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AN ISOPERIMETRIC INEQUALITY FOR THE SECOND NON-ZERO EIGENVALUE OF THE LAPLACIAN ON THE PROJECTIVE PLANE

We prove an isoperimetric inequality for the second non-zero eigenvalue of the Laplace-Beltrami operator on the real projective plane. For a metric of unit area this eigenvalue is not greater than 20π. This value is attained in the limit by a sequence of metrics of area one on the projective plane. The limiting metric is singular and could be realized as a union of the projective plane and the sphere touching at a point, with standard metrics and the ratio of the areas 3 : 2. It is also proven that the multiplicity of the second non-zero eigenvalue on the projective plane is at most 6.

Introduction

Let M be a closed surface and g be a Riemannian metric on M. Let us consider the Laplace-Beltrami operator ∆ : C ∞ (M) -→ C ∞ (M) associated with the metric g,

∆f = - 1 |g| ∂ ∂x i |g|g ij ∂f ∂x j ,
and its eigenvalues (1) 0 = λ 0 (M, g) < λ 1 (M, g) λ 2 (M, g) λ 3 (M, g) . . .

Let us denote by m(M, g, λ i ) the multiplicity of the eigenvalue λ i (M, g), i.e. how many times the value of λ i (M, g) appears in the sequence [START_REF] Anné | Spectre du laplacien et écrasement d'anses[END_REF].

Let us consider a functional λi (M, g) = λ i (M, g) Area(M, g),

where Area(M, g) is the area of M with respect to the Riemannian metric g. This functional is sometimes called an eigenvalue normalized by the area or simply a normalized eigenvalue.
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Yang and Yau proved in the paper [START_REF] Yang | Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds[END_REF] that if M is an orientable surface of genus γ then λ1 (M, g) 8π(γ + 1).

Actually, the arguments of Yang and Yau imply a stronger estimate, λ1 (M, g) 8π γ + 3 2 , see the paper [START_REF] Soufi | Le volume conforme et ses applications d'après Li et Yau[END_REF] and also [START_REF] Nadirashvili | Berger's isometric problem and minimal immersions of surfaces[END_REF]. Here [•] denotes the integer part of a number. Later Korevaar proved in the paper [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF] that there exists a constant C, such that for any i > 0 and any compact surface M of genus γ the following upper bound holds: λi (M, g) C(γ + 1)i.

Recently this upper bound was improved by Hassannezhad [START_REF] Hassannezhad | Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem[END_REF]. She proved that there exists a constant C, such that for any i > 0 and any compact surface M of genus γ, the following upper bound holds: λi (M, g) C(γ + i).

It follows that the functionals λi (M, g) are bounded from above and it is a natural question to find for a given compact surface M and number i ∈ N the quantity Λ i (M) = sup g λi (M, g),

where the supremum is taken over the space of all Riemannian metrics g on M.

Let us remark that the functional λi (M, g) is invariant under rescaling of the metric g → tg, where t ∈ R + . It follows that it is equivalent to the problem of finding sup λ i (M, g), where the supremum is taken over the space of all Riemannian metrics g of area 1 on M. That's why this problem is sometimes called the isoperimetric problem for eigenvalues of the Laplace-Beltrami operator. Definition 1.1. Let M be a closed surface. A metric g 0 on M is called maximal for the functional λi (M, g) if

Λ i (M) = λi (M, g 0 )
If a maximal metric exists, it is defined up to multiplication by a positive constant due to the rescaling invariance of the functional.

Surprisingly, the list of known results is quite short. Hersch proved in 1970 in the paper [START_REF] Hersch | Quatre propriétés isopérimétriques de membranes sphériques homogènes[END_REF] that the standard metric on the sphere is the unique maximal metric for λ1 (S 2 , g) and Λ 1 (S 2 ) = 8π.

Li and Yau proved in 1982 in the paper [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] that the standard metric on the projective plane is the unique maximal metric for λ1 (RP 2 , g) and Λ 1 (RP 2 ) = 12π.

The first author proved in 1996 in the paper [START_REF] Nadirashvili | Berger's isometric problem and minimal immersions of surfaces[END_REF] that the standard metric on the equilateral torus is the unique maximal metric for λ1 (T 2 , g) and

Λ 1 (T 2 ) = 8π 2 √ 3 .
It is not always that a maximal metric exists. As it was proved by the first author in 2002 in the paper [START_REF] Nadirashvili | Isoperimetric inequality for the second eigenvalue of a sphere[END_REF] and later with a different argument by Petrides [START_REF] Petrides | Maximization of the second conformal eigenvalue of spheres[END_REF],

Λ 2 (S 2 ) = 16π.
However, there is no maximal metric. The supremum is attained as a limit on a sequence of smooth metrics on the sphere converging to a singular metric on two spheres of the same radius touching in a point.

The functional λi (M, g) depends continuously on the metric g. However, when λi (M, g) is a multiple eigenvalue this functional is not in general differentiable. If we consider an analytic variation g t of the metric g = g 0 , then it was proved by Berger [START_REF] Berger | Sur les premières valeurs propres des variétés Riemanniennes[END_REF], Bando and Urakawa [START_REF] Bando | Generic properties of the eigenvalue of Laplacian for compact Riemannian manifolds[END_REF], El Soufi and Ilias [START_REF] Soufi | Laplacian eigenvalues functionals and metric deformations on compact manifolds[END_REF] that the left and right derivatives of the functional λi (M, g t ) with respect to t exist. This leads us to the following definition given by the first author in the paper [START_REF] Nadirashvili | Berger's isometric problem and minimal immersions of surfaces[END_REF] and by El Soufi and Ilias in the papers [START_REF] Soufi | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF][START_REF] Soufi | Laplacian eigenvalues functionals and metric deformations on compact manifolds[END_REF]. Definition 1.2. A Riemannian metric g on a closed surface M is called extremal metric for the functional λi (M, g) if for any analytic deformation g t such that g 0 = g one has

d dt λi (M, g t ) t=0+ 0 d dt λi (M, g t ) t=0- .
Jakobson, the first author and Polterovich proved in 2006 in the paper [START_REF] Jakobson | Extremal Metric for the First Eigenvalue on a Klein Bottle[END_REF] that the metric on the Klein bottle realized as so called bipolar Lawson surface τ3,1 , is extremal for λ1 (KL, g). It was conjectured in this paper that this metric is the maximal one. El Soufi, Giacomini and Jazar proved in the same year in the paper [START_REF] Soufi | A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle[END_REF] that this metric on τ3,1 is the unique extremal metric for the λ1 (KL, g). It follows from the results of [START_REF] Matthiesen | Existence of metrics maximizing the first eigenvalue on closed surfaces[END_REF] that there exists a smooth (up to at most a finite number of conical points) metric g K on the Klein bottle such that sup λ1 (KL, g) is attained on g K . It could be then shown (a detailed exposition of this argument could be found in [START_REF] Cianci | Maximization of the Fundamental Tone on the Klein Bottle[END_REF]) that the metric on τ3,1 is the maximal one and, hence,

Λ 1 (KL) = λ1 (KL, g τ3,1 ) = 12πE 2 √ 2 3
,

where E is the complete elliptic integral of the second kind and g τ3,1 is the metric on τ3,1 .

