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Abstract

In this paper, we introduce item-centric mining, a new semantics for mining
long-tailed datasets. Our algorithm, TopPI, finds for each item its top-k most
frequent closed itemsets. While most mining algorithms focus on the globally
most frequent itemsets, TopPI guarantees that each item is represented in the
results, regardless of its frequency in the database.

TopPI allows users to efficiently explore Web data, answering questions such
as “what are the k most common sets of songs downloaded together with the
ones of my favorite artist?”. When processing retail data consisting of 55 million
supermarket receipts, TopPI finds the itemset “milk, puff pastry” that appears
10,315 times, but also “frangipane, puff pastry” and “nori seaweed, wasabi, sushi
rice” that occur only 1120 and 163 times, respectively. Our experiments with
analysts from the marketing department of our retail partner, demonstrate that
item-centric mining discover valuable itemsets. We also show that TopPI can
serve as a building-block to approximate complex itemset ranking measures such
as the p-value.

Thanks to efficient enumeration and pruning strategies, TopPI avoids the
search space explosion induced by mining low support itemsets. We show how
TopPI can be parallelized on multi-cores and distributed on Hadoop clusters.
Our experiments on datasets with different characteristics show the superior-
ity of TopPI when compared to standard top-k solutions, and to Parallel FP-
Growth, its closest competitor.

Keywords: Frequent itemset mining, Top-K, Parallel data mining,
MapReduce
2000 MSC: 68W15

1. Introduction

Over the past twenty years, pattern mining algorithms have been applied
successfully on various datasets to extract frequent itemsets and uncover hidden
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Figure 1: Schematic distinction between frequent itemsets mining and TopPI. The area in
red represent each method’s output.

associations [1, 2]. As more data is made available, large-scale datasets have
proven challenging for traditional itemset mining approaches. Since the worst-
case complexity of frequent itemset mining is exponential in the number of items
in the dataset, analysts have been using high support threshold thus estricting
the mining to the globally most frequent itemsets. However, many large datasets
today exhibit a long tail distribution, characterized by the presence of a majority
of infrequent items [3]. Mining at high thresholds eliminates low-frequency
items, thus ignoring most of the data (Figure 1a). In this paper, we propose
item-centric mining, a new semantics that is more appropriate to mining long-
tailed datasets. We design TopPI, an efficient algorithm that implements this
new semantics, and develop centralized and distributed versions of TopPI.

Frequent itemsets mining (FIM) was popularized by the famous “beer and
diapers” association [1]. A common request in the retail industry is the ability to
access a product’s sales trends and associations with other products. This allows
managers to obtain feedback on customer behavior and to propose relevant
product bundles. Traditional FIM algorithms, however, fail to find itemsets for
a majority of products. Their results are often dominated by the most frequent
products (typically occurring less than 5% of the time). On long-tailed datasets,
where the majority of items appear a few times, traditional FIM misses most of
the data as illustrated in Figure 1a. We hence formalize our objective as follows:
extract, for each item, the k most frequent itemsets containing that item. This
new semantics, coined item-centric mining, guarantees to return itemsets for
each item including those with very low frequency.

We present experiments on two real datasets: 55 million supermarket re-
ceipts (over 389,372 products) and the favorite artists of 1.2 million users of
LastFM (see Section 5.1 for more details). Table 1 contains example itemsets
that we generated from these datasets, along with their frequencies. The ex-
amples contain itemsets whose support range from 10 to 682,288. Item-centric
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item (support) top-3 (itemset,support) pairs
milk (682,288) ({milk, grated cheese}, 40,890)

({milk, cola}, 40,846)
({milk, carrier bag}, 40,675)

wasabi (2132) ({wasabi, nori seaweed},352)
({wasabi, sushi rice},244)
({wasabi, nori seaweed, sushi rice},163)

diapers (3335) ({diapers, incontinence pads},160)
({diapers, mattress pad},111)
({diapers, wet wipes},91)

Madonna (77,534) ({Madonna, Coldplay },21,715)
({Madonna, Nelly Furtado},20,857)
({Madonna, Britney Spears},20,428)

Tryo (5134) ({Tryo, Louise Attaque},1620)
({Tryo, Manu Chao},1536)
({Tryo, Radiohead},1463)

Vardoger (10) ({Vardoger, Extol},7)
({Vardoger, Mortification},7)
({Vardoger, Eluveitie},6)

Table 1: TopPI results for k = 3 on retail and music datasets. “Tryo” is associated to two
other french alternative-rock bands, and “Vardoger” with similar metal bands.

itemsets provide the analyst with an overview of the dataset more suitable for
further exploration (Figure 1b). That is relevant for retail datasets but also
for query recommendations [2]. In the latter, recommendation queries can be
computed for rare terms.

Item-centric mining raises a new challenge, namely minimizing the itemsets
exploration while guaranteeing correctness and completeness. In order to handle
large datasets in a reasonable amount of time, the solution must also allow an
efficient parallelization.

We design TopPI, an algorithm able to drive the itemsets exploration towards
solutions of interest with a negligible overhead. In TopPI, the solution space
is shaped as a tree, following LCM [4]. TopPI constructs its results set in
memory, and uses that to dynamically prune the search space as it is traversed.
By searching k itemsets for all items at once, pruning is shared between different
exploration branches.

In a distributed environment, the challenge is to preserve this pruning power
without inter-node communications. TopPI addresses this issue by splitting the
mining into two phases. In the first one, each worker substantially limits its
itemsets exploration, using only local data, and computes a few statistics about
its branches’ first results. These statistics are shared between all workers, and
used in the second mining phase to find the remaining results only.

FIM algorithms rely on a user-provided frequency threshold to reduce the
the input size and limit exploration. TopPI, instead, computes an adequate
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threshold for each branch. The analyst only has to set the parameter k, which
controls the number of itemsets returned for each item. If the itemsets are
directly presented to an analyst, k = 10 can be sufficient, while k = 1000 may
be used when itemsets are analyzed automatically.

We run experiments on a multi-core machine and a Hadoop cluster. We
first compare TopPI to its most obvious competitor that computes a global
top-k with a very low support threshold (itemsets that appear at least twice).
Our baseline is an implementation of TFP[5] and its parallelization with 32
threads. We show that TopPI significantly outperforms its baseline, which fails
to output results in some cases (taking over 8 hours to complete or running out
of memory). The problem of finding top-k itemsets for each item is not anti-
monotone, thus we have to enumerate a few non-solution itemsets to reach some
solutions. But we observe that the baseline enumerates many more intermediate
solutions. Thanks to the use of appropriate heuristics to guide the exploration,
TopPI only enumerates a small fraction of discarded itemsets. On our music
dataset, when k = 100, the output contains approximately 12.8 million distinct
itemsets. The baseline enumerates 50.6 million itemsets and TopPI only 17.4
millions.

We then evaluate the centralized parallel version of TopPI and examine the
mining time speedup with respect to the number of mining threads. We find
that using 16 threads is a sweet spot for high performance. Above that number,
the memory bus starts to become a bottleneck. Indeed threads compete for
memory accesses when building their reduced datasets, which triggers massive
accesses to non-consecutive areas of the memory. We show that TopPI is able
to mine our music dataset with k = 50 and a support equal to 2 on a laptop
with 4 threads (Intel Core i7-3687U) and 6 GB of RAM in 16 minutes. To
attain a similar level of performance, PFP [2], our closest competitor, requires
a distributed setting with 200 cores.

TopPI relies on frequency to rank each of the k itemsets associated with an
item. The itemsets associated with each item can also be ranked using their
statistical correlation with that item, such as the p-value. However, ranking
by p-value implies a much wider exploration of the itemsets’ space, which is
not affordable at our scale. We hence explore the quality of our results and
compare it to ranking itemsets by p-value. We show experimentally that, while
being faster, the output of TopPI is very close to top-k itemsets ranked by p-
value. We also conduct a user study with marketing experts that shows the
high quality of extracted itemsets.

The paper is organized as follows. Section 2 contains some preliminaries,
defines the item-centric mining semantics and recalls basic principles of itemsets’
mining. The TopPI algorithm is fully described in Section 3. Its MapReduce
version is detailed in Section 4. In Section 5, we present experimental results
and compare TopPI against TFP [5] and PFP [2], the two closest works. We
evaluate the quality of association rules uncovered by TopPI on retail datasets,
in Section 6. Related work is reviewed in Section 7, and we conclude in Section 8.
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TID Transaction
t0 {0, 1, 2}
t1 {0, 1, 2}
t2 {0, 1}
t3 {2, 3}
t4 {0, 3}

(a) Input D

item top(i): P , support(P )
i 1st 2nd

0 {0}, 4 {0, 1}, 3
1 {0, 1}, 3 {0, 1, 2}, 2
2 {2}, 3 {0, 1, 2}, 2
3 {3}, 2
(b) TopPI results for k = 2

Table 2: Sample dataset

2. Item-Centric Mining

2.1. Preliminaries
The data contains items drawn from a set I. Each item has an integer

identifier, referred to as an index, which provides an order on I. A dataset D
is a collection of transactions, denoted {t1, ..., tn}, where tj ⊆ I. An itemset
P is a subset of I. A transaction tj is an occurrence of P if P ⊆ tj . Given
a dataset D, the projected dataset for an itemset P is the dataset D restricted
to the occurrences of P : D[P ] = {t | t ∈ D ∧ P ⊆ t}. In the example dataset
shown in Table 2a, D[{0, 1}] = {t0, t1, t2}. To further reduce its size, all items
of P can be removed, giving the reduced dataset of P : DP = {t \ P | t ∈ D[P ]}.
Hence, in the example, D{0,1} = {{2}, {2}, {}}.

