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Discriminative Reranking for Spoken Language
Understanding

Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi, Fellow, IEEE

Abstract—Spoken Language Understanding (SLU) is con-
cerned with the extraction of meaning structures from spo-
ken utterances. Recent computational approaches to SLU, e.g.
Conditional Random Fields (CRF), optimize local models by
encoding several features, mainly based on simple n-grams.
In contrast, recent works have shown that the accuracy of
CRF can be significantly improved by modeling long-distance
dependency features. In this paper, we propose novel approaches
to encode all possible dependencies between features and most
importantly among parts of the meaning structure, e.g. concepts
and their combination. We rerank hypotheses generated by
local models, e.g. Stochastic Finite State Transducers (SFSTs)
or Conditional Random Fields (CRF), with a global model.
The latter encodes a very large number of dependencies (in
the form of trees or sequences) by applying kernel methods
to the space of all meaning (sub) structures. We performed
comparative experiments between SFST, CRF, Support Vector
Machines (SVMs) and our proposed discriminative reranking
models (DRMs) on representative conversational speech corpora
in three different languages: the ATIS (English), the MEDIA
(French) and the LUNA (Italian) corpora. These corpora have
been collected within three different domain applications of
increasing complexity: informational, transactional and problem-
solving tasks, respectively. The results show that our DRMs
consistently outperform the state-of-the-art models based on CRF.

I. INTRODUCTION

SPOKEN Language Understanding is concerned with the
task of mapping utterances into meaning representations

based on semantic constituents. These are instantiated by word
sequences and are often referred to as concepts, attributes
or semantic tags. Traditionally grammar-based methods have
been used but more recently machine learning approaches
to semantic structure computation have received a lot of
attention, due to their performance and incremental learning
ability [1]. State-of-the-art learning algorithms, e.g. CRF [2],
are successfully applied to perform conceptual tagging at word
level; these models exploit mainly features based on n-grams.

One drawback of the above-mentioned methods is that the
word dependencies captured by such features have their scope
constrained by the locality of the target word. To overcome this
limitation, CRF models capable of capturing long-dependency
features, i.e. the arbitrary interactions and inter-dependencies
that exist in the observation sequences, have been applied, e.g.
[3]–[6]. The number of all such possible features is extremely
large, thus the subset of relevant features must be specified
and designed in advance, e.g. according to a feature-generating
scheme based on domain knowledge.
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In this paper, we contribute on the above-mentioned re-
search in different ways: first, we effectively model depen-
dencies between features and most importantly among parts
of the meaning structure, e.g. concepts, features and their
combinations. To extract the dependencies from the meaning
structure, this must be available at learning time. Thus we
approach SLU by reranking the hypotheses generated by a
baseline model: in our case we use two different local models,
i.e. SFSTs [7] and CRF [2]. Our discriminative reranking is
modeled with SVMs, which also enable the use of kernel-
based learning [8].

Second, we exploit kernel methods (e.g. see [9]) to generate
the space of all possible dependencies between features and
concepts at any distance in the observation. More specifically,
we design sequential and tree structures to describe the con-
ceptual meaning structure and compactly represent semantic
and syntactic dependencies [10]–[13]. Then, we apply tree and
sequence kernels developed in [14]–[20] to blow up the above-
mentioned structures in the space of substructures. These cor-
respond to dependency features between any arbitrary number
of basic features and concepts at any distance.

Third, since rerankers may be limited by the quality of the
small number (e.g. generally in the order of ten) of hypotheses
produced by the local model, we propose a semantic inconsis-
tency metric (SIM) capable of selecting accurate hypotheses
from an initial large set. Although such metrics is domain
specific, it can be easily adapted to other natural language
processing tasks.

Finally, we improve our DRMs by designing a simple but
effective meta-model selection strategy. For each utterance, the
strategy chooses to apply or not reranking by comparing the
classification confidence of the local and reranker models.

Regarding the empirical validation, we tested our DRMs
on different domains, languages and noisy conditions. More
precisely, we used two different kinds of input: manual tran-
scriptions of spoken sentences and automatic transcriptions
generated by Automatic Speech Recognition systems (ASR).
We combine them with three of the most relevant SLU
annotated corpora in different languages: the well-known ATIS
corpus [21], the French MEDIA corpus [22] and the Italian
conversational corpus acquired within the European project
LUNA [10].

Such corpora are very different with respect to the task
they address (informational, transactional and problem-solving
tasks), speaking styles and the semantic complexity in terms
of number of semantic classes and characteristics of user
utterances. Therefore, they help us to consider SLU in several
conditions: domain, language and style of spoken utterances.
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train. test
# turns 4,978 893

words conc. words conc.
# tok. 52,178 16,547 8,333 2,800
# voc. 1,045 80 484 69
# OOV% – – 1.0 0.1

TABLE I
STATISTICS OF THE ATIS TRAINING AND TEST SETS USED IN THE

EXPERIMENTS

train. dev. test
# sent. 12,908 1,259 3,005

words concepts words concepts words concepts
# tok. 94,466 43,078 10,849 4,705 25,606 11,383
# voc. 2,210 99 838 66 1,276 78
# OOV% – – 1.33 0.02 1.39 0.04

TABLE II
STATISTICS OF THE MEDIA TRAINING, DEVELOPMENT AND EVALUATION

SETS USED FOR ALL EXPERIMENTS

The results show that our best DRMs significantly improve
the state-of-the-art models based on CRF, across all do-
mains/experiments, e.g. up to 2 and 3 absolute percent points
(about 7% and 10% relative error reduction) on MEDIA and
LUNA, respectively. The less accurate FST model is improved
by 6 points (about 10% relative error reduction).

The paper is organized as follows. In Section II, we define
the problem of SLU in the context of spoken conversational
systems by also illustrating the corpora studied in this paper.
Section III illustrates our proposed DRMs whereas Section IV
shows their evaluation across different domains, corpora and
languages. Finally, Section V provides the final remarks in the
light of previous work.

II. SPOKEN LANGUAGE UNDERSTANDING IN ATIS,
MEDIA AND LUNA CORPORA

The novelty of our work relies on the design of new rerank-
ing models, which learn to sort the annotation hypotheses
generated by SLU baseline models. The SLU hypotheses
refer to a meaning representation of spoken utterances and
they include a complete mapping from words into semantic
categories1 (or concepts). This process is typically divided in
two steps: text segmentation and labeling. The concept lexicon
for the latter is acquired from a knowledge base such as a
relational database or domain ontology of a target application
task. In the case of the ATIS corpus [21], the knowledge base is
a relational database while for the MEDIA [22] and the LUNA
corpora [10] a domain ontology was designed (see [23] for the
LUNA ontology). In the following, we describe the typical
format of annotation hypotheses for the corpora above along
with the description of the segmentation and labeling phases,
where the latter also includes the extraction of attribute-values.

A. Description of the SLU Corpora

The Air Travel Information System (ATIS) corpus [21] has
been used for the last decade to evaluate models of Automatic
Speech Recognition and Understanding. It includes speech ut-
terarnces acquired via a Wizard-of-Oz (WOZ) approach, where
users ask for flight information. Statistics for this corpus, i.e.
turns, tokens (tok.) constituted by words or concepts (conc.),

1Their relations are useful to form an interpretation exploitable in a
conversation context [1]

train. dev. test
# sent. 3,171 387 634

words concepts words conc. words concepts
# tok. 30,470 18,408 3,764 2,258 6,436 3,783
# voc. 2,386 42 777 38 1,059 38
# OOV% – – 422 0.0 3.68 0.0

TABLE III
STATISTICS OF THE LATEST VERSION OF THE LUNA TRAINING,

DEVELOPMENT AND EVALUATION SETS USED FOR ALL EXPERIMENTS.

vocabulary items (voc.), percentage of out of vocabulary token
(OOV%) for training (train.) and test sets, are reported in
Table I.

The corpus MEDIA has been collected within the French
project MEDIA-EVALDA [22] for development and evalua-
tion of spoken understanding models and linguistic studies.
The corpus is composed of 1,257 dialogs (from 250 different
speakers) acquired with a WOZ approach in the context of
hotel room reservations and tourist information. Statistics on
transcribed and conceptually annotated data are reported in
Table II. In this case, the corpus is divided in sentences (sent.).