More results on extremal metrics on tori and Klein bottles could be found in the papers [START_REF] Soufi | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF][START_REF] Karpukhin | Nonmaximality of extremal metrics on a torus and the Klein bottle[END_REF][START_REF] Karpukhin | Spectral properties of bipolar surfaces to Otsuki tori[END_REF][START_REF] Karpukhin | Spectral properties of a family of minimal tori of revolution in five-dimensional sphere[END_REF][START_REF] Lapointe | Spectral properties of bipolar minimal surfaces in S 4[END_REF][START_REF] Penskoi | Extremal spectral properties of Lawson tau-surfaces and the Lamé equation[END_REF][START_REF] Penskoi | Extremal spectral properties of Otsuki tori[END_REF][START_REF] Penskoi | Generalized Lawson tori and Klein bottles[END_REF]. A review of these results is given by the second author in the paper [START_REF] Penskoi | Extremal metrics for the eigenvalues of the Laplace-Beltrami operator on surfaces (in Russian)[END_REF].

It was shown in [START_REF] Jakobson | How large can the first eigenvalue be on a surface of genus two?[END_REF] using a combination of analytic and numerical tools that the maximal metric for the first eigenvalue on the surface of genus two is the metric on the Bolza surface P induced from the canonical metric on the sphere using the standard covering P -→ S 2 . The authors stated this result as a conjecture, because the argument is partly based on a numerical calculation. The proof of this conjecture was given in a recent preprint [START_REF] Nayatani | Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian[END_REF].

The first author and Sire proved in 2015 in the paper [START_REF] Nadirashvili | Isoperimetric inequality for the third eigenvalue of the Laplace-Beltrami operator on S 2[END_REF] the equality

Λ 3 (S 2 ) = 24π.
It turns out that there is no maximal metric but the supremum could be obtained as a limit on a sequence of metrics on the sphere converging to a singular metric on three touching spheres of the same radius. It was conjectured in the paper [START_REF] Nadirashvili | Isoperimetric inequality for the second eigenvalue of a sphere[END_REF][START_REF] Nadirashvili | Isoperimetric inequality for the third eigenvalue of the Laplace-Beltrami operator on S 2[END_REF] that

Λ k (S 2 ) = 8πk.
This conjecture was proven in the recent paper [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF] by Karpukhin, Polterovich and the authors.

The main goal of the present paper is to prove the following result.

Theorem 1.3. The supremum of the normalized second nonzero eigenvalue on the projective plane over the space of all Riemannian metrics on RP 2 is given by

(2) Λ 2 (RP 2 ) = 20π.
There is no maximal metric, even among metrics with a finite number of conical singularities. The supremum is attained in the limit by a sequence of metrics of area one on the projective plane. The limiting metric is singular and could be realized as a union of the projective plane and the sphere touching at a point, with standard metrics and the ratio of the areas 3 : 2.

We postpone the definition of metrics with conical singularities till Section 5.

Remark 1.4. This Theorem could be stated as an isoperimetric inequality

λ 2 (RP 2 , g) 20π
for any metric g of area 1.

Remark 1.5. It would be interesting to check whether the equality in (2) could be attained in the limit only by a sequence of metrics converging to a union of touching projective plane and sphere with standard metrics and the ratio of the areas 3 : 2, or there exist other maximizing sequences.

Remark 1.6. The degenerating sequence of metrics in Theorem 1.3 illustrates the "bubbling phenomenon" arising in the maximization of higher eigenvalues, see [START_REF] Nadirashvili | Maximization of higher order eigenvalues and applications[END_REF] for details.

Remark 1.7. It was conjectured in the paper [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF], written after the first version of the present paper, that the equality

Λ k (RP 2 ) = 4π(2k + 1)
holds for any k 1.

The paper is organized in the following way. In Section 2 we recall the relation between extremal metrics and minimal immersions into spheres and explain the importance of upper bounds on the multiplicities of eigenvalues.

In Section 3 we recall the basics of the theory of nodal graphs and the Courant Nodal Domain Theorem. We use them in Section 4 in order to obtain an upper bound for the multiplicity m(RP 2 , g, λ 2 ). Let us remark that bounds on multiplicity of eigenvalues of the Laplace-Beltrami operator on surfaces were subject of numerous papers, see e.g. [START_REF] Besson | Sur la multiplicité de la premiere valeur propre des surfaces riemanniennes[END_REF][START_REF] Cheng | Eigenfunctions and nodal sets[END_REF][START_REF] Hoffmann-Ostenhof | On the multiplicity of eigenvalues of the Laplacian on surfaces[END_REF][START_REF] Karpukhin | Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces[END_REF][START_REF] Nadirashvili | Multiple eigenvalues of the Laplace operator[END_REF].

In Section 5 we pass from minimal immersions to harmonic immersions, extend our considerations to harmonic immersions with branch points and metrics with conical singularities and explain why the results from the previous sections also hold in this case.

In Section 6 we recall the Calabi-Barbosa Theorem about harmonic immersions with branch points S 2 -→ S n and apply it to our situation.

Section 7 contains the description of the space of harmonic immersions with branch points S 2 -→ S 4 due to Bryant and results about singularities of these maps.

Section 8 deals with the question of existence of maximal metrics. Finally, in Section 9 we prove Theorem 1.3.
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Extremal metrics and minimal immersions into spheres

In this Section we recall the relation between extremal metrics and minimal immersions into spheres and explain the importance of upper bounds on the multiplicities of eigenvalues.

Let us recall the definition of a minimal map, see e.g. [START_REF] Eells | A report on harmonic maps[END_REF][START_REF] Eells | Harmonic mappings of Riemannian manifolds[END_REF]. Let (M, g) be a Riemannian manifold of dimension m. Let α be a symmetric bilinear 2-form on T M. Let σ k be the k-th elementary symmetric function. Let σ k (α) = σ k (λ 1 , . . . , λ m ), where λ i are eigenvalues of α related to g, i.e. the roots of the polynomial det(α ijλg ij ) = 0. Definition 2.1. Let (M, g) and (N, h) be Riemannian manifolds. A smooth map f : M -→ N is called minimal if f is an extremal for the volume functional

V [f ] = M |σ m (f * h)| dV ol g , where m = dim M.
It is well-known that a surface M R 3 is minimal if and only if the coordinate functions x i are harmonic with respect to the Laplace-Beltrami operator on M. A similar result holds for a minimal submanifold in R n . Since harmonic functions are eigenfunctions with eigenvalue 0, it is natural to ask what is an analogue of this statement for a non-zero eigenvalue. The answer was given by Takahashi in 1966.