The number of occurrences of an itemset in D is called its support and
denoted supportD(P ). More formally, supportD(P ) = supportD[P ](P ) = |DP |.
An itemset P is said to be closed if there exists no itemset P ′ ⊃ P such that
support(P ) = support(P ′). The greatest itemset P ′ ⊇ P having the same
support as P is called the closure of P , further denoted as clo(P ). For example,
in the dataset shown in Table 2a, the itemset {1, 2} has a support equal to 2
and clo({1, 2}) = {0, 1, 2}.

2.2. The item-centric mining problem
Given a dataset D and an integer k, our goal is to return, for each item in

D, the k most frequent closed itemsets containing this item. Table 2b shows the
solution to this problem applied to the dataset in Table 2a with k = 2. Note
that we purposely ignore itemsets that occur only once, as they do not show a
behavioral pattern.

2.3. Key principles of closed frequent itemsets enumeration
Several algorithms aim at mining closed itemsets (CIS) present in a dataset [5–

7]. For efficiency reasons, TopPI borrows some principles developed for the LCM
algorithm [4]: the closure extension, that generates new CIS from previously
computed ones, and the first parent that avoids redundant computation. We
define these principles below.
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clo(∅) = ∅
1

{0}, 4
2

{0, 1}, 3
3

{2}, 3
4

{0, 1, 2}, 2
5

{0, 1, 2}, 2
6

{3}, 2
7〈∅, 0〉

〈∅, 1〉

〈∅, 2〉

〈∅, 3〉

〈{2}, 0〉 〈{2}, 1〉

Figure 2: CIS enumeration tree on our example dataset (Table 2a). 〈P, i〉 denotes the closure
extension operation.

Definition 1. An itemset Q ⊆ I is a closure extension of a closed itemset
P ⊆ I if ∃e /∈ P , called an extension item, such that Q = clo(P ∪ {e}).

TopPI enumerates CIS by recursively performing closure extensions, starting
from the empty set. In this context, pruning the solution space means avoiding
one or many recursive calls. In Table 2a, {0, 1, 2} is a closure extension of both
{0, 1} and {2}. This example shows that, starting from simple itemsets of size
1, a new itemset of size 2 can be generated by two different closure extensions.
Uno et al. [7] introduced two principles which guarantee that each closed itemset
is traversed only once in the exploration. We adapt their principles as follows.
First, extensions are restricted to items smaller than the previous extension.
Furthermore, we prune extensions that do not satisfy the first-parent criterion:

Definition 2. Given a closed itemset P and an item e /∈ P , 〈P, e〉 is the first
parent of Q = clo(P ∪ {e}) only if max (Q \ P ) = e.

The extension enumeration order and the first parent test shapes the closure
extensions lattice as a tree. Figure 2 shows the itemsets tree for the dataset in
Table 2a. 〈{2}, 1〉 is the first parent of {0, 1, 2}, but 〈{2}, 0〉 is not. Therefore
the branch produced by 〈{2}, 0〉 is pruned.

These enumeration principles also lead to the following property: by ex-
tending P with e, TopPI can only recursively generate itemsets Q such that
max (Q \ P) = e. As we detail in Section 4, this is fundamental to parallelize
both the CIS enumeration and TopPI’s pruning.

Example enumeration. Figure 2 shows how and in which order CFIS are enu-
merated in TopPI on the sample dataset of Table 2a. The itemsets generated
by extending a closed itemset P are located in the sub-tree rooted at P .

1 The algorithm starts by checking if any item in D appears in all trans-
actions. Such items belong to the empty itemset’s closure, clo(∅). As in most
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cases, here clo(∅) is empty. The empty set is therefore used as the initial item-
set. It is extended by each frequent item in D, called starter items. 2 The first
starter is 0, and {0} is a closed itemset so the algorithm stores it. Given that
0 is the smallest item, no recursion happens. 3 The next starter is 1, which
generates by closure the itemset {0, 1}. Given that 1 > 0, the closure satisfies
the first parent test and {0, 1} is stored. The only remaining item in D{0,1} is 2,
but it’s greater than the previous extension item, so no recursion happens. 4
The following starter is 2, leading to {2}, a closed singleton. Two frequent items,
smaller than 2, remain in D{2} so the enumerator performs recursive extensions
of {2}. 5 The algorithm first extends {2} with 0 which, by closure, generates
the pattern {0, 1, 2}. However, max ({0, 1, 2}\{2}) = 1 > 0, so ({2}, 0) is not the
first parent. Hence this exploration branch is aborted. 6 The next extension
of {2} is 1, which also closes to {0, 1, 2}. But this one satisfies the first-parent
test so this closure is returned at this step. No further extension can happen
because D{0,1,2} only contains empty transactions. {2} has no more extensions,
so the algorithm backtracks to the starters. 7 The last starter item is 3. {3}
is closed and valid, but no recursion happens because no frequent item remains
in D{3}.
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Algorithm 1: TopPI
Data: dataset D, set of items I, number of CIS per item k
Result: Output top-k CIS for all items of D

1 begin
2 foreach i ∈ I do
3 startBranch(i,D, k)
4 foreach i ∈ I do
5 output top(i)

6 Function startBranch(e,D, k)
Result: Enumerates itemsets P s.t. max (P ) = e

7 foreach (i, s) ∈ topDistinctSupports(D[e], k) | i 6= e do
8 collect({e ∪ i}, s, false)
9 εe ← entryThreshold(e)

10 foreach i ∈ I, i < e do
11 if supportD[{e}]({i}) ≥ entryThreshold(i) then
12 εe ← min (εe, entryThreshold(i))

13 expand(∅, e,D, εe)

14 Function expand(P, e,DP , ε)
Result: Output CIS containing {e} ∪ P that are potentially are in

the top-k of an item
15 begin
16 if ¬prune(P, e,DP , ε) then
17 Q← clo({e} ∪ P )
18 collect(Q, supportDP

(Q), true)
19 if max (Q \ P ) = e then
20 foreach i ∈ freqε(DQ) | i < e do
21 expand(Q, i,DQ, ε)

22 Function topDistinctSupports(D, k)
Result: Output item, support pairs of the k items having the highest

support, discarding items that have identical support
23 begin
24 h← heap(k)
25 foreach i ∈ I do
26 if 6 ∃(e, supportD({i})) ∈ h then
27 insert(h, (i , supportD({i})))

28 return h

8
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Figure 3: Overview of TopPI

3. TopPI algorithm

In this section, we present TopPI, an algorithm that solves the problem of
finding the top-k closed itemsets (CIS) of each item.

3.1. Overview
TopPI is a recursive algorithm that follows the principles of CIS enumer-

ation introduced in Section 2. The main functions of TopPI are presented in
Algorithm 1, and Figure 3 provides an overview of TopPI. Then, we list the
contributions of TopPI that are key to efficiently computing item-centric top-k
CIS. Finally, we describe the main components of TopPI and indicate in which
part of the algorithm each of these contributions operates.

3.1.1. Recursive structure
TopPI extracts CIS from a dataset D of transactions containing items from

I. TopPI relies on closure extension operations and the definition of the first
parent of CIS, presented in Section 2, to perform the CIS enumeration. The
expand function builds CIS by extending a CIS P with an extension item e to
obtain an new CIS Q ⊃ P . TopPI then recursively executes expand to extend
Q with other items. This leads to a depth-first enumeration of CIS, where
all supersets of Q containing items lower than e are enumerated, following the
tree-shaped structure described in Section 2.

We describe the procedure performing the CIS enumeration following Algo-
rithm 1. In this paragraph, we focus on the part of the algorithm that imple-
ments the recursive algorithm. The details of TopPI are given in the remainder
of Section 3. TopPI starts by executing startBranch on each item e of I (Line 3).
The goal of this function is to enumerate all CISs present in the branch rooted
at the singleton itemset {e}. TopPI enters the recursive expand function by
extending the empty itemset (P = ∅) with e (Line 13). In expand , TopPI first
computes Q, the closure of the union of an itemset P extended by e, to ensure
that only closed itemsets are enumerated (Line 17). Furthermore, TopPI checks
that 〈P, e〉 is the first parent of Q (Line 19) to avoid enumerating supersets of
Q multiple times. When this test succeeds, TopPI performs recursive calls to
expand (Line 21) to generate supersets of Q. All item present at least ε times
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in DQ and smaller than e, based on the ordering of I, are potential extensions.
After these recursive calls, TopPI backtracks to P to enumerate siblings of Q.
Once startBranch has been executed on all items of I, TopPI outputs the top-k
of each item (Line 5) and terminates.

