trait.

The estimated heritabilities of TNB for purebred per-
formance (H2

P) were slightly lower than those previously 
reported (0.11 and 0.09 for breeds L and Y, respectively) 

[17, 22, 43]. Large standard errors of H2
P
 implied that 

the current dataset was not large enough. The consist-
ent standard errors across scenarios indicated that even 
when genomic information was included, the uncertainty 
of H2

P did not decrease. Taking the standard errors into 
account, the estimated H2

P across scenarios were not very 
different. Compared to the results of [17], the lower H2

P 
found in the current study was due to the sharp decrease 
in additive genetic variances (σ 2

AP).
The ratios of estimated dominance genetic variances to 

additive genetic variances in the current study (5 to 11%) 
were generally a little smaller than in other studies on 
TNB. Vitezica et al. [22] reported that this ratio was equal 
to about 20% for litter size in both purebred and cross-
bred lines by using the same trivariate GBLUP model. 
Esfandyari et  al. [19] stated that, by using purebred 
genomic information in a univariate Bayesian mixture 
model at the SNP level, the ratio between dominance 
variance and additive variance for TNB was equal to 15 
and 18% for breeds L and Y, respectively. Based on pedi-
gree information, Misztal et al. [10] reported a ratio that 
reached about 25% for number of piglets born alive in 
a Yorkshire population. However, there are some stud-
ies that did report smaller ratios than those reported 
here. For instance, Hidalgo [20] reported that, based on 
genotyped crossbred animals, the dominance variance 
for TNB accounted for nearly zero of the total genetic 
variance and concluded that TNB was not affected by 
dominance effects in the Dutch Landrace and Yorkshire 
populations. For other traits or species, different ratios of 
dominance genetic variance to additive genetic variance 
were also reported. For average daily gain in Duroc pigs, 
Su et  al. [9] estimated a ratio of 15%, but their results 
were based on genotypic variance components and can-
not be directly compared to genetic variance components 
[32]. For average daily weight gain in Yorkshire and Lan-
drace pigs, Lopes et  al. [44] reported ratios of 13.8 and 
28%, respectively by including genomic information. 
For Fleckvieh cattle, Ertl et al. [12] calculated ratios that 
ranged from 3.4% for stature to 69% for protein yield by 
using a univariate SNP-BLUP model. Overall, these dif-
ferent ratios of dominance genetic variance to additive 
genetic variance may reflect differences in the traits ana-
lyzed and in the type of information used for the estima-
tion [9], and also uncertainty in the estimates.

The genetic correlation of breeding values between 
purebred and crossbred performances (rPC) is a key 
parameter in crossbreeding schemes [2]. In the current 
study, the estimated rPC was in line with results reviewed 
by Wei et  al. [3]. Lutaaya et  al. [5] also reported rPC 
that ranged from 0.32 to 1. Such differences in rPC may 
reflect differences in the extent of GxE interactions and 
the distance across breeds. In our study, estimated rPC 
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did not vary dramatically across the scenarios, when the 
standard errors were taken into account. These standard 
errors were very large, which indicated that the amount 
of available information was too small to ensure accu-
rate rPC estimates. Across scenarios, standard errors of 
rPC decreased when genomic information was included, 
which indicates that including genomic information 
may reduce the uncertainty of the estimations. rPC was 
larger for breed L than for breed Y, which was in agree-
ment with a previous study [17] and may be due to the 
data structure. Among the 5143 crossbred animals, the 
number of Yorkshire sires (N = 1125) was much smaller 
than that of Landrace sires (N = 4018). Such a different 
amount of information affects the accuracy of the esti-
mates, and thus the standard error of rPC was larger for 
breed Y than for breed L (see Table  2). However, com-
pared to the results reported in [17], the rPC for breed 
L increased by about 10% while that for breed Y did not 
change much. Both pre-correction of data and the geno-
typed subset of original data used may play a role in the 
differences observed between the current and previous 
results [17]. In the previous study, a single-step method, 
which can use pedigree information and genomic infor-
mation simultaneously, was used. In this study, the use 
of only phenotypic records on genotyped individuals 
affected the accuracy of estimates. Our results confirmed 
the moderate value of the rPC for TNB in breeds L and Y.