Theorem 2.2 (Takahashi [START_REF] Takahashi | Minimal immersions of Riemannian manifolds[END_REF]). If an isometric immersion

f : M R n+1 , f = (f 1 , . . . , f n+1 ),
is defined by eigenfunctions f i of the Laplace-Beltrami operator ∆ with a common eigenvalue λ, ∆f i = λf i , then (i) the image f (M) lies on the sphere S n R of radius R with the center at the origin such that

(3) λ = dim M R 2 , (ii) the immersion f : M S n R is minimal. If f : M S n R ⊂ R n+1 , f = (f 1 , . . . , f n+1
), is a minimal isometric immersion of a manifold M into the sphere S n R of radius R, then f i are eigenfunctions of the Laplace-Beltrami operator ∆, ∆f i = λf i , with the same eigenvalue λ given by formula (3).

We introduce the eigenvalue counting function

N(λ) = #{λ i |λ i < λ}.
Takahashi's Theorem 2.2 implies that if M is isometrically minimally immersed in the sphere S n R , then among the eigenvalues of M there are at least n + 1 eigenvalues equal

to dim M R 2 . It is easy to see that λ N ( dim M R 2 ) is the first eigenvalue equal to dim M R 2 .
This is important due to the following theorem.

Theorem 2.3 (Nadirashvili [START_REF] Nadirashvili | Berger's isometric problem and minimal immersions of surfaces[END_REF], El Soufi, Ilias [START_REF] Soufi | Laplacian eigenvalues functionals and metric deformations on compact manifolds[END_REF]). Let M S n R be an immersed minimal compact submanifold. Then the metric induced on M by this immersion is extremal for the functional λN( dim M R 2 ) (M, g). If a metric on a compact manifold M is extremal for some eigenvalue then there exists an isometric minimal immersion to the sphere M S n R by eigenfunctions with eigenvalue dim M R 2

of the Laplace-Beltrami operator corresponding to this metric.

If a metric is extremal for λi (M, g), then there exist a minimal immersion of M by corresponding eigenfunctions into S n ⊂ R n+1 . If the image is not contained in some hyperplane then one should have at least n + 1 linearly indepenent eigenfunctions. This means that n + 1 m(M, g, λ i ).

If follows that if we have an upper bound on the multiplicity of an eigenvalue then we have an upper bound on the dimension of the sphere where M is minimally immersed by the corresponding eigenfunctions.

We later use Theorem 2.3 for M = RP 2 . In this case dim M = 2. Using rescaling one can consider only the case of R = 1. Remark that Theorem 2.3 holds also for a non-orientable M.

Since we are interested in the functional λ2 (RP 2 , g), we need an upper bound for m(RP 2 , g, λ 2 ) in order to bound the dimension of the sphere which is sufficient to consider.

Nodal graphs and Courant Nodal Domain Theorem

In this Section we recall the basics of the theory of nodal graphs and the Courant Nodal Domain Theorem that we need in order to obtain in Section 4 an upper bound m(RP 2 , g, λ 2 ) 6.

Let us now recall the following theorem due to Bers.

Theorem 3.1 (L. Bers [START_REF] Bers | Local behavior of solutions of general linear elliptic equations[END_REF]). Let (M, g) be a compact 2-dimensional closed Riemannian manifold and x 0 is a point on M. Then there exist its neighbourhood chart U with coordinates x = (x 1 , x 2 ) ∈ U ⊂ R 2 centered at x 0 such that for any eigenfunction u of the Laplace-Beltrami operator on M there exists an integer n 0 and a non-trivial homogeneous harmonic polynomial P n (x) of degree n on the Euclidean plane

R 2 such that u(x) = P n (x) + O(|x| n+1 ), where x ∈ U.
The integer n from Bers's Theorem 3.1 is called an order of zero of an eigenfunction u at a point x 0 . Let us denote it by ord x 0 u.

Consider the sets

N l (u) = {x ∈ M| ord x u l}. Definition 3.2. The set N 1 (u) is called a nodal set of u. Connected components of its complement M \ N 1 (u) are called the nodal domains of u.
It is well-known that in the polar coordinates r, ϕ in R 2 any homogeneous harmonic polynomial P n of degree n has the form (4)

P n (r, ϕ) = r n (A cos nϕ + B sin nϕ).
The zeroes of such polynomials form n straight lines intersecting at origin at equal angles. It follows that the nodal set N 1 (u) is a graph such that the points of N 2 (u) are its vertices and the connected components of N 1 (u) \ N 2 (u) are its edges. Definition 3.3. This graph is called a nodal graph of an eigenfunction u.

Let us remark that if x 0 is a vertex of the nodal graph then it is a zero of u and there is 2 ord x 0 u edges emanating from x 0 in a sufficiently small neighborhood of x 0 . Globally some of these edges could form loops starting and ending at x 0 .

Let us remark that locally in a neighborhood of zero x 0 of order n the nodal graph N 1 (u) looks like a star consisting of 2n rays with equal angles between adjacent rays. Let us give the following definition in order to be more precise. Definition 3.4. A star S x 0 (N 1 (u)) at the vertex x 0 of the nodal graph N 1 (u) of an eigenfunction u consists of 2n unitary tangent vectors to edges emanating from x 0 , where n is the order of zero of u at x 0 .

It follows from formula (4) that in coordinates given by the Bers Theorem 3.1 the angles between adjacent vectors in S x 0 (N 1 (u)) are equal.

If one has a triangulation of a surface M with V vertices, E edges and F faces, then one has the well-known formula for the Euler characteristic, ( 5)

χ(M) = V -E + F.
Let us consider an eigenfunction u. If we consider the vertices of a nodal graph, the edges of a nodal graph and the nodal domains of a function u, then the formula [START_REF] Berger | Sur les premières valeurs propres des variétés Riemanniennes[END_REF] does not in general hold since the nodal domains are not in general homeomorphic to a disc. As a result, we obtain in this case only the Euler inequality [START_REF] Bers | Local behavior of solutions of general linear elliptic equations[END_REF] χ(M) V -E + F that implies the following well-known Lemma.