The LUNA corpus, produced in the homonymous European
project, is the Italian corpus of conversational speech. It has
been collected in a contact center providing help-desk support
for software and hardware [10]. The data is organized in
transcriptions and annotations of speech based on a new multi-
level protocol. Here, we provide for the first time results on the
latest version of the corpus. The data used for our experiments
is extracted from 723 Human-Machine dialogs (HM) acquired
with a WOZ approach. The data has been split, with respect
to sentences, in training, development and test sets. Statistics
of this corpus are reported in Table III.

1) Examples of SLU for different corpora: The following
sections show the conceptual annotation available for the three
mentioned corpora, where the difference and complexity are
highlighted.

a) ATIS: Given the following sentence ”I would like a
flight from Phoenix to San Diego on April First”, an example
of the concept annotation of the ATIS corpus is:

null{I would like a flight from} departure city{Phoenix} null{to}
arrival city{San Diego} null{on} departure date.month{April}
departure date.day number{first}

where departure city, arrival city are domain concepts
used for departure and arrival cities, respectively. depar-
ture date.month and departure date.day number are used
for departure date month and day, respectively. null is the
concept tag mapping words not covered by the knowledge
base.

b) MEDIA: As an example taken from the MEDIA
corpus, let us consider the sentence: “Je veux une chambre
double” that translates to ”I want a double room”, a semantic
representation is:

null{Je veux} nb chambre{une} chambre type{chambre double}

where nb chambre and chambre type are domain concepts
modeling number and type of rooms, respectively.

c) LUNA: Given the transcription: “Buongiorno io ho
un problema col mio monitor da questa mattina non riesco
piu’ ad accenderlo” from the LUNA corpus (”Good morning
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I have a problem with my screen, I cannot turn it on any
more since this morning”), an example of the corresponding
semantic annotation is:
null{Buongiorno io ho} HardwareProblem.type{un problema}
Peripheral.type{col mio monitor} Time.relative{da questa mattina}
HardwareOperation.negate{non riesco} null{piu’}
HardwareOperation.operationType{ad accenderlo}

In this case, the domain concepts are HardwareProblem.type,
Peripheral.type, used to model types of hardware problem
and of peripheral devices, Time.relative, used for relative
time expressions (this morning, this afternoon, two days
ago etc.), HardwareOperation.negate and HardwareOper-
ation.operationType, used to describe actions performed on
hardware components.

Note that in the Italian corpus concepts are expressed as
fields of a class, so that different concepts belonging to
the same class can be merged to construct more general
and abstract semantic objects like Hardware. As shown in
[23], this representation can be exploited to perform semantic
analysis based on domain ontology relations.

2) Differences among corpora: Hereafter, we report shared
and different corpus characteristics:

First, application domain. From this point of view ATIS
and MEDIA are rather similar, the former is a corpus of flight
information and reservation whereas the latter is a corpus of
hotel information and reservation.

Second, data collection paradigm. All corpora have been
acquired with a WOZ approach but with a different setup.
In ATIS the data acquisition unit is a single turn, where the
users ask flight information, whereas in MEDIA and LUNA
the units are entire dialogs.

Third, size of the data. LUNA is the smallest corpus (3, 171
turns for training), while MEDIA is (almost thirteen thousand
sentences for training). ATIS is in the middle with roughly
five thousand sentences for training.

Finally, task complexity. It is usually measured in terms of
number of concepts with respect to the size of the available
training data. From this point of view LUNA with only
42 concepts is the simplest task. ATIS and MEDIA have a
comparable complexity since the former includes 69 concepts
whereas the latter contains 65 concepts. Nevertheless MEDIA
is much more complex since some of its concepts have
different specifiers and modes (see [22]). Thus the real number
of tags to be recognized in MEDIA increases to 99.

Moreover, it should be noted that the automatic annotation
of ATIS can be easier than in other corpora for two rea-
sons: (i) most sentences have the form: “Information Request
about” flights from DEPARTURE CITY to ARRIVAL CITY
TIME, where “Information Request about” is one of the
several ways of asking information, DEPARTURE CITY and
ARRIVAL CITY are the names of two cities and TIME is the
specification of a day and/or hour of departure. This kind of
sentences with small variations constitute more than 90% of
the corpus. (ii) In the data available for the SLU task on ATIS,
which is the same used in [24] and in [25], concepts are
always associated with a single token2 so there is no need

2e.g. San Diego is mapped into San-Diego

of segmenting them using BIO-like markers (as shown in
Section II). For example, the previous ATIS sentence, using
the annotation style of the Media or Italian LUNA corpora,
would be annotated as:

null{I would like a flight} departure city{from Phoenix} arrival city {to
San Diego} departure date.month{April}
departure date.day number{first}

That is, the concepts departure city and arrival city would
have a span of two and three words respectively. In contrast,
ATIS only concerns with the problem of token labeling, there
is no need to carry out concept segmentation. For these
reasons, our work on ATIS only relates to concept labeling: the
segmentation can be attained with the deterministic processing
of matching word surface forms.

The task complexity is also affected by the characteris-
tics of utterances. ATIS and MEDIA were acquired with
a WOZ approach with optimal environmental setup (high
quality microphones and absence of noise in the channel)
whereas LUNA was acquired from customers calling call cen-
ter operators. Additionally, (i) utterances in the LUNA corpus
are spontaneous, thus including typical phenomena such as
disfluencies, ill-formed transcriptions and noisy signals; (ii)
the annotation of the turns in the Italian LUNA corpus was
done taking into account turn context. The same words can
be annotated with a different concept in case the context is
different. For example, the phrase “it is not working” can be
a “HardwareOperation” in case it refers to a “Peripheral”,
while it is a “SoftwareOperation” if it refers to “Software”.
For these characteristics, even if the number of concepts to be
recognized is smaller, the LUNA corpus is not simpler than
the other two.

B. Concept Segmentation and Labeling

1) Concept Segmentation: One important phase in the SLU
process is the concept chunking, i.e. concepts can span over
more than one word. In order to have a one-to-one association
between words and concepts, the beginning of a concept
is distinguished from its other components using markers
equivalent to those of the BIO notation [26]. In particular the
Outside marker (O) is replaced by the null tag introduced
before. Using this notation the semantic representation for the
example shown above would be:

null{Buongiorno io ho} HardwareProblem.type-B{un}
HardwareProblem.type-I{problema} Peripheral.type-B{col}
Peripheral.type-I{mio} Peripheral.type-I{monitor} Time.relative-B{da}
Time.relative-I{questa} Time.relative-I{mattina}
HardwareOperation.negate-B{non}
HardwareOperation.negate-I{riesco} null{piu’}
HardwareOperation.operationType-B{ad}
HardwareOperation.operationType-I{accenderlo}

From this representation attribute names can be easily recon-
structed and attribute values can be extracted.
In the remainder of the paper we will evaluate the SLU sub-
tasks of concept segmentation, labeling and value extraction
in the context of reranking frameworks.

2) Normalization and Value Extraction: Once a label (con-
cept or attribute) has been assigned by an automatic model,
also the attribute values, corresponding to surface forms,
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have to be assigned. Thus, an additional step after concept
labeling is the normalization and value extraction. In the
LUNA example a possible attribute-value interpretation would
be:
HardwareProblem.type[generic problem] Peripheral.type[screen]
Time.relative[morning] HardwareOperation.negate[non]
HardwareOperation.operationType[turn on]

This is the so-called flat attribute-value annotation output by
the SLU module. Note that at this level the null tags are
removed since they are used to annotate words not relevant
for the task and so they bring no semantic information.
The extracted values are normalized word surface forms, i.e.
keywords, used for each concept (in some cases words are
also converted into digits).

The are two solutions that can be used to perform the value
extraction phase of the SLU task:

(a) rule-based approaches, such as Regular Expressions
(RE) to map the words realizing a concept into the corre-
sponding value. These are defined for each attribute-value pair:
given a concept and its realizing surface, if a grammar rule,
associated with the target concept, matches such surface the
corresponding value is returned.

(b) Probabilistic models, which learn the conditional prob-
ability P (V |W,C) from manually annotated data, where V is
a value, C is a concept and W is the sequence of words.

For the example in the Italian LUNA corpus shown above,
where hardware objects are defined, a set of possible surfaces
that can be mapped to the concept “Peripheral” is: (i) screen;
(ii) the screen; (iii) with my screen ...