3.1.2. Contributions
The core recursive structure, inherited from LCM [4], provides TopPI with

the basic ability to enumerate CISs. However, TopPI’s CIS enumeration strategy
is significantly more complex than the one of traditional FIM algorithm.

TopPI aims at mining very large datasets while preserving their long-tailed
distribution. FIM generally handles these cases by raising the frequency thresh-
old ε, which allows the elimination of a large fraction of the data, to increase
performance. With TopPI, we want to be able to output CIS appearing with
very low frequency in the dataset. To this end, TopPI incorporates a dynamic
threshold adjustment to improve performance without eliminating relevant data.

Standard FIM algorithms rely on a simple pruning strategy to drastically
reduce the number of CIS enumerated. Algorithms targeting the most frequent
CIS, using a threshold or a global top-k, directly rely on the anti-monotony
property of itemsets’ support [1]. Given two CISs P and Q, P ⊂ Q, if P is not a
valid result, then Q isn’t one either, since supportD(P ) > supportD(Q). Hence,
reaching a CIS whose support is too low to be a valid result means the early
termination of a recursion, with the pruning of the sub-tree. This is, however,
not applicable for TopPI: it is possible for the itemset {0, 1, 2} to be in the
top-k of the item 0 while {1, 2} is not in the top-k of 1 or 2. This makes the
early termination of the enumeration of a CIS branch harder to decide. TopPI
introduces a new pruning strategy to tackle this issue.

Efficient top-k processing generally relies on the early discovery of high rank-
ing results. This allows, using heuristics, the pruning of large fractions of can-
didates without having to perform their exact computation. TopPI boosts the
efficiency of its pruning algorithm by introducing the early collection of promis-
ing results, and optimizing the order of CIS enumeration.

3.1.3. Components of TopPI
We now present the key components of TopPI in Figure 3. TopPI executes

the startBranch function for each item and, as described in Section 3.1.1, re-
cursively calls expand to enumerate CISs. In both these functions, TopPI takes
advantage of an indexing of items by frequency to optimize the order of CIS
enumeration. The top-k collector stores the results of TopPI by maintaining for
each item the current version of its top-k CISs. TopPI transmits CISs to the
collector using collect in expand , but also in startBranch with an early collec-
tion of partial itemsets. Using the current status of the top-k of each item, the
collector provides a dynamic support threshold at the beginning of each branch
that allows TopPI to heavily compress the dataset without losing any potential
result. The state of the collector is also used in expand through the prune func-
tion to determine whether a recursive execution may produce CISs part of the
top-k of an item.
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clo(∅) = ∅
1

{0}, 17
2

3 {5}, 14

{0, 5}, 6
5

{1, 5}, 6
6

{0, 1, 5}, 5
7

{2, 3, 5}, 9
8

{2, 3, 5}, 9
9

10
〈∅, 0〉

〈∅, 1 . . . 4〉

〈∅, 5〉
〈∅, 6 . . . |I| − 1〉

〈{5}, 0〉 〈{5}, 1〉

〈{1, 5}, 0〉

〈{5}, 2〉

〈{5}, 3〉4

(a) Example of CIS enumeration tree of TopPI. This figure focuses on the
branches of items 0 and 5. 〈P, i〉 denotes the closure extension operation.

item top(i): P , support(P )
i 1st 2nd 3rd 4th

0 {0}, 17 {0, 1}, 11 {0, 5}, 6 {0, 1, 5}, 5
5 {5}, 14 {2, 3, 5}, 9 {5, 6}, 8 {5, 9}, 7

(b) TopPI results for items 0 and 5 with k = 4

Figure 4: Illustration of TopPI’s execution

In order to help understanding the detailed explanations presented through-
out Section 3, we provide a running example in Figure 4. For sake of simplicity,
this example is not provided as a dataset and a complete execution trace. In-
stead, Figure 4a represents a partial enumeration tree over an arbitrary dataset:
only selected branches are presented (branches of items 0 and 5). However,
these branches are sufficient to illustrate all optimizations of TopPI, as will be
detailed later. Figure 4b also shows the end result of the algorithm for k = 4:
the top-4 itemsets for items 0 and 5. This example will be used to illustrate the
top-k collector, the optimized order of CIS enumeration, and the early collec-
tion of partial itemsets in Section 3.2. It will serve as a basis to show how the
current top-k results can be used to compute a dynamic support threshold in
Section 3.3. Finally, it will support the description of TopPI’s pruning strategy
in Section 3.4.

3.2. Enumeration and collection of closed itemsets
3.2.1. Top-k collector

TopPI aims at finding, for each item i in the dataset, the k CISs contain-
ing i having the highest support. Similarly to traditional top-k processing ap-
proaches [8], TopPI relies on heap structures to update top-k results throughout
the execution. TopPI’s top-k collector maintains, for each item i ∈ I, top(i), a
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Algorithm 2: Collector functions
1 Function collect(P , s, c)

Data: itemset P , its support s, boolean indicating whether P is
closed c

Result: Updates appropriate top(i)
2 begin
3 foreach i ∈ P do
4 if |top(i)| < k ∨ entryThreshold(i) < s then
5 if c ∧ ((P ′, s, c′) ∈ top(i),∀P ′ ⊆ P ) then
6 remove(top(i), (P ′, s, c′))

7 insert(top(i), (P , s, c))

8 Function entryThreshold(i)
Data: item i
Result: the minimum support to enter the top-k of i

9 begin
10 if |top(i)| < k then
11 return 2

12 else
13 (P, s, c)← last(top(i))
14 if c then
15 return s

16 else
17 return s+ 1

heap containing the current version of the top-k of i. Figure 4b shows top(0 )
and top(5 ) for the example execution of TopPI. top(i) is sorted by decreasing
support of CIS, and maintains a maximal size of k by automatically eliminating
the lowest entry when its size exceeds k. Hence, at any point in time, a CIS
can be added to top(i) if its support is greater than the one of the last entry, or
2 if top(i) contains less than k entries. The helper function entryThreshold(i)
in Algorithm 2 returns the support entry threshold of item i. In Figure 4b,
entryThreshold(0 ) = 6 and entryThreshold(5 ) = 8. Upon computing the sup-
port of an itemset P , TopPI updates top(i) for all items i ∈ P using the collect
function in Algorithm 1 (Line 18). Once the execution is complete, the results
are known to be exact and are returned to the analyst (Algorithm 1, Line 5).
The details of collect are given in Algorithm 2. Cases where c is false, and where
the expression of Line 5 returns true are covered in Section 3.2.3.

As introduced in Section 3.1.2, TopPI implements a pruning strategy to
avoid enumerating CIS and converge to the optimal results quickly. The details
of the pruning strategy are presented in Section 3.4. As many top-k algorithms,
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pruning in TopPI is most efficient when the entry threshold of each top(i) heap
is high. We now review two methods used by TopPI to collect CISs having a
high support early in the execution.

3.2.2. Optimized enumeration order
Before mining a dataset, TopPI executes a pre-processing phase in which

items are indexed by decreasing frequency. Hence, the most frequent item is
indexed with 0 and the least frequent with |I|−1. TopPI relies on this indexing
when enumerating items (Algorithm 1, Lines 2 and 20). In the example of
Figure 4a, the item indexed with 0 has a frequency of 17, so its branch 2
is enumerated before item 5 whose frequency is 14 4 . This method ensures
that, for any item i ∈ I, the first itemsets containing i enumerated by TopPI
combine i with some of the most frequent items in the dataset, which increases
their probability of having a high support and raises entryThreshold(i). Note
that an additional side benefit is that this reduces the probability of failing a
first-parent test (Line 19), which reduces computational overhead.

3.2.3. Early collection
TopPI focuses on mining closed itemsets to avoid redundant results. The

canonical way to enumerate CISs, presented in Section 2.3, is a depth first
approach combined with a first-parent definition to avoid enumerating the same
CIS multiple times. While TopPI follows this general concept (Section 3.1.1),
it introduces two key modifications.

TopPI computes the closure Q of an itemset P extended by e (Algorithm 1,
Line 17). In the example execution of Figure 4a, clo({2, 5}) = clo({3, 5}) =
{2, 3, 5}. Contrary to the standard approach, TopPI collects Q before perform-
ing the first-parent test. Hence, while 〈{5}, 2〉 is not the first parent of {2, 3, 5},
{2, 3, 5} is collected at 8 . This allows TopPI to update the top(i) heap of
each item contained in Q as early as possible, and contributes to raising their
entry thresholds. The drawback is that TopPI may enumerate Q multiple times
(e.g. {2, 3, 5} is enumerated again at 9 ). This feature is undesirable when
CISs are directly outputted upon their enumeration. However, TopPI only re-
turns the results at the end of the enumeration. Duplicates are detected in the
collect function (Algorithm 2, Line 5). Collecting a CIS as early as possible
directly affects pruning potential and largely compensates the cost of duplicate
detection.