Lemma 3.5. Let u be an eigenfunction. Let x j , j = 1, . . . , n, be zeroes of u of order m j > 1. Let Ω j , j = 1, . . . , s, be nodal domains of the function u. Then

s χ(M) -n + n j=1 m j .
Proof. One can immediately see that V = n, F = s. Since 2 ord x j u = 2m j edges emanate from x j and each edge connects two vertices, one

has E = n j=1 m j .
It is sufficient now to apply inequality [START_REF] Bers | Local behavior of solutions of general linear elliptic equations[END_REF].

Let us now recall the following theorem (remark that we count eigenvalues starting from λ 0 ). Theorem 3.6 (Courant Nodal Domain Theorem [START_REF] Courant | Methoden der mathematischen Physik[END_REF]). An eigenfunction corresponding to the eigenvalue λ i has at most i+1 nodal domains. Lemma 3.5 and Courant Nodal Domain Theorem 3.6 imply immediately the following Proposition. Proposition 3.7. Let u be an eigenfunction corresponding to the eigenvalue λ i . Let x j , j = 1, . . . , n, be zeroes of u of order m j > 1. Then

(7) i + 1 χ(M) -n + n j=1 m j .

Multiplicity of the second non-zero eigenvalue of the Laplace-Beltrami operator on the projective plane

It was proven by the first author in the paper [START_REF] Nadirashvili | Multiple eigenvalues of the Laplace operator[END_REF] that the following upper bound for the multiplicities of the eigenvalues of the Laplace-Beltrami operator on the projective plane holds,

m(RP 2 , g, λ i ) 2i + 3.
For the first eigenvalue this means m(RP 2 , g, λ 1 ) 5, which is a sharp inequality and was proved first by Besson [START_REF] Besson | Sur la multiplicité de la premiere valeur propre des surfaces riemanniennes[END_REF].

For the second eigenvalue we have m(RP 2 , g, λ 2 ) 7.

The main goal of this Section is to improve the last upper bound. 

m(RP 2 , g, λ 2 ) 6.

For the purposes of the present paper the upper bound ( 8) is sufficient. However, this bound is further improved and generalized in the paper [START_REF] Berdnikov | Bounds on Multiplicities of Laplace-Beltrami Operator Eigenvalues on the Real Projective Plane[END_REF].

Let us postpone the proof and start with several lemmas. Lemma 4.2. Let u 1 , . . . , u 6 be linearly independent eigenfunctions corresponding to the second eigenvalue λ 2 (RP 2 , g). Then for any point

x 0 ∈ RP 2 there exists a non-trivial linear combination v = 6 i=1 α i u i such
that the eigenfunction v has a zero of order at least 3 at the point x 0 .

Proof. This lemma is a particular case of Lemma 4 from paper [START_REF] Nadirashvili | Multiple eigenvalues of the Laplace operator[END_REF]. In fact, the proof is an easy corollary of Bers Theorem 3.1 and formula (4).

Lemma 4.3. Let u be an eigenfunction corresponding to the second eigenvalue λ 2 (RP 2 , g) such that at a point x 1 this eigenfunction has a zero of order at least 3. Then x 1 is the only zero of u of order greater than 1 and the order of zero at x 1 is exactly 3.

Proof. Since i = 2, χ(RP 2 ) = 1, inequality [START_REF] Besson | Sur la multiplicité de la premiere valeur propre des surfaces riemanniennes[END_REF] implies in this case the inequality

2 n j=1 (m j -1).
Since m 1 3 and

m i 2 for i > 1, we have m 1 -1 2, m i -1 1 for i > 1. It follows that m 1 = 3 and n = 1.
Let us fix a point x 0 ∈ RP 2 and consider the space V of eigenfunctions of ∆ corresponding to the second eigenvalue λ 2 (RP 2 , g) with zero of order at least 3 at x 0 . Let us suppose that dim V 2. Then there exist two linearly independent eigenfunctions u 1 , u 2 ∈ V. Consider the family of eigenfunctions ( 9)

v τ = cos τ u 1 + sin τ u 2 .
Lemma 4.4. The star S x 0 (N 1 (v τ )) defines the eigenfunction v τ from formula (9) completely up to a sign, i.e. if

S x 0 (N 1 (v τ 1 )) = S x 0 (N 1 (v τ 2 )) then v τ 1 = ±v τ 2 .
Proof. Since S x 0 (N 1 (v τ 1 )) = S x 0 (N 1 (v τ 2 )), the homogeneous harmonic polynomials P τ 1 3 and P τ 2 3 corresponding by Bers Theorem 3.1 to v τ 1 and v τ 2 are proportional. But then formula [START_REF] Bolton | Linearly full harmonic 2-spheres in S 4 of area 20π[END_REF] implies that either P τ 1 3 = P τ 2

3

or P τ 1 3 = -P τ 2 3 . In the first case we have

v τ 1 -v τ 2 = O(|x| 4 ).
Then v τ 1v τ 2 is an eigenfunction of ∆ corresponding to the second eigenvalue λ 2 (RP 2 , g) with zero of order at least 4 at x 0 . It follows from Lemma 4.3 that v τ 1v τ 2 ≡ 0 and therefore v τ 1 = v τ 2 . A similar argument shows that in the second case we have

v τ 1 = -v τ 2 .
Lemma 4.5. Let x 0 ∈ RP 2 and V be the space of eigenfunctions of ∆ corresponding to the second eigenvalue λ 2 (RP 2 , g) with a zero of order at least 3 at x 0 . Then dim V 1.

Proof. Let us suppose that dim V 2. Then there exist two linearly independent eigenfunctions u 1 , u 2 ∈ V. Consider the family of eigenfunctions v τ ∈ V defined by equation ( 9) and the family of nodal graphs N 1 (v τ ).

Let p : S 2 -→ RP 2 be the standard projection. Let us consider the eigenfunction u 1 • p on the sphere S 2 . It follows from the above mentioned arguments that the nodal graph N 1 (u 1 • p) on the sphere has the following properties:

• there are exactly two vertices p -1 (x 0 ) that we call N and S, they are antipodal, • locally exactly 6 edges emanate from each vertex.

Claim 1. All nodal domains are topological disks.

Indeed, the Euler inequality [START_REF] Bers | Local behavior of solutions of general linear elliptic equations[END_REF] for the nodal graph of u 1 on RP 2 implies that there is at least 3 nodal domains. In the same time, the Courant Nodal Domain Theorem 3.6 implies that there are at most 3 nodal domains. As a result, there are exactly 3 nodal domains for u 1 on RP 2 . Now remark that it follows that the Euler inequality (6) turns into an equality. It is possible if and only if all nodal domains of u 1 are topological disks. Let us consider now the nodal graph of u 1 • p on the sphere S 2 . Since there are no non-trivial coverings of a disk, and the nodal domains of u 1 • p are preimages of the nodal domains of u 1 , there are exactly 6 nodal domains of u 1 • p on S 2 and all are topological disks.