Note that all these surfaces share the same keyword, i.e.
“screen”, which can be chosen as a value. All the results in
this paper were obtained with approach (a) although some
preliminary experiments reveal that (b) is promising and to our
knowledge novel. In more detail, the approach (a) must cope
with rules that can be in general ambiguous: more than one
rule can be applied to the same surface form to extract different
values, although such rules are a small subset. Indeed, applying
only unambiguous rules gives already acceptable results on
manual transcriptions. On automatic transcriptions rules are
tuned by hand using complex regular expressions and sorted
consistently with respect to two parameters: (1) length of the
surface instantiating a concept and (2) rule occurrences. Point
(1) avoid applying general rules when more specific ones are
available (longer surface). A typical example of point (1) is
present in MEDIA: surfaces like ”festival de la chanson” are
applied before ”festival” for the concept event. Point (2) is
used when no other method can be applied: the most frequent
rule (in the training set) is applied.

III. DISCRIMINATIVE RERANKING BASED ON KERNEL
METHODS

Previous work has shown that the models typically used for
SLU, although accurate, cannot easily encode long-distance
dependency relations that exist in the observation and label
sequences. Indeed, a fully automatic learning approach, which
does not a-priori know which are the relevant dependencies,
has to include all possible n-grams in the sequences to attempt
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Fig. 1. The DRM computational architecture showing the fat pipeline, from
speech input to the SLU hypotheses reranking. The ASR module generates n-
best or word lattice, which are used as input to a SLU chunker (segmentation
and labeling) such as CRF or FSTs. Such hypotheses are used by the DRM
module to optimally rerank them using lexical and structural kernels.

capturing all interactions. The number of such n-grams is ex-
tremely large3, consequently, such approach is not practically
feasible. Another more practical method is the so-called guided
approach, which needs to specify and design the features
promising for capturing meaningful relations in advance, e.g.
according to a feature-generating scheme based on domain
knowledge. Unfortunately, this requires a deep understanding
of the language phenomena being studied. A middle approach
concerns the approximation of the required feature space by
automatically looking for promising dependency features, e.g.
[6], [27]. This is very interesting but, being an approximation,
it may not generate all the required features.

Our approach implements exhaustive feature generation by
exploiting kernel methods, which allows for including all
possible dependency features in SVMs. Most importantly,
we also propose features capturing the dependency between
concepts and standard features (such as words and morphology
features). In more detail, we represent the dependency in
the conceptual structure by means of semantic trees and
sequences that we designed. Then, we apply tree and sequence
kernels defined in [16], [18], [20] for extracting all possible
substructures, which correspond to different semantic/syntactic
dependency features. It should be noted that ours is the first
comprehensive study on using such rich semantic features for
SLU.

Since the conceptual annotation is needed to capture mean-
ing structures at learning and classification time, we approach
SLU by reranking hypotheses, e.g. those provided by local
models. This approach is preferable to structural methods, e.g.
[28], as their efficient use with tree and string kernels is an
open issue. Our DRMs are essentially classifiers of hypotheses
pairs 〈Hi, Hj〉, where Hi, Hj are included in the n-best list
(extracted from the hypothesis lattice). These classifiers learn
if Hi is more accurate than Hj and, for this purpose, they
exploit the whole utterance transcription annotation. This is
encoded by our conceptual structures, which are processed by
structural kernels.

In the following sections, we describe the baseline mod-
els used to generate the semantic hypotheses, the reranking
model based on SVMs and the tree-structured features used
to represent the hypotheses above. Finallly, we describe two

3for example for CRF models the number of features is exponential in the
length of the label history (see [2])
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enhancements for discriminative reranking: the semantic in-
consistency metric and the rerank selection strategy.

A. Baseline Models

The preliminary set of hypotheses of the utterance labeling
can be produced by any SLU approach of any complexity,
e.g. the model proposed in [27], which already provides a
set of dependency features. However, starting from simpler
methods offers more appealing advantages: (i) the results are
easily reproducible by other researchers and (ii) in case of
the corpora we consider, such basic approaches are also the
state-of-the-art.

Following this idea, we used two different approaches: (a)
generative models, whose probability distributions typically
estimate the joint probability of words and (shallow) parses;
and (b) discriminative models, which learn a classification
function from words to concepts by minimizing the training
set error.

In particular, we adopted the generative model based on
weighted Finite State Transducers (FSTs), which instantiate
SLU as a translation process from words to concepts. This
model has shown high accuracy despite its simplicity [7]. One
interesting aspect is its easy integration with computational
architecture of automatic speech recognition systems, where
the output can be word lattices encoded as a weighted FSTs.

Additionally, we used a recent approach for SLU based
on CRF [2]. These are undirected graphical models, which
achieve state-of-the-art in SLU (e.g. for MEDIA and LUNA).
Their training is based on conditional probabilities taking into
account many features of the input sequence.

B. Reranker model

Our reranking framework is the one designed in [11]–
[13] and detailed in Figure 1: first an ASR outputs a speech
transcription, which will be the input of the baseline SLU
models. Alternatively, manual transcription can be utilized to
study directly the performance of SLU models, without the
negative impact of the ASR in the overall pipeline.

Second, the baseline SLU model, in our case the SFST
or the CRF, takes the transcription of a spoken sentence as
input and produces the n most likely conceptual annotations
for the sentence. These are ranked by the joint probability of
the Stochastic Conceptual Language Model (SCLM) in case of
SFST or by the global conditional probability of the concept
sequence given the input word sequence when CRF are used.
The n-best list produced by the baseline model is the list
of candidate hypotheses, e.g. H1, H2, ..,Hn, used in the next
reranking step.

Third, the SIM module evaluates and selects the semantic
consistency of ASR hypotheses. This processing step is de-
scribed in Section III-E and it is used to improve the quality
of the n-best list.

Next, the produced hypotheses are used to build pairs, e.g.
〈H1, H2〉 or 〈H1, H3〉. We build training pairs such that a
reranker can learn to select the best between two hypotheses
of a pair, i.e. the hypothesis containing the least number of
mistakes with respect to a reference metric. Such classifier
can be applied to provide the final ranked list.

Finally, the confidence of the reranker, i.e. the SVM score,
can be optionally compared with the one of the basic SLU
model to select the most reliable output (RRS). Hereafter, we
provide more details on the training of our rerankers.

1) Reranker training and classification: Given the
following two annotations of the input sentence “ho un
problema col monitor” (“I have a problem with the screen”):
H1: NULL ho PROBLEM-B un PROBLEM-I problema HARDWARE-B col
HARDWARE-I monitor

H2: NULL ho ACTION-B un ACTION-I problema HARDWARE-B col

HARDWARE-B monitor

we build the pair 〈H1, H2〉, where NULL, ACTION and
HARDWARE are the assigned domain concepts. A pair is
a positive training instance if the first hypothesis (H1 in the
example) has a lower concept annotation error rate than the
second (H2), with respect to the reference manual annotation,
and negative otherwise. In our example, the second annotation
is less accurate than the first since problema is erroneously
annotated as ACTION and ”col monitor” is erroneously split
in two different concepts.

In order to effectively train the reranker, we proceed as
follows: first, we select the best annotation Hk in the n-best list
by measuring the edit distance of all hypotheses with respect
to the manual annotation; second, we generate the positive
instances as pairs 〈Hk, Hi〉, for i ∈ [1..n] and i 6= k, and
negative instances as pairs 〈Hi, Hk〉. At classification time,
since we cannot compare hypotheses with the reference, all
possible pairs 〈Hi, Hj〉, with i, j ∈ [1..n] and i 6= j, must
be generated. Nevertheless, using the simplification described
in [29], we can use single hypotheses instead of pairs4, thus
the classification instances are only n, instead of n2. This
simplification is based on the fact that, as pairs for the training
phase are symmetric, the final model can be represented as
a hyperplane passing through the origin of coordinates, thus
also at classification phase, the score of a pair 〈Hi, Hj〉 is the
opposite of the symmetric pair 〈Hj , Hi〉.

C. The Reranking Kernel

We adopt the kernel introduced in [30] for preference
ranking with ordinal regression and used in [29] for parse tree
reranking and in [17], [19] for predicate argument structure
reranking. Given the definition of a generic pair of hypotheses
el = 〈Hl,1, Hl,2〉, the kernel applied to two pairs e1, e2
computes:

KR(e1, e2) = K(H1,1, H2,1) +K(H1,2, H2,2)

− K(H1,1, H2,2)−K(H1,2, H2,1), (1)

where K can be any kernel function, for example those
described in [15], [18], i.e. String Kernel (SK), Syntactic Tree
Kernel (STK) and Partial Tree Kernel (PTK).