Given a CIS P and an extension item e, TopPI has direct access to the
support of P ∪ {e}, as it is pre-computed when generating DP . However, com-
puting Q, the closure of P ∪ {e}, is costly as it requires computing the support
of all items in DP [{e}]. TopPI takes advantage of the availability of extension
support information to perform, at a negligible cost, a restricted breadth-first
exploration. This operation takes place when starting a new branch of CIS
enumeration for item e (Algorithm 1, Line 7): TopPI performs the early collec-
tion of partial itemsets. These itemsets are partial because their closure has not
been evaluated yet, and the top-k collector marks them with a special flag (third
argument of collect set to false). In the example of Figure 4a, when starting
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the branch of item 0 2 , TopPI builds D{0}. This allows the early collection
of 3 partial itemsets: {0, 1} with support 11, {0, 5} with support 6 and {0, 7}
with support 4. The benefit of pre-filling top(e) with partial itemsets is that
it significantly raises the entrance threshold of top(e). These partial items are
later either ejected from top(e) by more (or equally) frequent closed itemsets, or
replaced by their closed form upon its computation (Algorithm 2, Line 5). For
instance, {0, 7} is replaced by {0, 1, 5} in top(0 ) at 7 since {0, 1, 5} has a higher
support. Note that, if no additional verification was performed, this could lead
to errors in the final version of top(i). Indeed, two partial itemsets {i, j} and
{i, l} of equal support may in fact be the same closed itemset {i, j, l}. Inserting
both into top(e) occupies two of the k slots instead of one, which leads to an
overestimation of the entrance threshold of top(e), and trigger the elimination
of legitimate top-k CIS of e. Let’s consider the case of item 5 in Figure 4a 4 :
in D{5}, items 2, 3 have a frequency of 9, 6 has a frequency of 8 and 9 has a
frequency of 7. If TopPI inserts the partial itemsets {2, 5}, {3, 5} and {5, 6} in
top(5 ), entryThreshold(5 ) is raised to 8, which means that {5, 9} cannot enter
top(5 ) because it’s support is 7. But the partial itemsets {2, 5} and {3, 5} are in
fact a single closed itemset {2, 3, 5}, so the output of TopPI would not be correct
if both were inserted. TopPI deals with this problem by only selecting partial
itemsets with distinct supports (function topDistinctSupports in Algorithm 1).
Hence TopPI does not risk inserting partial itemsets corresponding to the same
closed itemset. So after 4 , entryThreshold(5 ) = 7 and the last entry of top(5 )
is the partial itemset {5, 9}.

3.3. Dynamic threshold adjustment
Each dataset, materialized in memory, is accessible through two data struc-

tures: a horizontal and a vertical representation. The horizontal representation
is transaction-based, and provides access, given a transaction index, to the set
of items present in the transaction. Conversely, the vertical representation is
item-based and provides, for each item, the list of transactions it belongs to.
When executing the expand function, TopPI accesses DP [e] using the vertical
representation, to only read from DP the transactions that contain e. TopPI
then scans the transactions of DP [e], using the horizontal representation, to
compute the support of all items in DP [e]. Any item having the same support
as e is part of Q, the closure of P ∪{e}, and is considered in the first parent test
of Algorithm 1 Line 19. The supports of other items are used when executing
the recursive calls to expand at the loop Line 20.

TopPI is designed to operate on datasets containing millions of items and
transactions. Thus the initial dataset D typically occupies a few gigabytes,
making support counting operations expensive. FIM algorithms generally rely
on a high fixed frequency threshold, which allows them at start-up to eliminate
from D all infrequent items. This considerably reduces the size of D but also
eliminates the long tail of the dataset. Instead, to reduce execution-time while
preserving very-low support itemsets, TopPI dynamically determines the appro-
priate frequency threshold for each branch of the recursive CIS enumeration.
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As explained in Section 2.3, when TopPI starts a CIS expansion branch
(startBranch function) for an item e, the CIS recursively generated may only
contain items smaller than e. TopPI makes use of this property (Algorithm 1,
Line 9) to compute an appropriate support threshold value for the branch.
TopPI queries the collector using entryThreshold(i) to obtain the minimum
entry threshold of the top-k of these items. The dynamic frequency threshold,
εe, is set to the minimum of these entry threshold. For instance, in Figure 4a
4 , ε5 is evaluated considering entryThreshold(i)∀i ∈ [0, 5]. If we ignore items 1
to 4, then ε5 = 4 because, at this point of the execution, entryThreshold(0 ) = 4
(see partial itemset {0, 7} in Section 3.2.3) and entryThreshold(5 ) = 7. As an
optimization, TopPI only considers in Line 11 items that have the potential to
update their top-k in this branch, i.e. items whose support in D[{e}] is higher
than their entry threshold. In expand , TopPI materializes in memory DQ, where
Q is the closure of e, using εe to reduce the size of the dataset as much as possible
while ensuring that no relevant CIS is lost. As the collector receives new CIS
when recursively executing expand , the dynamic threshold could be updated to
a higher value. However, it is most efficient to only perform this operation when
starting a new branch, as it directly benefits from the early collection of partial
itemsets (Section 3.2.3) and has a significant impact. Further adjustments in
the same branch are not always amortized. Dynamic threshold adjustment
combines particularly well with the frequency-based iteration order introduced
in Section 3.2.2. Indeed, frequent items tend to have high entrance thresholds.

3.4. Pruning strategy
3.4.1. General concept

There are potentially 2|I| itemsets in a dataset, and TopPI targets datasets
containing hundreds of thousands to millions of items. It is therefore crucial
to provide TopPI with a pruning function able to eliminate a large fractions of
the itemsets in order to obtain results in a reasonable time. TopPI relies on a
tree-shaped enumeration of CIS, following a recursive approach. In this context,
pruning consists in, given a current itemset P and an extension item e, deciding
to not enumerate the 2|{i∈I\P,i<e}| itemsets present in this sub-tree.

In TopPI, the decision to prune is taken on Line 16 of Algorithm 1, at
the beginning of the recursive expand function. As explained in Section 3.1.2,
pruning is generally simple in standard FIM algorithms, thanks to the anti-
monotony property of itemsets’ support. Whenever P ’s support is not high
enough to be part of the results, given that no superset of P can have a higher
support, the whole sub-tree can be safely eliminated. However, in TopPI, given
a CIS Q with 〈P, e〉 as first parent, Q can be part of the top-k of item e while P
is not part of the top-k of any item contained in P . For instance, in Figure 4,
{0, 1, 5} is part of top(0 ) while its first parent itemset {1, 5} is not in top(5 ).
Consequently, the tree traversed by TopPI is not monotonous, and TopPI has
to go through CIS which are not part of the results to recursively reach some of
the results. TopPI does not prune a sub-tree rooted at P based on P alone, but
considers all the itemsets that could be recursively enumerated from P through
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Algorithm 3: Pruning function
1 Function prune(P , e,DP , ε)

Data: itemset P , extension item e, reduced dataset DP , minimum
support threshold ε

Result: false if expand(P , e,DP , ε) may produce an itemset part of
the top-k of an extension item, true otherwise

2 begin
3 foreach i ∈ P ∪ {e} do
4 if supportDP

({e})) ≥ entryThreshold(i)) then
5 return false

6 foreach i ∈ freqε(DP ) | i < e ∧ i 6∈ P do // Potential future
extensions

7 bound i = min(supportDP
({e}), supportDP

({i}))
8 if boundi ≥ entryThreshold(i) then
9 Pexti ←

⋂
t∈DP [{i}] t

10 if max (Pext i) ≤ e then
11 return false

12 return true

first-parent closure extensions. We now detail the pruning strategy of TopPI
(Algorithm 3).

3.4.2. Algorithmic design
TopPI implements a threshold algorithm based on the support of CIS simul-

taneously over multiple top-k. The main difficulty is the fine-grained character-
ization of which top-k can be affected by recursions of expand .

The prune function queries the collector using entryThreshold to determine
whether Q = clo(P ∪ {e}), or any itemset recursively generated by expanding
Q, can impact the top(i) of any item i ∈ I. If this is not the case, then the
sub-tree rooted at Q can be safely eliminated from the CIS enumeration without
altering the completeness of TopPI’s results. We refer to the set of CIS present
in this sub-tree rooted at Q as CQ. As explained in Section 2.3, the itemsets
of CQ all contain (i) e, the extension item, (ii) the items of P , the extended
itemset, and (iii) potentially any item inferior to e, to be added by closure or
recursive extensions.