Claim 2. The nodal graph of u 1 • p is invariant under rotation by ± π 3 around the axis going though N and S.

Let us emphasize that "invariant" here and below means "invariant up to a homotopy preserving tangent vectors at the point N and S".

The proof of the Claim 2 is as follows. Since v 0 = -v π , the nodal graph N 1 (v τ ) is deformed continuously when τ changes from 0 to π and the result coincides with the initial graph, N 1 (v 0 ) = N 1 (v π ).

Since N 1 (v 0 ) = N 1 (v π ), when τ changes from 0 to π the 6-ray star S x 0 (N 1 (v τ )) rotates by angle k π 3 . But then k = ±1. Indeed, if k = ±1 then there exists 0 < τ 0 < π such that S x 0 (N 1 (v τ 0 )) is obtained from S x 0 (N 1 (v 0 )) by the rotation by angle (sgn k) π 3 . Then S x 0 (N 1 (v τ 0 )) = S x 0 (N 1 (v 0 )) and Lemma 4.4 implies that v τ 0 = ±v 0 , but this contradicts the inequality 0 < τ 0 < π.

Let us change the direction of counting the angle in such a way that the angle of rotation is π 3 . Then we have the following result: when τ changes from 0 to π, the star S x 0 (N 1 (v τ )) rotates exactly by π 3 . Claim 3. There are no loops in the nodal graph, i.e. all edges join N and S.

Indeed, let us consider an edge γ emanating from N such that another endpoint of γ is also N. Let us numerate the vectors from the star S N (N 1 (u 1 •p)) in consecutive order as v 0 , . . . , v 5 in such a way that the edge γ emanates from N with the tangent vector v 0 . Then there is two cases.

In case I the tangent vector at the endpoint N of γ is -v 1 . In this case the nodal graph is clearly not invariant under the rotation by π 3 . Remark that the tangent vector -v 5 at the endpoint N could be considered as -v 1 with another numeration order of the vectors from the S N (N 1 (u 1 • p)).

In case II the tangent vector at the endpoint N of γ is -v k , where k = 2 or k = 3. Since the nodal graph is invariant under the rotation by π 3 , the edge emanating from N with tangent vector v 1 has -v k+1 as its tangent vector at its endpoint N. This implies that there are two loops on a sphere intersecting transversally at exactly one point N but this is impossible.

Remark that the tangent vector -v 4 at the endpoint N could be considered as -v 2 with another numeration order of the vectors from

S N (N 1 (u 1 • p)).
In both cases we obtain a contradiction with the assumption that an edge can start and end at the same vertex. Hence, all edges join N to S.

Let us now finish the proof of Lemma 4.5. Consider the nodal graph of u 1 • p on S 2 . A small neighbourhood of N is divided by the graph in 6 sectors, where the signs of u 1 • p alternate. By Claim 3, these sectors lie in different nodal domains. Since there are exactly 6 nodal domains, there are three of them where u 1 • p is positive and three of them where u 1 • p is negative.

Let us consider the action of the antipodal map σ on nodal domains. It is well-defined. Indeed, suppose x and y belong to the same nodal domain. Then one can join x and y by a path inside their nodal domain. Applying σ we obtain a path joining σ(x) and σ(y), on which u 1 • p does not change sign. Thus, σ(x) and σ(y) belong to the same nodal domain.

Since u 1 • p is obtained from the eigenfunction u 1 on RP 2 , the antipodal map preserves the sign of u 1 • p. Since there are three nodal domains of the same sign, there is at least one nodal domain that is mapped by σ to itself. At the same time, by Claim 1 each nodal domain is a topological disk. Since σ is a free involution, it can not map a disk into itself by Brouwer's theorem. This completes the proof of Lemma 4.5. Proof of Proposition 4.1. Let us suppose that m(RP 2 , g, λ 2 ) > 6. Then there exist 7 linearly independent eigenfunctions ϕ 1 , . . . , ϕ 7 corresponding to the second eigenvalue λ 2 (RP 2 , g).

Let us fix a point x 0 ∈ RP 2 . Let us apply Lemma 4.2 to ϕ 1 , . . . , ϕ 6 and obtain an eigenfunction u 1 = 6 i=1 α i ϕ i with zero of order at least 3 at the point x 0 . Then by Lemma 4.3 the point x 0 is a zero of order exactly 3.

We can suppose without loss of generality that α 1 = 0. Let us then apply Lemma 4.2 to the eigenfunctions ϕ 2 , . . . , ϕ 7 and obtain an eigenfunction u 2 = 7 i=2 β i ϕ i with zero of order at least 3 at the point x 0 .

Then by Lemma 4.3 the point x 0 is a zero of order exactly 3.

Let us remark that u 1 and u 2 are linearly independent since α 1 = 0. This contradicts Lemma 4.5.

Harmonic maps with branch points and metrics with conical singularities

Let us recall the definition of a harmonic map, see e.g. the review [START_REF] Eells | A report on harmonic maps[END_REF]. Definition 5.1. Let (M, g) and (N, h) be Riemannian manifolds. A smooth map f : M -→ N is called harmonic if f is an extremal for the energy functional

(10) E[f ] = M |df (x)| 2 dV ol g .
The following theorem (see, e.g. the paper [START_REF] Eells | Harmonic mappings of Riemannian manifolds[END_REF]) explains the relation between minimal and harmonic maps in the class of isometric immersions.

Theorem 5.2. Let M, N be Riemannian manifolds. If f : M N is an isometric immersion, then f is harmonic if and only if f is minimal. It turns out however that it is useful to consider a wider class of harmonic immersions with branch points. Definition 5.4 (see e.g. [START_REF] Gulliver | A Theory of Branched Immersions of Surfaces[END_REF]). Let M be a manifold of dimension 2. A smooth map f : M -→ N has a branch point of order k at point p if there exist local coordinates u 1 , u 2 centered at p and defined in a neighborhood of p and x 1 , . . . , x n centered at f (p) and defined in a neighborhood of f (p) such that in these coordinates f is written as

x 1 + ix 2 = w k+1 + σ(w), x k = χ k (w), k = 3, . . . , n, σ(w), χ k (w) = o(|w| k+1 ), ∂σ ∂u j (w), ∂χ k ∂u j (w) = o(|w| k ), j = 1, 2, k = 3, . . . , n,
where

w = u 1 + iu 2 .
If M is compact then a map f : M -→ N could have only finite number of branch points.