It is worth noting that: first, our reranking schema, con-
sisting in summing four different kernels, has been already
applied in [29], [31] for syntactic parsing reranking, where
the basic kernel was a Tree Kernel.

Second, in [32], an equivalent reranking model was applied
to different candidate hypotheses for machine translation, but

4More precisely, a pair with only one hypothesis, i.e. 〈Hi, ∅〉
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the goal was different and, in general, simpler: our task
consists in selecting the best annotation of a given input
sentence, while in [32], the task is to distinguish between
”good” and ”bad” translations of the same sentence.

Third, the reranking approach brings several advantages,
but also some disadvantages as the reranker training time
is affected by the one of SVMs, which are trained with a
quadratic programming algorithm. However, there are very
fast approaches [33], [34] and methods transforming structural
kernels in linear kernels [35], for which linear training and
testing algorithms exist (e.g. the cutting-plane algorithm).

Finally, two main advantages can be observed in the rerank-
ing model. The first is the ability to put together characteristics
of two different models. The second is that using kernels like
String and Tree Kernels, the reranking model can capture
arbitrarily long-distance dependencies between words and
concepts using the whole semantic annotation generated by
the baseline model. In contrast, the basic models described in
this work can capture dependencies only between words, or
word features, and concepts at a limited distance: trigrams for
the SFST model, bigram for CRF. The latter can reach in any
case high accuracy since it can use many features of the input
sequence and learns directly global posterior probabilities.
D. Structural features for reranking

The kernels described in [14]–[20] provide a powerful
technology to capture structured features from data, but
the latter should be adequately represented. We propose
the following two sequential structures, SK1 and SK2,
to represent SLU hypotheses in the sequence kernel (SK)
defined in [18]:
SK1 NULL ho PROBLEM-B un PROBLEM-I problema HARDWARE-B

col HARDWARE-I monitor
SK2 NULL ho PROBLEM B un PROBLEM I problema HARDWARE B

col HARDWARE I monitor,

where the B/I tags characterize the Begin and Inside (or
continuation) of multiword concepts, as described also earlier.
For both SK1 and SK2, the order of words and concepts is
meaningful since each word is preceded by its corresponding
concepts, so a generic sequence concepti wordj captures
a dependence between i and j while the sequence wordj

concepti does not. Also note that SK1 is more precise than
SK2 since it links the B/I tags together with the concept, but
at the same time, it is more sparse since it produces a larger
number of labels.

The above representation is powerful since can capture all
possible dependencies but it is also rather flat. Therefore,
to better exploit the power of kernels, we build tree-like
structures directly from semantic annotation. Note that the
latter is made upon sentence chunks, which implicitly define
syntactic structures as long as the annotation is consistent in
the corpus. This way we do not need to use syntactic parse
trees and augment them with domain specific information, e.g.
semantic tags. In more detail, we propose the structures for
tree kernel processing shown in Figure 2(a), 2(b) and 3, where
the semantic tree in the latter figure along with STK and PTK
(see [18]) allows for generating a wide number of features
(like Word categories, POS tags, morpho-syntactic features),
which are commonly used in this kind of tasks.

Moreover, we point out that: (a) we only use Word Cate-
gories as features in the semantic trees. Such categories can be
domain independent like ”Months”, ”Dates”, ”Number” etc.,
or a POS-tag subset (used to generalize target word prefixes in
inflexive languages) such as Articles, Prepositions, Possessive
and Demonstrative Adjectives. (b) The features in common
between two trees must appear in the same child-position,
hence they are sorted based on feature indexes, e.g. F0 for
words and F1 for word categories.

Note that the proposed semantic structures shaped as trees
only encode the information pertinent to the task, i.e., the
concepts annotated in a given sentence, their segmentation in
chunks, the surface form of each concepts and some features
needed to improve generalization. In contrast, structures built
on top of syntactic parse trees would be very large and may
contain information, often not needed. Thus a fine pruning of
them would be needed in order to make them effective.

E. Hypothesis Selection Criteria via Inconsistency Metrics
An interesting strategy to improve reranking performance is

a pre-selection of the best set of hypotheses to be reranked.
In previous work [11]–[13], [29], [31], [32], [36], no study in
this direction has been carried out, i.e. the n-best hypotheses
generated by the baseline model were used for reranking.

In this work we propose a Semantic Inconsistency Metric
(SIM) based on the attribute-value extraction (AVE) step of
the SLU process that allows for selecting better hypotheses
used afterwards in the reranking phase.

The attribute-value extraction module is based on rules that
map words (or word sequences) into the corresponding value.
For this purpose, the conceptual information annotated by the
baseline model is also used.

The rules are defined to extract values from well formed
phrases annotated with correct concepts. Thus, when the cor-
responding words are annotated with a wrong concept by the
baseline model, the extracted value will probably result wrong.
We use this property to compute a semantic inconsistency
value for the hypotheses, which allows us to select better
hypotheses, i.e. with higher probability to be correct.

We show our SIM using the same example already used
before, where hypotheses are produced starting from the
sentence “I have a problem with my screen”. From it, three
possible hypotheses may be generated by the baseline model,
where we suppose to have already removed the Null concept
associated with the chunk “I have”:

1) Action{a problem} Peripheral{with my screen}
2) Problem{a problem} Peripheral{with my screen}
3) Problem{a problem} Peripheral{with my} Periph-

eral{screen}
Two of these annotations show typical errors of an SLU

model:
(i) wrong concepts annotation: in the first hypothesis the
phrase “a problem” is erroneously annotated as Action;
(ii) wrong concept segmentation: in the third hypothesis, the
phrase “with my screen” is split in two concepts.
If we apply the AVE module to these hypotheses the result is:

1) Action[] Peripheral[screen]
2) Problem[general problem] Peripheral[screen]
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(a) FLAT Tree (b) MULTILEVEL Tree

Fig. 2. Examples of “FLAT” and “MULTILEVEL” semantic trees used for STK and PTK

Fig. 3. An example of “FEATURES” semantic tree used for STK or PTK

3) Problem[general problem] Peripheral[] Periph-
eral[screen]

We note that Action has an empty value since it was
incorrectly annotated and, therefore, it is not supported by
words from which the AVE module can extract a correct
value. In this case, the output of AVE can only be empty.
Similarly, for the third hypothesis, the AVE module cannot
extract a correct value from the phrase “with the” since it
doesn’t contain any keyword for a Peripheral concept.

For each hypothesis, our SIM counts the number of possibly
wrong values, i.e. empty values. In the example above, we have
1, 0 and 1 for the three hypotheses, respectively. Accordingly,
the most accurate hypothesis under SIM is the second, which
is also the correct one in this case.

We exploit SIM by generating a huge number of hypotheses
with the baseline model and selecting only the top n-best with
respect to the SIM score. These hypotheses are then used
in the discriminative reranking step. Such strategy gives the
advantage of choosing hypotheses from a large set, where it
is probable to find a more correct annotation. In contrast, all
the previous reranking approaches directly used the raw n-best
list provided by baseline model. Moreover, in order to limit
computational cost, the size of the n-best list is kept relatively
small (few tens in the best case).

F. Rerank Selection (RRS)
A reranking model can generally improve the baseline

model used as hypotheses generator. The intuition behind this
claim is that a reranker can infer the statistical distribution
of the baseline model mistakes. Moreover, for this purpose,
it can use the semantic annotation and its consistency over
the whole input sentence, i.e. it can use features capturing
statistical dependencies spanning the whole hypothesis. On the
other hand, a reranker is a statistical classifier, which is subject
to errors with some probability. This means that for some input
sentences, the top ranked hypothesis can be less accurate than
the original best one provided by the baseline model.

We can exploit the above consideration to further improve
the reranking framework; we can build meta-classifiers that,
using meta-features, choose between the outcome of the
reranker and the baseline model. One simple and efficient way
to design such meta-classifier is the use of the classification
scores of the two competing systems above and select the most
reliable one: we call this approach ’ReRank Selection (RRS).
In more detail, it requires the estimation, with respect to error
rate minimization, of two confidence thresholds applied to the
scores of the baseline and the reranking model. Given such
optimal thresholds, we choose the final best SLU hypothesis
with the following decision function:

BestHypothesis =
{HY PRR if(Cfst≤ Tfst and CRR≥ TRR)

HY Pfst otherwise

where HY PRR and HY Pfst/crf are the best hypotheses
derived by the reranker and the baseline model (SFST or CRF)
with their associated score CRR and Cfst/crf , respectively.
TRR and Tfst/crf are the two thresholds trained for the
decision function.