Cases (i) and (ii) are considered in Lines 3–5. The anti-monotony property
ensures that, among the itemsets of CQ, Q has the highest support, equal to
supportDP ({e}). Hence, we check this support against top(i),∀i ∈ P ∪ {e}.
Items belonging to case (iii) are the remaining items, included in the potential
supersets of P∪{e}. Their impact is evaluated in Lines 6–11. It is not possible to
know the exact support of these supersets as they are not yet explored. However
for the pruning operation, an upper bound is sufficient to determine if it is safe
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to prune or not. This upper bound is shown in Line 7 and is the minimum
between the support of e and i in the projected dataset DP . In the example
of Figure 4a, TopPI enumerates {0, 5} 5 which is added to top(0 ) (case (i)),
replacing a partial itemset added during the early collection phase 2 . TopPI
then enumerates {1, 5} 6 in order to reach {0, 1, 5} 7 . This is an instance of
case (iii), as 0 is part of the items lower than 1 that can be recursively added.
When extending {5} with 3 9 , top(5 ) already contains {2, 3, 5} 8 . However,
TopPI still performs this operation to check whether some supersets of {2, 3, 5}
are frequent enough to be included in top(5 ) (case (ii)). In our example, no
item in D{2,3,5} is frequent enough, and TopPI backtracks.

One last property of the enumeration tree is exploited to further improve
the pruning. When an item i passes the test of Line 8, normally prune should
immediately return false, preventing pruning. However, it is not guaranteed
that a CIS containing i will be actually reached by the enumeration, as a chain
of first parent tests has to be verified to allow that. Line 9 therefore performs
a closure on item i in DP . In Line 10, let p = max (clo(P ∪ {i})). If the item p
is lower or equal to e, then the first parent test may pass and it is not safe to
prune. But if p is strictly greater than e, then it is sure that the CIS sub-tree
created by expanding P with e will not produce any itemset containing i, as
subsequent first parent tests will fail (Q will be found in C{p}). Hence, top(i)
cannot be considered for potential updates. This reasoning is formalized in the
following theorem.

Theorem 1. Let P be a closed frequent itemset and e > i two items of I such
that i 6∈ P , e 6∈ P .
Let Pext i =

⋂
t∈DP [{i}] t = clo(P∪{i}). If max (Pext i) > e, then expand(P, e,DP , ε)

does not output any itemset J ⊃ P such that i ∈ J .

Proof. Given that max(Pext i) > e, we can determine that ∃j ∈ Pext i such
that j > e and D[P ∪{j}] ⊇ D[P ∪{i}]. As J ⊃ P , and i ∈ J , by transitivity we
have D[J∪{j}] = D[J∪{i}] = D[J ], and j is part of J . Hence, max (J \ P) ≥ j.
As TopPI only extends itemsets using items inferior to the previous extension,
in this case e, and j > e, if expand(P, e,DP , ε) or one of its recursive calls
generates such an itemset J , it is aborted by the first parent test of Algorithm 1
in Line 19.

This last improvement allows to further increase the number of times when
prune eliminates parts of the enumeration tree, leading to reduced execution
times.

3.4.3. Optimizing pruning evaluation
For efficiency purposes, TopPI performs important optimizations in the im-

plementation of the prune function.
The loops of Lines 3–5 and 6–11 of Algorithm 3 can iterate on up to |I|

items, and thus take a significant amount of time to complete. To optimize the
execution of the pruning function, we leverage the fact that TopPI enumerates
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extensions by increasing item order. Given two items e and f successive in
the enumeration of the extensions of an itemset P (Algorithm 1, Line 20), the
executions of prune(P, e,DP , ε) and prune(P, f,DP , ε) are extremely similar
(Algorithm 3). The loop of Lines 3–5 enumerates the items of P in both cases.
As e < f , in the execution of prune(P, f,DP , ε), the loop of Lines 6–11 can
be divided into an iteration on i ∈ I | i < e ∧ i 6∈ P and an execution for
i = e. Thus, the execution of prune(P, e,DP , ε) is a prefix of the execution
of prune(P, f,DP , ε). To take full advantage of this property, whenever prune
returns true, TopPI stores an upper bound on the extension support for which
this result holds. For the following extension f , if supportDP

(f) is below this
bound, it is safe to skip the loop of Lines 3–5 as well as the prefix of the loop
of lines 6–11, significantly reducing the execution time of prune. Lines 9–10
cause rare exceptions to this rule, which are correctly handled by TopPI using
an additional flag.

In the loop of lines 6–11, the computation of the closure in line 10 is an
expensive operation. Similarly to our previous optimization, given an execution
prune(P, f,DP , ε), for any item i considered in this loop expand(P , i ,DP , ε) has
been executed previously, as i < e. Hence, this closure has in fact already been
computed in line 17 of Algorithm 1, and TopPI can reuse this result. This is
the reason why we perform the closure of P ∪ {i} and not of P ∪ {e, i}, which
would be more precise but is not pre-computed.

4. Scaling TopPI

We first present the multithreaded version of TopPI, designed to take full
advantage of the multi-core CPUs available on servers. Then, to scale beyond
the capacity of a single server, we present a distributed version of TopPI designed
for MapReduce [9]. The goal is to divide the mining process into independent
subtasks executed on workers while (i) ensuring the output completeness, (ii)
avoiding redundant computation, and (iii) maintaining pruning performance.

4.1. Shared-memory TopPI
The enumeration of CISs by TopPI follows a tree structure, described in Sec-

tion 2.3. As shown by Négrevergne et al. [10], such enumeration can be adapted
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to shared-memory parallel systems by dispatching branches (i.e. startBranch
invocations, Algorithm 1, Line 3) to different threads. This policy ensures that
reduced datasets materialized in memory by a thread are accessed by the same
thread, which improves memory locality in NUMA architectures and makes bet-
ter use of CPU caches. Some branches of the enumeration can generate much
more CISs than others. Towards the end of the execution, when a thread finishes
the exploration of a branch and no new branch needs to be explored, TopPI re-
lies a work stealing policy to split the recursions of expand over multiple threads.
Threads take into account the NUMA topology to prioritize stealing from other
threads that share caches or are on the same socket.

The top-k collector is shared between threads using fine-grained locks for the
top-k of each item. In its single threaded version, TopPI always collects partial
itemsets before replacing them with their closed form (Section 3.2.3). This is no
longer the case in a parallel environment, so the collect function in Algorithm 2
must be updated to avoid inserting a partial (c = false) itemsets P when P ′, a
superset of P having the same support, is already present.

4.2. Distributed TopPI
When executing TopPI on a cluster of workers, each worker executes one

instance of the multi-threaded version of TopPI described in Section 4.1. We
rely on Hadoop to distribute the execution over all workers in parallel. We first
describe how the enumeration of CISs is split between the workers, and then
describe a two-phase mining approach designed to reduce distribution overhead.
Figure 5 gives an overview of our solution.

4.2.1. Partitioning the CISs enumeration
In a distributed setting, enumeration branches are dispatched among work-

ers. Each worker is assigned a partition of items G ⊆ I, and restricts its explo-
ration to the branches starting with an element of G (Algorithm 1, Line 2). Fol-
lowing the example of Table 2, a worker that is assigned the partition G = {0, 2}
outputs the itemsets {0},{2} and {0, 1, 2}. TopPI’s closure extensions follow
a strictly decreasing item order, so a worker generates itemsets P such that
max (P ) ∈ G. Thus, all workers generate different itemsets, without overlap nor
need for a synchronization among them. This partitioning ensures that CISs are
only generated once, so that no processing time is wasted executing redundant
operations.

Given the restrictions on the enumeration tree, a worker only requires the
transactions of D containing items of its partition G. In Section 3.2.2, we de-
scribe the pre-processing step of TopPI in which items are indexed by decreasing
frequency. Workers must agree on the ordering of items as it determines the
first parent of a CIS. Should two tasks obtain a different assignment of items
identifiers, several CISs would be generated multiple times, and others would
be lacking in the output. Consequently, indexing items by decreasing frequency
is performed jointly by all workers on the original dataset D (Figure 5 1 ).
Once the items have been sorted by frequency and indexed, they are assigned
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Partition Partial top-k (phase 1) Bounds Comp. top-k (phase 2)
G0 top(0)→ {0}, 4; {0, 1, 2}, 2 0→ 2 top(1)→ {0, 1, 2}, 2
{0, 2} top(2)→ {2}, 3; {0, 1, 2}, 2 2→ 2 top(3)→ ∅
G1 top(1)→ {0, 1}, 3 1→ 0 top(0)→ {0, 1}, 3
{1, 3} top(3)→ {3}, 2 3→ 0 top(2)→ ∅

Table 3: 2-phase mining over the sample database (Table 2a) with 2 workers, k = 2.

to groups in a round robin fashion. This ensures that the most frequent items,
which form the largest reduced datasets, are assigned to different groups, which
balances the load of workers.

4.2.2. Two-phase mining
The partitioning of the enumeration tree introduces the drawback that the

top-k CISs of an item may be generated by any worker, without the possibility
of predicting which ones. A naive solution is for each worker to compute a local
top-k for all items, and then merge all local top-k into the exact top-k. This
requires enumerating up to k × |I| CISs per worker, exploring a much larger
fraction of the CIS space than centralized TopPI, and significantly limiting the
scalability.