However we have now a problem. If (N, g) is a Riemannian manifold and f : M N is an immersion with branch points, then the induced metric f * g is not a smooth metric. Definition 5.5 (see e.g. [START_REF] Kokarev | On multiplicity bounds for Schrödinger eigenvalues on Riemannian surfaces[END_REF]). A point p on a surface M is called a conical singularity of order α > -1 or angle 2π(α + 1) of a metric g if in an appropriate local complex coordinate z centered at p the metric has the form g(z) = |z| 2α ρ(z)|dz| 2 in a neighborhood of p, where ρ(0) > 0.

Then we obtain immediately the following Proposition.

Proposition 5.6. If M is a compact surface, (N, h) is a Riemannian manifold and f : M N is an immersion with branch point, then g = f * h is a smooth Riemannian metric except a finite number of branch points of the map f. At these points the metric g has conical singularities. The order of the conical singularity at a point p is equal to the order of p as a branch point.

Thus, we switch to a setting larger than the initial one. We consider not only Riemannian metrics but also Riemannian metrics with a finite number of conical singularities and not only harmonic immersions but also harmonic immersions with branch points. Then we should check that all key results from the previous sections hold.

It is well-known that the eigenvalues of the Laplace-Beltrami operator could be defined using a variational approach, [START_REF] Calabi | Minimal immersions of surfaces in Euclidean spheres[END_REF] λ k = min

V ⊂H 1 (M ) dim V =k max u∈V u⊥1 R[v],
where

R[v] = M |∇u| 2 dV ol M |u| 2 dV ol
is the Rayleigh quotient. This formula holds also in the case of metrics with conical singularities, see e.g. [START_REF] Kokarev | On multiplicity bounds for Schrödinger eigenvalues on Riemannian surfaces[END_REF].

Proposition 5.7 [START_REF] Kokarev | Variational aspects of Laplace eigenvalues on Riemannian surfaces[END_REF]Corollary 4.7]). Theorem 2.3 holds if we consider metrics with conical singularities and harmonic maps with branch points.

The next problem is to prove that V, E and F are finite and inequality [START_REF] Bers | Local behavior of solutions of general linear elliptic equations[END_REF] holds. The problem is that in the case of surfaces with isolated conical singularities the points of N 2 (u) can a priori accumulate towards singularities. It turns out that it is not possible since this possibility can be ruled out using resolution procedure used in the papers [32, Lemma 3.1.1] and [START_REF] Kokarev | On multiplicity bounds for Schrödinger eigenvalues on Riemannian surfaces[END_REF] in order to prove the finiteness of a nodal graph in other contexts.

Let us define the resolution procedure following the paper [START_REF] Karpukhin | Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces[END_REF]. Let x ∈ N 2 (u) be a vertex of nodal graph. If n = ord x (u) then the degree of this vertex is 2n. According to Bers's Theorem 3.1 there exists a neighborhood U of x diffeomorphic to a disk such that U does not contain other vertices and such that nodal arcs incident to x intersect U at 2n points precisely. Let us denote these intersection points by y i , where i = 0, . . . , 2n-1, and assume that they are ordered consequently in the clockwise fashion. A new graph is obtained from the nodal graph by changing it inside U and removing possibly appeared edges without vertices. More precisely, we remove the nodal set inside U and roundoff the edges on the boundary U by non-intersecting arcs in U joining the points y 2j and y 2j+1 . If there was an edge that starts and ends at x, then such a procedure may make it into a loop. If this occurs, then we remove this loop to obtain a genuine graph in the sufrace. The new graph has one vertex less and at most as many faces as the original graph.

We give now a short proof by Karpukhin (with his permission).

Proposition 5.8 (Karpukhin, [29]). A nodal graph of an eigenfunction u on a surface M with isolated conical singularities is finite.

Proof. Suppose that there are infinitely many points in N 2 (u), it is easy to see that in this case the set N 2 (u) is countable. Then the only possible accumulation points of N 2 (u) are conical singularities.

For each conical singularity p j let us choose a base of neighbourhoods

V (j) i such that V (j) i+1 ⊂ V (j) i and N 2 (u) ∩ ∞ i=1 ∂V (j) i = ∅. Hence for the sets V i = j V (j) i we have Vi+1 ⊂ V i , N 2 (u) ∩ ∞ i=1 ∂V i = ∅ and
M\V i contains only finite quantity of elements of N 2 (u). For any i for the points of N 2 (u) in V i \ Vi+1 one can choose a collection of disjoint neighbourhoods U ki such that Ūki ⊂ V i \ Vi+1 . Thus we constructed a collection of disjoint neighbourhoods of all points in N 2 (u).

Next we apply the resolution procedure at all but finite number of vertices. Choosing this finite number big enough and applying Euler's inequality we arrive at contradiction with Courant's nodal domain theorem.

Thus, in the setting of metrics with conical singularities inequality ( 6) and all results obtained with its help hold, including the key upper bound m(RP 2 , g, λ 2 ) 6 from Proposition 4.1 from Section 4.

Let us also remark that for any manifold equipped with a metric with isolated conical singularities it is possible to construct a sequence of smooth Riemannian manifolds such that their area as well as their eigenvalues converge to the area and eigenvalues of the initial manifold, see e.g. [START_REF] Sher | Conic degeneration and the determinant of the Laplacian[END_REF].

Calabi-Barbosa theorem and its implications

Now we should study harmonic immersions with branched points RP 2

S n . Since we have the upper bound m(RP 2 , g, λ 2 ) 6 from Proposition 4.1, all immersions corresponding to λ 2 are among immersions RP 2 S 5 . Let p : S 2 -→ RP 2 be the standard projection. We can lift a harmonic immersion with branch points f : RP 2 S 5 to a harmonic immersion with branch points F = f • p : S 2 -→ S 5 .

The following theorem was proved by Calabi in 1967 and later refined by Barbosa in 1975. Let g S n denote the standard metric on S n . The radius of S n is 1. Theorem 6.1 (Calabi [START_REF] Calabi | Minimal immersions of surfaces in Euclidean spheres[END_REF], Barbosa [3]). Let F : S 2 -→ S n be a harmonic immersion with branch points such that the image is not contained in a hyperplane. Then (i) the area of S 2 with respect to the induced metric Area(S 2 , F * g S n )

is an integer multiple of 4π; (ii) n is even, n = 2m, and Area(S 2 , F * g S n ) 2πm(m + 1). Definition 6.2. If Area(S 2 , F * g S n ) = 4πd, then we say that F is of harmonic degree d.

We obtain immediately a lower bound for the harmonic degree. Proposition 6.3. Let F : S 2 -→ S 2m be a harmonic immersion with branch points such that the image is not contained in a hyperplane. Then d m(m+1) 2 .