To our knowledge, this is the first time that correla-
tions of allele substitution effects for both purebred 
(rαPL,αPY) and crossbred (rαCL,αCY) performance between 
two breeds in the presence of dominance variation are 
estimated. In genomic selection, SNPs are assumed to 
be in LD with QTL along the whole genome [45]. The 
correlation of allele substitution effects between breeds 
measures the degree of average similarities between 
SNP effects assuming that the QTL effects are the same 
in breeds 1 and 2 [38–40]. In practice, the correlation 
of allele substitution effects between two breeds can be 
interpreted as indicating “how consistent the SNP sub-
stitution effects are across two breeds”. For purebred per-
formance, the estimated SNP substitution effects were 
based on the within-breed allele frequencies. A high 
rαPL,αPY  correlation means that the estimated SNP sub-
stitution effects based on allele frequencies from breed L 
can be used for breed Y and vice versa. However, rαPL,αPY  
was not significantly different from 0 in the current study, 
which demonstrates that SNP effects estimated from a 
reference population that consists of one pure breed (e.g. 
Landrace) cannot be readily applied to the other breed 
(e.g. Yorkshire). This was in agreement with the findings 
of [46] who reported that prediction based on an across-
population reference panel was worse than within-popu-
lation prediction. In other species, estimated correlations 

of allele substitution effects between breeds based on 
models without dominance, oscillate between 0 and 0.8, 
and are trait-dependent [38, 47]. For crossbred perfor-
mance, an rαCL,αCY  close to 1 was found in the current 
study, which indicated that the allele substitution effects 
based on the allele frequencies from the opposite breeds 
were very similar for the L and Y breeds. In practice, this 
suggests that SNP substitution effects that are estimated 
based on a reference population consisting of crossbred 
animals can be used to estimate crossbred breeding val-
ues for both breeds L and Y.

It was expected that genomic evaluations obtained by 
including dominance deviations in the model would be 
improved, especially when records of crossbred animals 
were included [9]. However, our results showed that 
inclusion of dominance deviations did not increase the 
predictive ability for crossbreds. This result was in line 
with conclusions in [9, 12, 20], but was opposite to those 
in [18, 19, 48, 49]. Theoretically, estimating dominance 
genetic effects should be useful because ignoring them 
will result in less accurate estimates of allele substitution 
effects and consequently less accurate estimated breed-
ing values in genomic prediction [11]. However, regard-
ing the additive genetic variance, estimates were nearly 
the same in scenarios Gen_AM and Gen_ADM, which 
demonstrated that the additive variances were already 
well captured by the additive model. Thus, the accuracy 
of the estimated additive genetic effects was not affected 
when dominance effects were included in the model [12]. 
Moreover, a simulation study at the level of the gene 
action showed that when all gene actions were purely 
additive, including dominance in addition to the additive 
effects in the model was not advantageous compared to 
using an additive model. Hidalgo [20] showed that TNB 
was not affected by dominance in the Dutch crossbred 
population. In the current study, we also observed similar 
results, and dominance variation accounted for a small 
proportion of the total genetic variation (4 to 10%). The 
lack of change in predictive ability also indicated the dif-
ficulty of distinguishing dominance genetic effects from 
additive genetic effects [9], but it confirmed a previous 
simulation study that concluded that the use of a domi-
nance model did not negatively affect genomic evaluation 
even if the trait was purely additive [18].