Instead, we rely on the following idea: given an item i ∈ G, the worker re-
sponsible for G collects a partial version of top(i) close to the complete one. In-
deed, as described in Section 3.2.2, it generates CISs that combine i with smaller
items of the dataset (i.e. more frequent items, thanks the pre-processing). Even
though these may not all be in the actual top-k CISs of i, they are likely to have
high support. Consequently, we run distributed TopPI as a two-phase mining
process. In the first phase (Figure 5 2 ), the worker only collects itemsets for
items i ∈ G. This step outputs a first partial version of each item’s top-k, as well
as a lower bound on the support of their complete top-k. In the second phase
(Figure 5 3 ), the worker only collects itemsets for items i 6∈ G to generate
the complement top-k. A final MapReduce job is executed to merge the partial
top-k and the complement top-k (Figure 5 4 ). We illustrate this process with
the example in Table 3.

Overall, this two-phase process is scalable. The first phase of mining com-
pletely splits the enumeration and the collection among groups, without any
impact on the accuracy of pruning. If we compare it to the naive version, we
can see that the second phase is the exact complement of phase one, to overall
achieve the same task. Even though the second phase apparently suffers from
the same scalability problem as the naive version, the bounds generated at phase
one ensure that this mining phase is extremely short and accurately targeted to
simply complete the results of phase one. We confirm the overall scalability of
two-phase TopPI in Section 5.3.2.
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5. Performance evaluation

We evaluate TopPI with two real-life datasets on a multi-core machine and
a Hadoop cluster. Our complete setup is described in Section 5.1. We evaluate
TopPI on a multi-core machine in Section 5.2. We first compare TopPI against
multiple baselines, and evaluate its scalability. We then consider the case of a
Hadoop cluster in Section 5.3, and evaluate TopPI against its closest competitor
on this platform, PFP [2].

5.1. Experimental setup
We use 2 real datasets:

• Supermarket is a 2.8GB retail basket dataset collected from 87 supermar-
kets over 27 months. There are 54.8 million transactions and 389,372
items.

• LastFM is a music recommendation website, on which we crawled 1.2
million public profile pages. Each transaction contains the 50 favorite
artists of a user. We found 1.2 million different artists and the input file
weights 277MB. This dataset is available1.

As shown by Figure 6, both datasets have a long tail distribution: the ma-
jority of items occur in less than a hundred transactions. This is even more
pronounced for LastFM, where only 450,399 items out of the 1.2 million avail-
able occur two times or more.

Our two hardware settings will be referred to as server and cluster. The
multi-threaded variant of TopPI runs on the server configuration: a single ma-
chine containing 4 Intel Xeon X7560 8-cores CPUs, for a total of 32 cores, and
64 GB of RAM. Hadoop programs (TopPI and PFP) are deployed on the clus-
ter configuration, which consists of up to 51 machines running Hadoop 1.2.1

1http://persyval-platform.imag.fr/perscido/web/app_dev.php/DS4/detaildataset
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(without speculative execution), one of them acting as the master node. Each
machine contains 2 Intel Xeon E5520 4-cores CPUs and 24 GB of RAM. We
implemented TopPI in Java and its source code is available 2. All measurements
presented here are averages of 3 consecutive runs.

5.2. Single server
We consider two baseline algorithms that could be used to mine item-centric

CIS. The first one, in Section 5.2.1, is a standard threshold-based frequent item-
set mining algorithm that computes top-k CIS as a post-processing. Then, in
Section 5.2.1, we consider the case of a global top-k algorithm executed re-
peatedly for each item. We validate the impact of TopPI’s optimizations in
Section 5.2.3. In Section 5.2.4 we measure TopPI’s resource utilization and
scalability.

5.2.1. Frequency threshold baseline
In this preliminary experiment, we consider a standard CIS mining algorithm

as a baseline. Given a frequency threshold ε, the algorithm extracts all CIS
whose support is above ε. The top-k CIS of each item can then be computed as
a post-processing on these results, thus producing the same output as TopPI.
We evaluate this approach for different frequency thresholds ε and present the
results in Figure 7. This post-processing approach does not take the number
of desired CIS per item k as a parameter. Hence, we instead measure for each
value of ε the number of items appearing in at least k CIS for 3 values of k.

Each item is present in a CIS whose support is equal to the frequency of
the item in the dataset. This CIS, a singleton in most cases, is the only result
selected when k = 1. We already notice that, given the long-tailed distribution
of the data, is is necessary to reach very low values of ε to select a large number
of items. In the case of LastFM, only 2% of the items appear in more than
0.01% of the transactions. Furthermore, for the same value of ε, only 1% of
the items are included in more than 10 frequent CIS. In practice, it takes 150
hours of CPU time to extract all CIS for this support threshold. The algorithm
mines over 2 billions CIS, but only 24,536 items out of 1.2 million appear in
these results. The behavior of this approach on Supermarket, although slightly
better, highlights the same limitations. Using a frequency threshold of 10−5%,
mining frequent CIS takes one hour. This may appear to be a reasonable run-
time, but the results are not very useful for the analysts: the 34,151,639 CIS
only contain a minority of the available products, 90% of the items are in less
than 10 CIS.

As this experiment shows, standard CIS mining algorithms are perfectly
capable of efficiently enumerating billions of CIS. The problem is that these
itemsets only contain the most frequent items in the dataset, and fail to cover
items from the long tail. Hence, the post-processing approach spends most of
the mining time generating an overwhelming amount of CIS which are of no

2https://github.com/slide-lig/TopPI
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Figure 8: TopPI and global top-k baseline runtimes (in seconds), using 32 threads

interest to the analysts. This observation motivated the development of TopPI,
that efficiently computes item-centric CIS using an integrated approach.

5.2.2. Top-k baseline
We now by compare TopPI to a top-k baseline, which is the most straight-

forward solution to our problem statement: given the parameter k, the baseline
applies a global top-k CIS mining algorithm on the projected dataset D[i], for
each item i in D occurring at least twice.

To perform this experiment, we implemented TFP[5] to serve as the top-k
miner. TFP has an additional parameter lmin, which is the minimal itemset
size. In our case lmin is always equal to 1 so we added a major pre-filtering:
∀i, when projecting i on D, we keep only the items having one of the k highest
supports in D[i]. In other words, the baseline also benefits from a dynamic
threshold adjustment. This is essential to its ability to mine a dataset like Su-
permarket. The baseline also benefits from the occurrence delivery provided by
our input dataset implementation (i.e. instant access to D[i]). Its parallelization
is straightforward, hence both solutions use 32 threads, the maximum allowed
on server.
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Figure 9: Number of useful CIS vs. CIS enumerated

Figure 8 shows the runtimes on our datasets when varying k. TopPI sig-
nificantly outperforms its baseline, which fails to output results in some cases
(taking over 8 hours to complete or running out of memory). Despite having
around 40 times more transactions than LastFM, Supermarket is mined very
efficiently.

The execution time of TopPI increases slightly super-linearly with k. This
behavior is common in top-k algorithms. The size of the output is proportional
to k, which suggests a linear behavior. However, as k increases, the difference
between the kth best result and the following ones tends to diminish. Thus,
pruning is not as efficient and extra verifications need to be performed, leading
to a super-linear execution time.

To better understand the performance difference between TopPI and the
baseline, we trace the execution of each algorithm to evaluate the number of
itemsets enumerated. Figure 9 reports this result, and compares it to the num-
ber of itemsets actually present in the output. Ideally, the algorithm should
only enumerate outputted solutions. As explained in Section 3, the problem of
finding top-k itemsets for each item is not anti-monotone, and TopPI has to
enumerate a few additional itemsets to reach some solutions. Thanks the the
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Dataset Complete W/o optimized W/o dynamic W/o
TopPI pruning threshold adjustment both

LastFM 252 307 304 374
Supermarket 275 3697 423 4072

Table 4: TopPI run-times (in seconds) on our datasets, using our machine’s full capacity (31
threads) and k = 250, when we disable the operations proposed in Section 3.

use of appropriate heuristics to guide the exploration, TopPI only enumerates a
small fraction of discarded itemsets, which explains its good performance. On
the contrary, TFP enumerates a significant amount of itemsets that do not con-
tribute to the output. The main reason is that TFP does not perform closure
extensions, but merges enumerated itemsets into their closure. When mining
high support itemsets, which is the case in a global top-k context, this does
not constitute a major problem, as the number of itemsets and closed itemsets
are relatively close. However, at lower thresholds, each closed itemset can have
hundreds of unclosed forms, which explains the poor performance of TFP in
this experiment.

5.2.3. Impact of TopPI’s optimizations
In this experiment we measure the impact of optimizations included in

TopPI’s algorithm (Section 3). To do so, we make these features optional in
TopPI’s implementation, and evaluate their impact on the execution time. In
particular, we evaluate the benefits of the optimized pruning evaluation (Sec-
tion 3.4.3) and the dynamic threshold adjustment in startBranch (Section 3.3).