It should be noted that: (i) we use two thresholds in
our models since the two system scores cannot be directly
compared: the SVM outcome is a functional margin whereas
CRF is a probability. Combining these two scores would
require a scaling parameter for one of them in order to give
the correct weight. This in turn would require optimization of
such scaling parameter. (ii) The two thresholds provide more
robustness since they set a specific reliability limit for each
classifier. (iii) This meta-model, although simple, is effective
in exploiting errors made by the baseline and the reranker,
since it uses both scores for prediction, while the reranking
model can only exploit the baseline model score.

IV. EXPERIMENTS

The aim of the experiments is to show that our DRMs
can effectively exploit rich dependency features for improving
state-of-the-art in SLU (at least with respect to our referring
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corpora). For this purpose, we first carried out experiments
to study the impact of different kernels and structures on the
reranking accuracy of baseline models. Secondly, we compare
the reranking algorithms against state-of-the-art models, i.e.
FST, SVMs and CRF. We use benchmarks that aim at repre-
senting tasks of different complexity and language variability,
i.e. the ATIS [21], MEDIA [22] and LUNA [10] corpora.
Third, to have real scenario results, we also compare models
on automatic transcriptions generated by Automatic Speech
Recognition systems (ASR).

Finally, we present the results of our DRM computational
architecture, shown in Figure 1, which exploits the inconsis-
tency metrics for hypothesis pre-selection and the reranking
model selection strategy (to activate or deactivate DRMs).

A. Experimental setup

All the SCLMs that we apply in the experiments either
for the FST model baseline or to produce the input for the
reranking model, are trained with the SRILM toolkit [37]
using an interpolated model for probability estimation with
the Kneser-Ney discount [38]. We then converted the model
in an FST again with SRILM toolkit. One of the drawback of
such model is that its accuracy is affected by the presence of
Out-of-Vocabulary words (OOV). We have solved this problem
by mapping words into word categories, which are usually
not OOV. For ATIS and MEDIA corpora, word categories
were provided together with the corpus, while for the Italian
LUNA corpus categories have been designed together with
the ontology used for annotating the corpus (more details are
given in [23]). Thus, in all cases word categories are part of the
application knowledge base. For example, city names can be
grouped in the category CITY: if a city name, e.g. Bordeaux,
does not appear in the training set, we can back-off to CITY
category, which accounts for other cities, e.g. Paris, appearing
in the training set. Since the FST model first maps words into
categories, Bordeaux is mapped into the category CITY. This
simple solution gives the possibility to correctly tag also OOV
words. The OOV problem is still present but affect much less
the model performance.

The SVM baseline for concept classification was trained
using YamCHA5 [39]. The CRF models were trained with
the CRF++ tool.6 The parameter settings are described in
[40], which is the state-of-the-art on the corpora we consider.
Indeed in [40], CRF are compared with other four models
(SFST, SVMs, Machine Translation, Positional-Based Log-
linear model) by showing that they are by far the best
models on the MEDIA corpus. We used the same features for
both SVM and CRF baseline, i.e. word and morpho-syntactic
features in a window of [-2, +2] with respect to the current
token, plus bigrams of concept tags (see YamCHA and CRF++
web site and [40] for more details).

The reranking models based on structured kernels and
SVMs were trained using the SVM-Light-TK toolkit.7 The
number of hypotheses used for reranking was always set to

5available at http://chasen.org/∼taku/software/yamcha
6available at http://crfpp.sourceforge.net/ (from the same author of Yam-

CHA)
7available at htttp://disi.unitn.it/moschitti

10. The larger is the number of hypotheses the larger will be
the oracle accuracy, but we have to trade-off the latter with
efficiency. The SIM algorithm (Sec. III-E) selects 10 out of
1,000 hypotheses from the baseline model (the large number
of rejected hypotheses did not contribute to the oracle accuracy
of the system).

The thresholds for the decision function of the RRS strategy
(see Sec. III-F) are trained on the development set of the
corresponding corpus.

Our approach for training the reranking models is called
”Split Training” (ST) in [12], and it has been used in many
works about reranking, e.g. in [31]. We split the training set
in two parts: a first FST model is trained on part 1 and
generates the 10-best hypotheses parsing part 2, thus providing
the first chunk of reranker’s data. Then the same procedure is
applied inverting part 1 with part 2 to provide the second data
chunk. Finally, the reranker is trained on the merged data. For
classification, the 10-best hypotheses of the entire test set are
generated using the FST model trained on all training data.

For the ATIS experiments, we did not apply any parameter
optimization, i.e. we used the parameters from previous work.
For the experiments on MEDIA and the Italian corpora, we
optimized all the parameters on the development sets.

The results are expressed in terms of concept error rate
(CER). This is a standard measure based on the Levensthein
alignment of sentences and it is computed as the ratio between
inserted, deleted and confused concepts and the number of
concepts in the reference sentence. When not specified, CER
is computed only on attribute names (Attr.), otherwise CER
is computed for both attribute names and values (Attr-Value).

Since we also tested the SLU models on automatic tran-
scriptions, we report that the latter were produced by a speech
recognizer with a WER of 10.4%, 27.0% and 31.4% on the
ATIS, LUNA and MEDIA test sets, respectively. In all cases
the used language model is an interpolated model with Kneser-
Ney discount [38], which gives a better performance in most
cases.

1) Training and Classification Time Issues: All models
described in this work have been trained on machines with two
CPUs Xeon dual-core 2.3 GHz and 4 or 8 GB of RAM. We
report training time on MEDIA since it is the largest corpus:
using CRF++, we had to use features cut-off (with a threshold
of 2) in order to be able to fit data into the central memory.
Even in this setting the training time was roughly 5 days, to
which the training time for the reranker has to be added. This
was between 7 and 9 days, depending on the structure used
for the kernels.

Higher memory availability allows for using more features
with CRF (without decreasing training time) and increasing
the kernel cache size for the reranker, which significantly
increases the speed of kernel computations. For our latest
experiments, we used machines with 64GB of RAM (and same
computational power as before), which resulted in a training
time for reranking models of roughly 2.5 days.

Concerning classification time, all baseline models, includ-
ing CRF, are fast enough to be used in real time applications.
For example, the CRF model for MEDIA can generate hy-
potheses for a sentence in roughly 0.6 seconds. In contrast the
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Structure STK PTK SK
FLAT 18.5 19.3 -
MULTILEVEL 20.6 19.1 -
FEATURES 19.9 18.4 -
SK1 - - 16.2
SK2 - - 18.5

TABLE IV
CER OF RERANKERS USING STK, PTK AND SK ON LUNA (MANUAL
TRANSCRIPTIONS) APPLIED TO THE FSTS’ OUTPUT. FSTS AND SVMS

ACHIEVE A CER OF 23.2% AND 21.0%, RESPECTIVELY.

reranking model evaluates all the hypotheses in roughly 11
seconds per sentence. This time is rather high for real time
applications, nevertheless SVM classification can be easily
parallelized.

B. Comparing Kernels and Semantic Structures

Table IV shows the accuracy of rerankers using different
kernels applied to different semantic structures. Such results
refer to our previous work in [11], for which we used an
older version of the LUNA corpus (a subset of the corpus
used in this work). We exploit this outcome to motivate our
choice of the best combination of kernels and structures to
be used for the comparison against the state-of-the-art. The
dash symbol appears where the kernel cannot be applied to
the corresponding structure.

It is worth noting that: first, from Table IV, rerankers
significantly improve the baseline results, i.e. 23.2% (CER
for FST) and 21.0% (CER for SVMs). For example, SVM
reranker using SK, in the best case, improves FST concept
classifier of 23.2-16.2 = 7 points.

Second, the structures designed for trees yield rather dif-
ferent results depending on the used kernel. We can see in
Table IV that the best result using STK is obtained with the
simplest structure, i.e. FLAT, while with PTK the best result
is achieved with the most complex structure, i.e. FEATURES.
This is due to the fact that STK does not split the children
of each node, as explained in [15], and so structures like
MULTILEVEL and FEATURES result too rigid and prevent
STK to be effective. In contrast, the structure FLAT is rigid
as well, but since it is very simple and has only one level of
nodes it can capture the most meaningful features.

Third, we do not report all the results using different kernels
and structures for the MEDIA corpus. However, we point
out that since MEDIA is a noticeable larger corpus and its
processing is also more complex (42 concepts in LUNA, 99 in
MEDIA), the more complex structures are also more effective
to capture word-concept dependencies.