Calabi-Barbosa Theorem 6.1 implies the following Proposition. Proposition 6.4. It is sufficient for our goals to consider harmonic immersions with branch points F : S 2 -→ S 4 (such that the image is not contained in a hyperplane) of harmonic degree d 3 and

F : S 2 -→ S 2 .
It follows that we should consider only harmonic immersions with branch points RP 2 -→ S 2 and RP 2 -→ S 4 . However, the following Proposition permits to exclude maps RP 2 -→ S 2 . Proposition 6.5 (see e.g. [START_REF] Eells | A report on harmonic maps[END_REF]). Every harmonic map RP 2 -→ S 2 is constant.

7.

Harmonic maps from S 2 to S 4 and their singularities Let us recall the well-known Penrose twistor map

T : CP 3 -→ HP 1 ∼ = S 4 , T ([z 0 : z 1 : z 2 : z 3 ]) = [z 0 + z 1 j : z 2 + z 3 j].
Let z be a conformal parameter on S 2 . Definition 7.1. Let us call a curve

f : S 2 -→ CP 3 , f (z) = [f 0 (z) : f 1 (z) : f 2 (z) : f 3 (z)], horizontal if f ′ 1 f 2 -f 1 f ′ 2 + f ′ 3 f 4 -f 3 f ′ 4 = 0.
In 1982, Bryant described in the paper [START_REF] Bryant | Conformal and minimal immersions of compact surfaces into the 4-sphere[END_REF] a very important relation between harmonic immersions with branch points S 2 -→ S 4 and (anti)holomorphic horizontal curves in CP 3 .

Let A : S 4 -→ S 4 be the antipodal map.

Theorem 7.2 (Bryant [START_REF] Bryant | Conformal and minimal immersions of compact surfaces into the 4-sphere[END_REF]). For each harmonic immersion with branch points F : S 2 -→ S 4 there exists either a holomorphic or an antiholomorphic horizontal curve f :

S 2 -→ CP 3 , such that T • f = F, CP 3 T S 2 F / / f = = ④ ④ ④ ④ ④ ④ ④ ④ ④ S 4
For each (anti)holomorphic horizontal curve f : S 2 -→ CP 3 the map F = T • f : S 2 -→ S 4 is a harmonic immersion with branch points. If a harmonic immersion F : S 2 -→ S 4 has a holomorphic (antiholomorphic) horizontal curve f : S 2 -→ CP 3 , then A • F : S 2 -→ S 4 has an antiholomorphic (holomorphic) horizontal curve. Definition 7.3. An (anti)holomorphic horizontal curve f appearing in Bryant's Theorem 7.2 is called the lift of an harmonic immersion F.

Let us remark that F and A • F induce the same metric on S 2 . It follows that it is sufficient to consider harmonic immersions with holomorphic lifts. Theorem 7.4 (Bryant [START_REF] Bryant | Conformal and minimal immersions of compact surfaces into the 4-sphere[END_REF]). Let F : S 2 -→ S 4 be a harmonic immersion with branched points of harmonic degree d with holomorphic lift f : S 2 -→ CP 3 . Then f : S 2 -→ CP 3 is an algebraic curve of degree d. Now we need some results from the theory of higher singularities of these holomorphic horizontal lifts, see e.g. the paper [START_REF] Bolton | Higher singularities and the twistor fibration π : CP 3 -→ S 4[END_REF] by Bolton and Woodward

. Let [f(z)] = [f 0 (z), f 1 (z), f 2 (z), f 3 (z)] be a representative of f : S 2 -→ CP 3 in the homogeneous coordinates in CP 3 . Let f (i) (z) denotes the ith derivative of f(z). Let Z(f ) = {z | f(z) ∧ f ′ (z) ∧ . . . ∧ f (3) (z) = 0}.
Remark that Z(f ) consists of isolated points if f is linearly full, i.e. if the image of f is not inside a hyperplane.

Let us apply the Gram-Schmidt orthogonalization process to f(z), f ′ (z), f ′′ (z), f ′′′ (z) at z ∈ Z(f ) and obtain f0 (z) = f(z), f1 (z), f2 (z), f3 (z). Then it turns out that the trivial bundle S 2 ×C 4 has an orthogonal decomposition as a sum of holomorphic linear bundles

S 2 × C 4 = L 0 ⊕ . . . ⊕ L 3 ,
such that L i is spanned by fi for z ∈ Z(f ). These L i describe the Frénet frame for f.

The bundle map

∂ i : T 1,0 S 2 ⊗ L i -→ L ⊥ i given by ∂ i ∂ ∂z ⊗ s i = ∂s i ∂z ⊥ ,
where s i is a local holomorphic section of L i , and

∂s i ∂z ⊥ denotes the component of ∂s i ∂z orthogonal to L i , satisfies ∂ i ∂ ∂z ⊗ fi (z) = fi+1 (z).
It follows that ∂ i is a holomorphic map and has the image in L i+1 .

Definition 7.5. A (linearly full) holomorphic curve f : S 2 -→ CP 3 has a higher singularity of type (r 0 (p), r 1 (p), r 2 (p)) at a point p ∈ Z(f ) if for i = 0, 1, 2 the holomorphic bundle maps ∂ i has a zero of order r i (p) at p and r 0 (p) + r 1 (p) + r 2 (p) > 0.

It turns out that for a horizontal curve one has r 2 (p) = r 0 (p), i.e. its higher singularity type at a point p is described by two integers r 0 (p), and r 1 (p). Let us define quantities

r 0 = p r 0 (p), r 1 = p r 1 (p).
The next Proposition relates them to the degree d. Proposition 7.6 (Bolton, Woodward [START_REF] Bolton | Linearly full harmonic 2-spheres in S 4 of area 20π[END_REF]). For a linearly full holomorphic horisontal curve in CP 3 the following equation holds,

2r 0 + r 1 = 2d -6.
We need here to recall the definition of an umbilic point. Definition 7.7. Let (M, g) and (N, h) be Riemannian manifolds and ∇ M and ∇ N be the corresponding Levi-Civita connections.

Let F : M -→ N be an immersion. Then a) the second fundamental form II F of F is defined by the formula

∇ N dF (X) dF (Y ) = dF (∇ M X Y ) + II F (X, Y ); b) the vector field ζ = 1 dim M tr II F
is called a mean curvature normal vector; c) a point p ∈ M is called an umbilic point if there exists a vector v ∈ T F (p) N such that at the point p one has

(12) II F p (X, Y ) = g p (X, Y ) • v. It follows immediately from Definition 7.7 that if p is an umbilic then II F p (X, Y ) = g p (X, Y ) • ζ(p).
As an example it is useful to consider a classical case of an immersion F of a two-dimensional surface M to N = R 3 equipped with the euclidean metric h. Let us consider the induced metric g = F * h on M. Then it is easy to check that II F (X, Y ) = II(X, Y ) • n, where II(X, Y ) is the classical second fundamental form of the surface M and n is a unit normal vector field on M. Let us recall that in the basis consisting of principal directions the metric g has the identity matrix and the classical second fundamental form II has the diagonal matrix with the principal curvatures λ 1 and λ 2 on the diagonal. Then formula ( 12) is equivalent to the equality λ 1 = λ 2 which is the classical definition of an umbilic point for a two-dimensional surface in the Euclidean space R 3 .