Table 4 compares the execution time of these variants against the fully opti-
mized version of TopPI’s, on all our datasets when using the full capacity of our
server. We use k = 250, which is representative of our use cases and guarantees
the interestingness of results (see Section 6.3). Disabling dynamic threshold ad-
justment implies that all projected datasets created during the CIS exploration
carry more items. Hence intermediate datasets are bigger. This slows down
the exploration (+20% for LastFM, +53% for Supermarket) but also increase
the memory consumption. The TFP-based baseline presented in the previous
experiment cannot run without dynamic threshold adjustment, but TopPI still
shows a reasonable run-time. When we also disable the use of a short-cut in the
loops of the prune function, it becomes a major time consumer because it has
to evaluate many extensions in Algorithm 3, lines 6–11. Without these opti-
mizations TopPI is 48% slower on LastFM and 15 times slower on Supermarket.
This experiment shows that it’s the combined usage of these optimizations that
allows TopPI to mine large datasets efficiently.

5.2.4. Speedup on shared-memory systems
We conclude our evaluation of the centralized version of TopPI by reporting

the mining time speedup with respect to the number of mining threads, in
Figure 10. This measure uses up to 31 threads, leaving one core for the system.

26



 0  8  16  24

 0

 4

 8

 12

 16

 20

 24

 28

 32

S
p

e
e

d
u

p

#Threads

Supermarket, k=50
LastFM, k=50
Linear

Figure 10: TopPI speedup on a single server

Our results show that, in practice, the allocation of more worker threads
speeds up the mining process on the server configuration. On these datasets
TopPI threads compete for memory accesses when building their reduced datasets.
This important operation, performed at each step of the solutions traversal, trig-
gers massive accesses to non-consecutive areas of the memory. Thus, when using
16 threads or more, the memory bus starts to become a bottleneck.

When 31 threads are used in parallel, 31 branches of the CIS tree are explored
simultaneously and therefore held in memory, with the corresponding reduced
datasets. Though, even with 32 threads, the peak memory usage of TopPI re-
mains below 10 gigabytes for all datasets. This is shown by on Figures 11a
and 11b, where we report TopPI’s peak RAM consumption for LastFM and Su-
permarket respectively. As k grows, the top-k collector is expanded accordingly.
Furthermore, the prune function guides TopPI towards deeper tree explorations
to generate additional itemsets, thus keeping more reduced datasets in memory.

These results demonstrate that TopPI is fast and scalable. Even on common
hardware, TopPI is able to mine LastFM with k = 50 and ε = 2 on a laptop
with 4 threads (Intel Core i7-3687U) and 6 GB of RAM in 16 minutes, while
this operation takes 13 minutes for PFP on our cluster configuration with 200
cores (as presented in Section 5.3.1).

5.3. TopPI over Hadoop
5.3.1. Performance comparison to PFP

We now compare our Hadoop variant to PFP [2], the closest algorithm to
TopPI: it returns, for each item, at most k frequent itemsets containing that
item. We use the implementation available in the Apache Mahout Library [11].
We use 50 worker machines and launch 4 tasks per machine, allocating 5GB of
memory to each. As PFP is not multithreaded, TopPI now uses a single thread
per task. Mahout’s documentation recommends to create one task for every 20
to 30 items, thus PFP runs 20,000 tasks on LastFM and 17,000 on Supermarket.
The measured runtimes are presented in Figure 12.

27



 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500

P
e

a
k
 R

A
M

 u
s
a

g
e

 (
G

B
)

k
(a) LastFM

 6

 7

 8

 9

 10

 0  100  200  300  400  500

P
e

a
k
 R

A
M

 u
s
a

g
e

 (
G

B
)

k
(b) Supermarket

Figure 11: TopPI peak memory usage, using 32 threads

On Supermarket, PFP’s runtime is surprisingly uncorrelated to k. PFP
can also not terminate correctly above k ≥ 1000 (TopPI can still run with
k ≥ 2000). This may be caused by an implementation corner case, or by the
difference between the two algorithms’ problem statements - TopPI provides
stronger guarantees on long tail itemsets. This is further discussed in Section 6.1.

On LastFM, increasing the value of k has only a moderate influence on
TopPI’s runtime because, when distributed among 200 tasks, the mining phases
are very short so the reported execution time mostly consists of Hadoop I/O.
TopPI remains 3 to 4 times faster that PFP.

5.3.2. TopPI speedup
Figure 13 shows the speedup gained by the addition of worker nodes, on our

biggest dataset, Supermarket, when k = 1000. Here we execute a single mining
task per machine, which fully exploits the available resources by running 8
threads in all the available memory, 24GB.

TopPI shows a perfect speedup from 1 to 8 machines (64 cores), and steadily
gets faster with the addition of workers. Overall, the total CPU time (summed
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Figure 12: TopPI and PFP runtimes on a 200-tasks Hadoop cluster

over all machines) spent in the mining phases (expand function) remains stable:
from 35,000 seconds on average from 1 to 8 machines, it only raises to 38,500
seconds with 48 machines (using their 384 cores). Adding a task to TopPI incurs
I/O costs, such as the time spent reading the initial dataset. Hence there is a
trade-off between the execution time of the mining phases and the I/O overhead.
In this configuration, the sweet spot is around 8 tasks. Should the workload
increases, TopPI would achieve optimal speedup on larger clusters, as the overall
mining time increases and compensates the I/O costs.

This validates the distribution strategy used for the mining phases: the load
is well partitioned and does not increase significantly with the number of tasks.

6. Qualitative study

So far, we showed that ranking item-centric itemsets by support allows an
efficient traversal of the solution space. In this section, we confirm that this
ranking also highlights interesting patterns about long-tailed items. We also
conduct a user study with marketing experts and learn that ranking itemsets
in retail, by p-value, is superior to other measures. We use that to show that
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the results of TopPI can be re-ranked using p-value and obtain useful results for
analysts in the retail industry.

6.1. Mining the long tail
Figure 14 shows the average number of itemsets returned for each item, with

respect to its frequency. In order to make these measures readable, we average
them over item frequency intervals. For the least frequent items, neither TopPI
nor PFP manages to output the requested k itemsets. This is expected as
an item of frequency 3, for example, can be part of at most 4 CIS. For these
items, PFP returns more itemsets than TopPI on LastFM, but most of them
are redundant - both algorithms give the same number of closed itemsets. As
item frequency increases, TopPI returns more itemsets, with almost filled top-k
heaps for all items appearing at least 10 times in the dataset. PFP, however, is
unable to find these itemsets and only returns close to k itemsets for items whose
frequency is above 1000. The difference is even more striking on Supermarket,
where PFP provides the required k itemsets per item only for items occurring
more than 10,000 times.

These results show that, unlike PFP, TopPI performs a complete top-k CIS
mining for all items, even ones in the long tail.

6.2. Example itemsets
From Supermarket:. Itemsets with high support can be found for very common
products, such as milk: “milk, puff pastry” (10,315 occurrences), “milk, eggs”
(9184) and “milk, cereals” (1237). Although this particular milk product was
bought 274,196 times (i.e. in 0.5% of the transactions), some of its top-50
associated patterns would already be out of reach of traditional CIS algorithms:
“milk, cereals” appears in 0.0022% transactions.

Interesting itemsets can also be found for less frequent (tail) products. For
example, “frangipane, puff pastry, sugar” (522), shows the basic ingredients for
french king cake. We also found evidence of some sushi parties, with itemsets
such as “nori seaweed, wasabi, sushi rice, soy sauce” (133).
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Figure 14: Average |top(i)| per item w.r.t. supportD(i) (k = 50)

From LastFM:. TopPI finds itemsets grouping artists of the same music genre.
For example, the itemset “Tryo, La Rue Ketanou, Louise Attaque” (789 oc-
currences), represents 3 french alternative bands. Among the top-10 CIS that
contain “Vardoger” (a black-metal band from Norway which only occurs 10
times), we get the itemset “Vardoger, Antestor, Slechtvalk, Pantokrator, Crim-
son Moonlight” (6 occurrences). TopPI often finds such itemsets, which, in the
case of unknown artists, are particularly interesting to discover similar bands.

6.3. Ranking by p-value
While TopPI returns valuable results, its output also contains a few less in-

teresting itemsets. TopPI focuses on support (recall) to select the top-k results
of an item, but other aspects such as confidence (precision) are equally impor-
tant. The traditional approach to mining itemsets with both high support and
confidence is to first extract frequent itemsets, and filter them using a confidence
threshold [1]. This method can be directly applied on the results of TopPI to
obtain item-centric association rules.
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Some scoring functions, such as F-score and p-value, account for both recall
and precision. In this section, we first report the results of a user study we
conducted with marketing analysts at our retailer partner who provided the
Supermarket dataset. We then show how to reproduce the results in TopPI.