Finally, the String Kernel applied to the structure SK1 seems
to be the most effective with a CER of 16.2% on the first
and smaller version of LUNA. However, since SK is com-
putationally demanding, we cannot apply it to large corpora,
e.g. MEDIA or even ATIS. Moreover, in the next section an
experiment on the new version of the LUNA corpus will show
that SK is not more accurate than PTK. For these reasons, we
adopted the PTK with the richest tree structure FEATURES in
all the following reranking experiments: this is the best trade-
off between accuracy and computational complexity. We used
such settings in all the following experiments on the MEDIA
and the Italian LUNA corpora and for both FST and CRF
reranking.

Model ATISman (CER) ATISauto (CER)
FST 6.7% 13.5%
SVM 6.9% 13.8%
CRF 7.1% 14.0%
FST+RR (PTK) 6.2% 13.2%

TABLE V
RESULTS OF SLU EXPERIMENTS ON THE ATIS CORPUS USING MANUAL
(ATISman) AND AUTOMATIC TRANSCRIPTIONS (ATISauto) WITH A

WORD ERROR RATE (WER) OF THE ASR OF 10.4%.

ATIS concepts counts
ArrivalCity 5043
DepartureCity 5018
DepartureDate.day name 1100
AirlineName 802
DepartureTime.period of day 683
DepartDate.day number 450
DepartDate.month name 435
DepartTime.time 426
RoundTrip 421
DepartTime.time relative 387

TABLE VI
TOP MOST OCCURRING CONCEPTS IN THE ATIS CORPUS.

Regarding the use of kernels an interesting finding can be
derived: kernels producing a high number of features, e.g.
SK or PTK, in general produce higher accuracy than kernels
less rich in terms of features, e.g. STK. In particular STK is
improved by 2.3 percent points (Table IV).

C. Cross-Corpus Comparisons using Basic Rerankers

In these experiments, we used the combination of PTK with
the structure FEATURES to design our reranker as it provides
the best compromise between accuracy and efficiency, accord-
ing to the previous section. We compare it across different
corpora, i.e. ATIS, MEDIA and LUNA, respectively.

Table V reports the results on ATIS, obtained with the same
setting of the three baseline models (FST, SVM and CRF).
Since FST results the best model, we only compare with the
reranker built on top of the FST model.

ATIS is the simplest task and this is reflected in high
accuracy for all models, even using automatic transcriptions
coming from an ASR system. Nevertheless it is worth dis-
cussing some interesting outcomes. The errors made on the
ATIS test set are caused by an imbalanced amount of instances
of concepts. Indeed, Table VI shows that the concepts Depar-
tureCity, ArrivalCity and DepartureDate.day name are by
far the most frequent (57.7% of the total counts). This means,
for instance, that the models are strongly biased to annotate a
city as Departure or Arrival city, regardless what the context
is. Note that the reranking model, FST+RR (PTK), even in this
situation, can improve individual systems. The improvement is
only 0.5% points on manual transcriptions, with respect to the
baseline FST model, since the FST model error rate is very
small.

Note that on ATIS there is no value extraction phase since
values basically correspond to surfaces realizing each concept.
Thus, the values for this task are obtained by simple and
deterministic processing of surface forms (the ATIS corpus
used for this task is the same used in [24] and [25]). For this
reason, we have judged not worthwhile applying the improved
reranking models (described in following sections) to ATIS.

Tables VII and VIII show results of the SLU experiments on
the MEDIA and LUNA test sets using manual and automatic
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Model MEDIA(CER) LUNA IT(CER)
Attr. Attr.-Value Attr. Attr.-Value

FST 14.2% 17.0% 24.4% 27.4%
SVM 13.4% 15.9% 25.3% 27.1%
CRF 11.7% 14.2% 21.3% 23.5%
FST+RR 11.9% 14.6% 20.6% 23.1%
CRF+RR 11.5% 14.1% 19.9% 21.9%

CRF+RRSK - - 21.1% 23.4%

TABLE VII
RESULTS OF SLU EXPERIMENTS ON THE MEDIA AND THE ITALIAN

LUNA TEST SETS ON MANUAL TRANSCRIPTIONS. SK INDICATES THE USE
OF SK INSTEAD OF THE USUAL PTK.

Model MEDIA(CER) LUNA IT(CER)
Attr. Attr.-Value Attr. Attr.-Value

FST 28.9% 33.6% 36.4% 39.9%
SVM 25.8% 29.7% 34.0% 36.7%
CRF 24.3% 28.2% 31.0% 34.2%
FST+RR 25.4% 29.9% 32.7% 36.2%
CRF+RR 23.6% 27.2% 29.0% 32.2%

TABLE VIII
RESULTS OF SLU EXPERIMENTS ON THE MEDIA AND THE ITALIAN
LUNA TEST SETS ON AUTOMATIC TRANSCRIPTIONS (ASR WER IS

31.4% FOR MEDIA AND 27.0% FOR LUNA)

transcriptions of spoken sentences, respectively. In these tables
we compare all baseline models (FST, SVM and CRF) and
the reranking models based on FST and CRF hypotheses
(FST+RR and CRF+RR).

As we can see from these tables the most accurate baseline
model is CRF. This is not surprising since we replicate the
CRF models that showed the best performance on some SLU
tasks as described also in [40]. It is worth noting that the
two reranking models proposed in this work improve their
respective baseline models. For instance, FST+RR improves
the FST baseline of 2.4% and 3.7% on MEDIA and LUNA
corpora, respectively, on attribute-values extraction from man-
ual transcriptions (text input from now on). For automatic
transcriptions (speech input from now on) the improvement
is of 3.7% for both corpora.

In contrast, although CRF+RR still improves the CRF base-
line, the improvement is much smaller, i.e. 0.1% on MEDIA
but still meaningful on LUNA, i.e. 1.6% for text input and
attribute-values extraction. This is due to the higher accuracy
of CRF on MEDIA, which leaves much less improvement
margin. This intuition is confirmed by the results of CRF+RR
model on speech input, where, since the baseline CER is rather
higher, the improvement is significant. Still considering the
same tasks as above, i.e. MEDIA and LUNA corpora and
attribute-values extraction, the gain in CER is 1.0% and 1.6%
respectively.

Finally, the last row of the Table VII reports the CER of
reranking using SK, which is higher than the one produced
by PTK. This confirms that the choice of the latter is the
most appropriate. Regarding the very high result obtained by
SK in Table IV, we found out that it is due to the particular
characteristics of the first version of the LUNA corpus (e.g.
rather small, more noisy and less number of concepts) used
in such experiments.

D. Cross-Corpus Comparisons Using Enhanced Rerankers

In these experiments, we applied two enhancements of
DRMs: the SIM and RRS strategy. Tables IX shows com-
parative results on text input between FST, SVM and CRF

Model MEDIA(CER) LUNA IT(CER)
Attr. Attr.-Value Attr. Attr.-Value

FST+RRS 11.7% 14.3% 20.7% 22.8%
CRF+RRS 11.3% 13.6% 19.9% 21.9%

TABLE IX
RESULTS OF SLU EXPERIMENTS ON MEDIA AND ITALIAN LUNA TEST

SETS ON MANUAL TRANSCRIPTIONS USING RE-RANK SELECTION.

Model MEDIA(CER) LUNA IT(CER)
Attr. Attr.-Value Attr. Attr.-Value

FST+RRS 25.0% 29.2% 31.8% 35.5%
CRF+RRS 23.2% 26.8% 28.8% 31.9%

TABLE X
RESULTS OF SLU EXPERIMENTS ON MEDIA AND ITALIAN LUNA TEST

SETS ON AUTOMATIC TRANSCRIPTIONS USING RE-RANK SELECTION.

against RRS (described in Section III-F). We note that RRS
improves accuracy of both FST and CRF. Although, in some
cases the gain is small 0.4% = 11.7% - 11.3% for CRF in the
worst case, i.e. on MEDIA, attribute extraction and text input,
there is a constant improvement in all tasks (with a maximum
gain of 4.6% = 27.4% - 22.8% wrt to FST on LUNA for
attribute-values extraction).

More interesting results can be observed on speech input,
shown in Table X, where the minimal improvement over CRF
is 1.1% = 24.3% - 23.2% and 1.4% = 28.2% - 26.8% on
MEDIA (attribute and attribute value extraction, respectively)
and the maximum improvement over FST is 6.0% = 36.4% -
30.4% and 6.1% = 39.9% - 33.8% on LUNA.