Scenarios in which genomic information was included 
(Gen_AM and Gen_ADM) showed higher predictive 
abilities than the pedigree-based scenario (Nogen). For 
the Nogen scenario, the relationship matrix was con-
structed based on a base population that was considered 
as a mixture of L and Y animals, which was not the case. 
Therefore, the results of the Gen_AM and Gen_ADM 
scenarios were more reliable than those of the Nogen sce-
nario. Although predictive abilities were not significantly 
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different according to the Hotelling-Williams t-test, the 
results from 1000 bootstrap samples still showed that 
the predictive abilities of about 90% of the crossbred ani-
mals would be higher when genomic information was 
available (894 of 1000 bootstrap samples showed higher 
predictive abilities in scenarios that included genomic 
information than those in the Nogen scenario; results 
not shown). Comparison of the predictive abilities that 
were estimated in the current study with those from a 
previous study [17] indicated that the single-step model 
[16] might be more robust than the Vitezica model [22] 
used in this paper in terms of both predictive ability and 
unbiasedness for the crossbred performance. Our results 
suggested that using a small set of genotyped animals 
and pre-corrected data to implement genetic evaluation 
for crossbred performance was less powerful than using 
the whole dataset, which is similar to the conclusions for 
purebred performance [43].

The regression coefficients obtained with the Vitezica 
model were less than 1, which suggests that variations in 
total genetic effects could be overestimated (inflated). In 
terms of unbiasedness, there was no clear trend among 
the scenarios examined, regardless of whether genomic 
information was included or not. Overall, unbiased-
ness was not a problem in the current study because the 
regression coefficients in all scenarios did not signifi-
cantly differ from 1.

Inbreeding depression for litter size in pigs is a well-
known phenomenon [50, 51], and we found that inclu-
sion of inbreeding effects in the model improved 
predictive abilities of crossbred animals. Estimates of 
inbreeding depression effects are rarely reported, but our 
estimates agree with those previously reported for com-
mercial and Iberian pigs [52]. Inbreeding depression was, 
for the same amount of marker-based inbreeding, more 
detrimental in the Landrace than in the Yorkshire breed. 
There are many possible explanations among which the 
purging of lethal recessive alleles [53]. We also report an 
estimate of the inbreeding depression parameter for the 
crossbred animals, which is between the estimates for 
the parental breeds. To our knowledge, this estimate has 
never been reported.

The correlation between breeding values and domi-
nance deviations is of theoretical concern [30]. How-
ever, this does not apply to the current marker-based 
analyses for the following reasons. (1) In a pedi-
gree-based analysis, mating in an inbred population 
produces deviations from the Hardy–Weinberg equi-
librium, which generate correlations between breed-
ing values and dominance deviations [30]. However, in 
our study, SNPs are in Hardy–Weinberg equilibrium if 
allele frequencies are considered in the current genera-
tion. (2) Such a correlation occurs because the pedigree 

information forces the genetic model to refer to the 
base population, since the state of alleles is not known, 
i.e. only probabilities of IBD are known. In our study, 
the states of alleles are known and the model can be 
described as referring to the current generation instead. 
(3) The equivalent GBLUP models in Eq.  (3) used gen-
otypic additive and dominance values, not breeding 
values and dominance deviations. A reasonable assump-
tion in the model is that additive and dominance effects 
are unrelated at each SNP. Thus, covariance between 
additive and dominance genetic effects was ignored in 
the current study.

Conclusions
We present for the first time the use of genomic inbreed-
ing in crossbred and purebred genomic evaluation. Esti-
mates are biologically sound and are relevant even for 
crossbred animals. We also report for the first time, esti-
mated correlations of allele substitution effects in the 
presence of dominance. For TNB, the dominance genetic 
variance accounts for only a small proportion of the total 
genetic variation (4 to 10%). A moderate, positive genetic 
correlation between breeding values for TNB for pure-
bred and crossbred performances was confirmed. Inclu-
sion of dominance in the GBLUP model did not improve 
predictive ability for crossbred animals, whereas inclu-
sion of inbreeding depression effects did. An additive 
GBLUP model is sufficient to capture the additive genetic 
variances and for genomic evaluation. The GBLUP model 
[22] was applied successfully for genetic evaluations for 
crossbred performance in pigs. This model can poten-
tially be a useful tool in genetic evaluation for crossbred 
performance.
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