6.3.1. The value of p-value on retail datasets
We run an extensive user study and only summarize relevant results here.

A detailed description of the study is available [12]3. The goal of this study
was to assess the ability of interestingness measures to rank association rules
according to the needs of marketing analysts in the retail industry. We relied on
the expertise of our industrial partner to determine, for each analysis scenario,
which family produces the most interesting results. This experiment involved 2
experienced analysts from the marketing department of our retailer partner. We
let our analysts interact with TopPI without any time restriction, and collect
their feedback in a free text form.

Each analyst was given the ability to rank association rules according to
6 representative ranking measures: Lift, Accuracy, Fisher’s exact test, Cosine,
Piatetsky-Shapiro and Collective strength. The measures were obtained from
previous work [13]. Neither the name of the measure nor its computed values
for association rules were revealed, because we wanted our analysts to evaluate
the ranking without knowing how they were produced.

Resulting association rules were ranked according to a selected measure.
Each rule was displayed with its support, confidence and recall, such that ana-
lysts can evaluate it at a glance. Our analysts were asked which representative
measure highlights the most interesting results

Analysts reported that they preferred ranking by p-value that balances pre-
cision and recall. The analysts were sensitive to the ability of a measure to filter
out very popular products, which are considered noisy. For example, the rule
{vanilla cream, emmental}→ chocolate cream usually appears just above its
shorter version {vanilla cream}→ chocolate cream, because the first one has a
confidence of 32% and the second 31%. However, experts prefer the second one,
because emmental (cheese) is among the heavy hitters in stores. Its addition to
the rule is hence considered insignificant. This “noise” generally increases with
recall. Hence, analysts prefer the recall and confidence trade-off provided by the
p-value.

6.3.2. Approximating the p-value
To the best of our knowledge, there is no algorithm able to efficiently find

the top-n itemsets of an item according to one of these scores. Indeed, current
algorithms may only derive bounds on either recall or precision, so they have
to explore an extremely large part of the itemsets space in order to guarantee
the accuracy of the top-n. However, we argue that it is possible to approximate

3http://arxiv.org/abs/1603.04792
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Figure 15: TopPI’s output coverage of the top-n by p-value

the top-n (according to the p-value) results of an item by re-ranking its top-k
(according to the support) computed by TopPI.

As computing the top-n of an item (by p-value) is extremely costly, we
perform this experiment on a sample of the items from our datasets. We generate
10 buckets of items according to their support, and randomly select 50 items
in each, for a total of 500 items. For each selected item i, we mine the closed
frequent itemsets in D{i} and rank them by increasing p-value, thus obtaining
the item’s top-n. The p-value is computed with Fisher’s exact test, and the
bound described by Minato et al. [14] allows us to adjust the threshold of the
frequent itemset mining step. Figure 15 shows TopPI’s output coverage of the
ground truth we generated, for various k and n.

For LastFM, at coordinates k = 100 we can see that the top-k of an item
contains on average 93% of the itemsets of its top-n (by p-value) for n = 10,
71% for n = 50, and 51% for n = 100. Overall, for k ≥ 5n, TopPI’s coverage
of the top-by-p-value is above 90%, i.e. after re-ranking, over 90% of the n first
results of the top-k are part of the exact top-n (by p-value). Computing the
ground truth for only 500 items takes 8.6 hours of CPU time. Comparatively,
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TopPI consumes 3.1 hours of CPU for all the 450,000 items and the highest
value of k.

We obtain even better results on the Supermarket dataset, where TopPI’s
coverage exceeds 95% when k ≥ 2n. This demonstrate that TopPI can be used as
part of a two-steps approach to accurately emulate refined, but computationally
costly, interestingness measures on large-scale datasets.

7. Related Work

We classify existing itemsets mining algorithms into three families, depend-
ing on how the user restricts the result set. To the best of our knowledge, none
of those algorithms implements TopPI’s semantics. In the following we discuss
similarities and differences with ours.

7.1. Top-k algorithms
Han et al. proposed TFP [5], an algorithm that returns the k most frequent

closed itemsets containing at least lmin items. We refer to this approach as
global top-k, as a maximum of k itemsets are mined for the whole dataset.

A straightforward adaptation of global top-k algorithms to emulate TopPI is
to create, for each item in I, a dataset restricted to the transactions containing
this item. In this case, the global top-k results over the restricted dataset would
correspond to the top-k itemsets of this particular item. After |I| steps, we
would obtain the desired output. Section 5.2.2 of our experiments discussed
this method and showed its limitations.

PFP [2], developed for the MapReduce platform [9], is an item-centric item-
set mining algorithm and therefore the closest work to TopPI. PFP returns a
maximum of k itemsets per item, but does not ensure that these itemsets are the
most frequent, nor that they are closed. We discussed in Section 6.1 the impact
of these differences with TopPI’s problem statement on long-tail patterns. PFP
is also used in Section 5.3 as a baseline for TopPI’s Hadoop version.

7.2. Threshold-based algorithms
The first algorithms in the field were frequent itemsets mining algorithms.

Following Apriori [1], their parameter is a minimum support threshold. But
Apriori, as any other generate-and-test approach, cannot be used on our datasets:
as we want to keep hundreds of thousands items in the results set, the candidate
generation phase would exhaust our machines’ capacity.

Pasquier et al. identified closed itemsets [6], which are typically one or-
der of magnitude less numerous, while conveying the same information. The
ensuing algorithms, such as LCM [4, 7], usually focus on mining closed item-
sets to improve their efficiency. CLOSET [15] is another CIS mining algorithm
which, like FP-Growth [16], uses prefix trees to store the initial and projected
datasets. However constructing prefix trees at our scale is very costly, and is
not amortized on very sparse datasets. In Supermarket, 98% of transactions are
distinct from each other, which is close to prefix trees’ worst case. It was also
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shown in [17] that this structure, if implemented naively, is CPU-inefficient as it
causes many cache misses. Instead LCM’s representation of projected datasets
is straightforward and cache-friendly: it consists of two integer arrays. The first
one contains the dataset’s transactions, concatenated, and the second serves as
a transactions index. Hence our preference for LCM.

In order to mine large datasets, like the ones targeted by TopPI, more recent
work proposes to distribute the frequent itemset mining. Lin et al. developed
a MapReduce implementation of Apriori [18]. Moens et al. also proposed two
algorithms inspired by Eclat [19]. PARMA [20] , another MapReduce algo-
rithm, mines randomly-selected samples of the datasets in order to cut down
network transfers. PARMA ensures tight accuracy guarantees from samples of
size independent of the dataset length.

Although these parallel algorithms can handle large-scale datasets, they in-
herit the initial drawback: by definition, infrequent items that belong to the
long tail are excluded. In practice, this means that even items occurring 10, 000
times are usually filtered out [19]. On the contrary, TopPI does not output all
frequent itemsets, but rather mines a result set covering all of the items.

7.3. Top-quality associations mining
The most frequent association rules are often not surprising. Thus various

methods have been proposed to rank rules like I → i by comparing the supports
of I, i and I ∪ {i}. A the p-value to which expresses the probability that an
association appears by chance.

Mining associations having a p-value below a given threshold started with
StatApriori [21]. More recently this problem statement has also been integrated
in FP-Growth [22] or LCM [14]. These algorithms target dense datasets, where
each transaction contains a non-negligible proportion of the available items.
This is common in biology, but Web or retail datasets have a very different
items distribution, thus those algorithms would generate of a huge quantity of
candidate itemsets.

Le Bras et al. propose the general universal existential upward closure
(GUEUC) in [23] and show that 13 quality measures out of the 32 they study
verify this property. Authors also show how these measures can be integrated in
a generate-and-test mining algorithm. As we already mentioned the candidate
generation step of Apriori is unfeasible at our scale so this solution cannot be
applied to our data.

At our scale, pruning by frequency remains the most effective method, hence
our choice of returning frequent itemsets per items in TopPI. As we show in
Section 6.3, TopPI’s results include enough itemsets of interest, that can be
highlighted by re-ranking or filtering in a post-processing phase.

8. Conclusion

To the best of our knowledge, TopPI is the first algorithm to formalize and
solve at scale item-centric mining. This mining semantic finds for each item, top-
k closed itemsets. Item-centric mining is better suited for long-tailed datasets.
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It guarantees that each item is in the result, regardless of its frequency in the
dataset. Instead of generating millions of itemsets containing the very few fre-
quent items, TopPI spreads its exploration evenly to mine a fixed number of k
itemsets for each item in the dataset, including rare ones. TopPI is able to op-
erate efficiently on long-tailed content, which is out of reach of standard mining
and global top-k algorithms. This is particularly important in the context of
Web datasets, in which the long tail contains most of the information [3], and
in the retail industry, where the long tail accounts for a large fraction of the
revenue [24].

TopPI scales from multi-cores to Hadoop clusters, and is able to analyze
over two years of activity of 87 supermarkets in a few minutes on a single
server, allowing data analysts to easily obtain key associations for any product.
We demonstrate that TopPI’s results are interesting by themselves, and that
TopPI can also be used as a building block to obtain alternative results based
on more sophisticated interestingness measures such as the p-value.
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