Finally, tables XI and XII report a final comparison of all
our reranking models, also including the hypothesis selection
strategy (SIM), on LUNA and MEDIA corpora, respectively.

We note that the best DRMs, which use RRS and SIM,
i.e. FST+RRS+SIM or CRF+RRS+SIM, significantly improve
the other rerankers. For example, FST+RRS+SIM improves
the model FST+RRS of .4% in the worst case (MEDIA text
input) and 1.7% in the best case (LUNA speech input). Similar
improvement is achieved by the model CRF+RRS+SIM on
CRF+RRS (0.2% in the worst case, 0.5% in the best case).
These results suggest that our simple hypothesis selection
constantly improves DRM. Indeed, it allows for selecting
hypotheses from a larger set than a simple reranking model,
where just 10-20 hypotheses are considered (e.g. see [31]).

The overall enhancement on CRF, which is the best model,
is: 2.3%, 2.4% and 2.7% and 2.8% on LUNA, text input (Attr.
and Attr. values) and speech input (Attr. and Attr. values),
respectively. The improvement on MEDIA is 0.6%, 1.1% and
1.6%, 1.9%, text and speech input respectively.

It should be noted that:
• these results are important since they improve on the state-
of-the-art (reached by CRF). For example, for attribute recog-
nition on manual transcribed data, the best CER reported on
MEDIA is 11.5 [40], which is comparable with our baseline,
i.e. 11.7. In the paper above, better results than the latter are
also reported but they refer to different improved implementa-
tions of the CRF training algorithm thus not related to feature
representation.
• Reranking may be limited by the quality of the hypotheses
generated by the local model. To show that this is not an
important limitation, in Table XIV, we report the Oracle Error
Rates of our rerankers on all three corpora used for our
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Text Input (CER) Speech Input (CER)
Model Attr. Attr.-Val. Attr. Attr.-Val.
FST+RRS+SIM 19.2% 21.5% 30.4% 33.8%
CRF+RRS+SIM 19.0% 21.1% 28.3% 31.4%

TABLE XI
RESULTS ON LUNA CORPUS USING BOTH MANUAL TRANSCRIPTIONS

(TEXT INPUT) AND AUTOMATIC TRANSCRIPTIONS (SPEECH INPUT).

Text Input (CER) Speech Input (CER)
Model Attr. Attr.-Val. Attr. Attr.-Val.
FST+RRS+SIM 11.3% 13.8% 24.5% 28.2%
CRF+RRS+SIM 11.1% 13.1% 22.7% 26.3%

TABLE XII
RESULTS ON MEDIA CORPUS USING BOTH MANUAL TRANSCRIPTIONS

(TEXT INPUT) AND AUTOMATIC TRANSCRIPTIONS (SPEECH INPUT).

experiments in this work.
• These show that there is a large gap with respect to the
current best results and there is a large margin of improvement
using our DRMs.

1) Insight on SIM: The improvement of SIM on our DRMs
makes its investigation worthwhile, especially with respect to
its impact on the selection of hypotheses before the use of
the reranker. This can be evaluated by testing the accuracy
of the baseline model after applying SIM alone. The CER of
SIM applied to the CRF n-best list (CRF+SIM) on manual
transcriptions is reported in the first row of Table XIII, for
both LUNA and MEDIA corpora. We note that SIM slightly
improves CRF, i.e. 0.5% and 0.7% on LUNA and MEDIA
for attribute-value extraction, respectively (compared with
Table VIII).

It is also interesting to test how the oracle accuracy of
the hypotheses changes after SIM (Oracle and OracleSIM ).
The oracle CER is computed by measuring the edit distance
between each hypothesis and the manual annotation and taking
the one with the least number of mistakes. The improvement
of roughly 2.0% (Table XIII, second and third rows) on both
LUNA and MEDIA demonstrates the general validity of SIM.

E. Statistical Significance of the Results
Some of the results derived in this paper show slight

improvement of one model over the other, which prevents
to derive significance of some outcome. For this reason,
we evaluated significance tests of all our results on manual
transcriptions, for both LUNA and MEDIA corpora. We do not
report the same analysis for automatic transcriptions, although
the higher difference typically achieved between models for
them should guarantee a significance of our results.

For the statistical significance tests, we used the software
by Sebastian Pado (available at http://www.nlpado.de/ sebas-
tian/sigf.shtml). This carries out the computationally-intensive
randomization test described in [41], which is particularly
suitable for measures such as Precision, Recall or F1; we
have adapted it for the Concept Error Rate of our models.
It tests the following null hypothesis: given two models with
performances R1 and R2 (in our case R is the Concept Error
Rate), the test evaluates how likely is to observe a difference in
the results at least as large as R1−R2. Since the assumption is
that models are equal, if the probability is lower than a certain
confidence, we can state that the difference is statistically
significant (with respect to such confidence).

LUNA MEDIA
Model Attr. Attr.-Val. Attr. Attr.-Val.
CRF+SIM 21.2% 23.0% 11.5% 13.5%
Oracle 15.5% 18.6% 7.3% 9.5%
OracleSIM 14.4% 16.8% 5.8% 7.5%

TABLE XIII
IMPACT OF SIM ON 10-BEST HYPOTHESES FROM CRF (MANUAL

TRASCRIPTION AND NO RERANKING).

CORPUS CER CER
Attr. Attr.-Val.

ATIS 3.1% 4.3%
MEDIA 5.8% 7.5%
LUNA 14.4% 16.8%

TABLE XIV
ORACLE CER ON THE ENGLISH ATIS, FRENCH MEDIA AND LUNA

ITALIAN CORPORA (MANUAL TRANSCRIPTION).

We report the significance test for a subset of our models
in Table XV. Given two models M1 and M2, M1 vs. M2 is
associated with a score of statistical significance, i.e. the p-
score indicating statistical significance. We provide the sig-
nificance test for the most important comparisons as the full
set of comparisons would require a combinatorial number of
models.

The results show that most of the CER difference between
models are statistically significant. The only important excep-
tion is CRF+RR vs CRF+RRS on the LUNA corpus. However,
this is not completely unexpected as their outcomes are rather
similar and LUNA results are also affected by the small size of
the data. Additionally, low statistically significant scores are
observed for CRF+SIM, i.e. the application of SIM without
applying reranking. In summary, the confidence test assesses
the validity of our DRMs.

V. DISCUSSION AND CONCLUSIONS

In this section we first summarize the ideas and techniques
reported in this paper, then we assess them by discussing the
related work and finally we give an outline of the empirical
results achieved by our models.

A. Qualitative Analysis

An important characteristic of our tree-shaped structures
used by PTK is the ability to capture long distance dependen-
cies. This is confirmed by our comparative analysis between
the outcome of the baseline models and our DRMs, performed
on the outcome on MEDIA. In more detail, MEDIA contains
different concepts providing similar information, which can
be only correctly classified by carefully considering their
context. For example, temps-date (time-date) and temps-jour-
mois (i.e. time-day-month) provide similar information about
time expressions. The first refers to time expressions used
for a hotel reservation whereas the other indicates a general
expression of time. The higher frequency of standard time
concept (temps-jour-mois) biases the prior of the SLU model.
Thus, intuitively, when the context cannot be identified by the
baseline model, the concept temps-jour-mois will be selected.
In contrast, DRMs provide much more context through long-
distance dependencies (e.g. with other concepts expressed in
the sentence like booking). It is interesting to show that CRF
mistook this concept 13 times, while after reranking the same
concept was mistaken only 7 times.
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LUNA MEDIA
Model Pair Attr. Attr.-Val. Attr. Attr.-Val.
CRF+RR vs. CRF+RRS 0.3264 0.1007 9.99e-5 0.0025
CRF+RR vs. CRF+RRS+SIM 9.99e-5 9.99e-5 9.99e-5 9.99e-5
CRF+RR vs. CRF+SIM 0.3653 0.2896 0.0064 9.99e-5
CRF+RRS vs. CRF+RRS+SIM 0.0389 0.0017 9.99e-5 9.99e-5
CRF+RRS vs. CRF+SIM 0.0412 0.1997 9.99e-5 9.99e-5
CRF+RRS+SIM vs. CRF+SIM 0.0011 0.0119 0.1349 0.3309

TABLE XV
SIGNIFICANCE TESTS ON THE MOST MEANINGFUL MODELS DESCRIBED IN

THIS WORK (THE LOWER THE VALUES THE MORE SIGNIFICANT).

Other similar concepts falling into the same rationale
(and so mistaken for the same reason) are: (i) localisation-
lieurelatif-nomme (localization-relative-place-name) and
localisation-lieurelatif-general (localization-general-relative-
place): for which the number of errors are 11 and 5 for
baseline and the reranking models, respectively; (ii) sejour-
nbnuit (journey-number-of-nights) and temps-unite (time-unit),
mistaken 11 and 6 times, respectively, and localisation-rue
(localization-street) and localisation-lieurelatif-general,
mistaken 10 and 6 times, respectively.

This simple qualitative analysis shows that our reranking
models are really effective and can exploit complex informa-
tion that baseline models, based on local information, cannot
in general use.

B. Overall Contribution

In this paper, we have described several approaches to
SLU, with particular emphasis on discriminative reranking,
which exploits SLU hypotheses from baseline models, e.g.
SFST and CRF. The main characteristics of our methods are:
first, we approached SLU as a semantic parsing reranking,
which is different from syntactic parsing reranking. Thus, we
designed and studied different kernels on structures that are
not syntactic. Indeed, we use semantic structures, which aim
at representing lexical semantics and the relationships between
semantic components (i.e. concepts).

Second, we automatically construct our structures on noisy
data, which, in contrast with typical dependency or con-
stituency syntactic structures, are designed to be robust to
noise.

Third, we designed and tested new kernels for semantic tree
processing, e.g. the kernels resulting from the application of
PTK to our new designed conceptual tree structures (which
result in different kernels from those in [31]). These, as
shown by our experiments, are much more effective than other
kernels. We also experimented with string kernels to provide
another non-hierarchical semantic model, whose low efficiency
motivated the structuring of concept semantics in trees rather
than in sequences. In other words, our hierarchical semantic
definition is a step towards the design of compositional se-
mantics in noisy data.

Finally, the kind of features encoded by our kernels are
n-grams of any size also containing gaps, which allow for
including all possible long distance dependencies in the model,
e.g. the relation between two departure cities. Such features,
implicitly generated by our kernels, describe global semantics
of the sentences annotated by baseline SLU models, therefore
enabling global inference. The advantage of using kernels
is that we do not need to manually analyze the data and
intuitively choose the features that we believe may be effective.

C. Related Work
Among learning algorithms, CRF are one of the most useful

method to take into account many features and their depen-
dencies. However, in standard CRF or other non-kernel based
approaches it is difficult to include interesting long-distance
dependency features (or just effective n-grams) since either
we have to manually define them (and this is a difficult task)
or we have to include all possible n-grams. The latter choice
makes learning impractical (too many features). Therefore,
most implementations of CRF [40], [42], [43] use features
in a limited window around the current word to be labeled (to
limit the overall amount of memory and processing time).

Additionally, the CRF computational complexity when us-
ing features built on top of labels (concepts in our case)
exponentially depends on the number of labels used to design
such features. This limits the use of dependencies between
features and labels (in most implementations at most bigram
features are used) so that only approximated models are
available, e.g. the skip-chain CRF [44].

One solution to solve the above limitations is the use of
feature selection. Given the huge number of features involved
in current sequence labeling tasks, wrapper approaches [45]
are not viable (see for example [36]) thus only filter or em-
bedded methods were studied, e.g. [46], [47]. Some interesting
approaches to dependency feature extraction were proposed,
e.g. in [3]–[5] and [6]. Finally, feature selection was also
implemented within CRF using l1 regularization [48], [49], or
laplacian prior [43], [50]. These methods allow for effective
feature selection from a huge space, making learning with CRF
feasible even with billions of features. Unfortunately, including
higher order label features, such as concept dependencies, is
still problematic. To our knowledge the only remarkable work
in this direction is described in [51].

Other relevant work related to our article concerns with
reranking. In [31], tree kernels for reranking of syntactic parse
trees were applied whereas in [52] subtrees were efficiently
used in an explicit structure space. Hidden-variable models
were studied in [53], where a significant improvement was
reached by exploiting several manually designed features. This
is not always possible for new tasks/domains, like ours. Our
approach, as we previously pointed out, is completely different
(with respect to tree type and kernels). From a conceptual point
of view, the work on [54], [55] is more similar to ours as it
models the extraction of semantics as reranking problem also
using string kernels. However, for such purpose the manual
annotation of Minimal Representation Semantic trees (which
are expensive to produce) is needed. Moreover, the studied
application domain, coaching instructions in robotic soccer and
a natural language database interface, is very limited compared
to ours.

A more similar task has been studied in [56] for boundary
detection in conversational speech. The significant improve-
ment over the baseline model shows that reranking is an
interesting approach for SLU. In our paper, for the first time,
we provide indications on how designing DRMs by exploiting
the potential of kernel methods. This has been carried out by
also capitalizing our experience in other researches, e.g. [17],
[19] and [57].
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Previous work shows that reranking is an effective frame-
work to improve and encode global knowledge about the
target task. One of its drawback is the upperbound on system
accuracy set by the baseline model hypotheses. In other words,
if the base model does not provide optimal hypotheses in the
top n positions, no reranker can achieve large improvement.
Thus it is important to analyze such upperbound given by
the error rate computed when always the best hypothesis is
selected (by an oracle). We report the Oracle Error Rates in
Table XIV for the Italian LUNA and for the French MEDIA
corpora. Its entries clearly show that the upperbounds defined
by the base-model hypotheses are largely above the state-of-
the-art, i.e. there is still a wide margin for improvement.

Note that the state-of-the-art SLU on MEDIA combines
several hypotheses with a ROVER approach [58] at token
level. Although this should provide more general and flexible
solutions, the oracle accuracy of our reranking at sentence
level is far much higher. Thus before the use of a reranker
at sentence level becomes a limitation, we have to prove
that the other methods can at least remotely approach such
oracle accuracy. The high value of the latter is partially due
to the application of our simple but effective search in the
hypothesis space, i.e. the SIM. Finally, in such perspective,
other approaches considering the whole hypothesis set have
been studied, e.g. [59].

Regarding our previous work, we designed some prelim-
inary reranking models based on kernel methods in [11]–
[13] although the used hypotheses were only generated by
FSTs. In this paper, we have firstly proposed (i) CRF-based
rerankers, (ii) a much more extensive experimentation on also
new corpora, i.e. ATIS and an extended version of LUNA, and
(iii) the new valuable approaches, i.e. RRS and SIM.

D. Final Remarks

In this section, we summarize the outcome of our com-
parative analysis, carried out on three different tasks: ATIS,
MEDIA and LUNA:
• Our best DRMs consistently and significantly improve the
respective baseline model (SFST or CRF) on all corpora where
our CRF baseline model used the same setting and obtained
the same accuracy of the state-of-the-art (reported in previous
work).
• Experiments with automatic speech transcriptions revealed
the robustness of the reranking models to transcription errors.
• The reranking model, using kernels for NLP like String and
Tree Kernels can take into account arbitrarily long distance
dependencies of words and concepts.
• Kernel methods show that combinations of feature vectors,
sequence kernels and other structural kernels, e.g. on shallow
or deep syntactic parse trees, appear to be a promising research
line.

Our DRMs reach high accuracy thanks to two interesting
strategies we propose for improving SLU reranking:
• The hypothesis selection criteria, i.e. SIM. This allows for
selecting hypotheses from a large set, i.e. those that are most
likely to be correct.
• The ReRank Selection strategy, which is based on the
scores of the baseline and reranking models. This allows for

recovering from mistakes of the reranking models, i.e. in case
the top ranked hypothesis after reranking is less correct than
the original best hypothesis.

In the future this research could be extended by focusing
on advanced shallow semantic approaches such as predicate
argument structures, e.g. [19]. Additionally, term similarity
kernels, will be likely improve reranking models, especially
when combined with syntactic tree kernels, e.g. [60]. Another
interesting future work would be the use of more than one
model to generate hypotheses for learning the reranker so
that several approaches can be combined similarly to ROVER
methods (like in [40]).

Finally, given the latest results on reverse-kernel engineering
[35], it would be possible to extract meaningful features
from our reranking models and use them in other state-of-
the-art approaches, e.g. CRF. At the same time, methods to
use kernels in CRF have been developing [61]. The reverse
engineering will also allow for obtaining faster approaches.
Alternative methods to design fast training may follow the
research line in [33]. On the dialog perspective, our improved
SLU system could be combined with [62] for the design of
an effective dialog manager.
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