Let z be a conformal parameter on S 2 . It is easy to check that the following Proposition holds. Theorem 8.1 (Matthiesen, Siffert [START_REF] Matthiesen | Existence of metrics maximizing the first eigenvalue on closed surfaces[END_REF]). For any closed surface M, there is a metric g on M, smooth away from finitely many conical singularities, achieving Λ 1 (M), i.e.

Λ 1 (M) = λi (M, g) = λ 1 (M, g) Area(M, g).

However, as we observed in the Introduction, the situation is more complicated for higher eigenvalues. In particular, on the sphere there is no maximal metrics for λk if k > 1, see the papers [START_REF] Nadirashvili | Isoperimetric inequality for the second eigenvalue of a sphere[END_REF][START_REF] Petrides | Maximization of the second conformal eigenvalue of spheres[END_REF] for k = 2, [START_REF] Nadirashvili | Isoperimetric inequality for the third eigenvalue of the Laplace-Beltrami operator on S 2[END_REF] for k = 3 and [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF] for arbitrary k > 1.

It turns out that extremal metrics for higher eigenvalues on the sphere exhibit the so-called "bubbling phenomenon". This phenomenon was studied in details by the first author and Sire in the papers [START_REF] Nadirashvili | Conformal spectrum and harmonic maps[END_REF][START_REF] Nadirashvili | Maximization of higher order eigenvalues and applications[END_REF] and also by Petrides [START_REF] Petrides | On the existence of metrics which maximize Laplace eigenvalues on surfaces[END_REF] in the context of maximization of eigenvalues in a given conformal class. More precisely, they investigated the question of existence of Riemannian metrics with conical singularities for which the quantity

Λ k (M, [g]) = sup h∈[g] λk (M, h)
is attained, where [g] denotes the class of metrics conformally equivalent to g.

The equality

Λ k (S 2 ) = 8πk.
proven in the recent paper [START_REF] Karpukhin | An isoperimetric inequality for Laplace eigenvalues on the sphere[END_REF] combined with [52, Theorem 2] implies the following result.

Proposition 8.2 ([33]

). Let (M, g) be a closed Riemannian surface and k 2.

If Λ k (M, [g]) > Λ k-1 (M, [g]) + 8π,
then there exists a maximal metric g ∈ [g], smooth except possibly at a finite set of conical singularities, such that Λ k (M, [g]) = λk (M, g).

Since there is only one conformal structure on RP 2 , see e.g. the book [START_REF] Schifer | Functionals of finite Riemann surfaces[END_REF], Λ 2 (RP 2 , [g]) = Λ 2 (RP 2 ) and we have the following Proposition.

Proposition 8.3. If Λ 2 (RP 2 ) > Λ 1 (RP 2 ) + 8π = 20π,
then there exists a maximal metric g, smooth except possibly at a finite set of conical singularities, such that Λ 2 (RP 2 ) = λ2 (RP 2 , g).

Proof of Theorem 1.3

Let us consider a sequence {g n } of metrics of area one on the projective plane such that the limiting metric is a singular metric realized as a union of the projective plane and the sphere touching at a point, with standard metrics and the ratio of the areas 3 : 2. In this case the limit spectrum is the union of spectra of the projective plane with standard metric g ′ of area 3 5 and of the sphere with standard metric g ′′ of area 2 5 , see e.g. [14, Section 2] and [START_REF] Anné | Spectre du laplacien et écrasement d'anses[END_REF] for more details about the limit spectrum. Then

lim n→∞ λ 2 (RP 2 , g n ) = λ 1 (RP 2 , g ′ ) = λ 1 (S 2 , g ′′ ) = 20π. Hence, lim n→∞ λ2 (RP 2 , g n ) = 20π. If Λ 2 (RP 2 ) = 20π
, then the proof is finished. If Λ 2 (RP 2 ) > 20π, then by Proposition 8.3 there exists a maximal metric g, smooth except possibly at a finite set of conical singularities, such that Λ 2 (RP 2 ) = λ2 (RP 2 , g) As we already know from Proposition 5.3, the metric g is induced on RP 2 by a harmonic immersion with branched points RP 2 -→ S n .

The upper bound m(RP 2 , g, λ 2 ) 6 from Proposition 4.1 implies that all harmonic immersions with branch points corresponding to λ 2 are among immersions RP 2 S 5 . Let p : S 2 -→ RP 2 be the standard projection. We can lift a harmonic immersion with branch points f : RP 2 S 5 to a harmonic immersion with branch points F = f • p : S 2 -→ S 5 .

Calabi-Barbosa's Theorem 6.1 implies that it is sufficient to consider a harmonic immersion with branch points F : S 2 -→ S 4 of harmonic degree d 3 such that the image is not contained in a hyperplane and a harmonic immersion F : S 2 -→ S 2 , see Proposition 6.4. However, Proposition 6.5 says that we can exclude harmonic maps RP 2 -→ S 2 since they are constant. As a result, we should consider only a harmonic immersion with branch points RP 2 -→ S 4 .

Consider a harmonic immersion with branch points f : RP 2 -→ S 4 corresponding to λ 2 and its lift F = f • p : S 2 -→ S 4 . As we know from Proposition 7.10, there are two different cases depending on its harmonic degree d.

Consider the case d = 3. Let g S n denote the standard metric on S n . Since d = 3, one has Area(S 2 , F * g S n ) = 12π due to Calabi-Barbosa Theorem 6.1. Then Area(RP 2 , f * g S n ) = 6π because p : S 2 -→ RP 2 is a two-sheeted covering. Since the radius of S n is 1, Takahashi Theorem 2.2 implies that λ 2 = 2. As a result, λ2 (RP 2 , f * g S n ) = 12π < 20π and the induced metric is not maximal.

Consider the case d > 3. In this case Proposition 7.6 implies that F = f •p : S 2 -→ S 4 and hence f : RP 2 -→ S 4 have at least one branch point or umbilic. Let us prove that an immersion by eigenfunctions corresponding to λ 2 cannot have either branch points or umblilics.

Let us suppose that f = (f 1 , . . . , f 5 ) and p ∈ RP 2 is a branch point. It follows that f i are linearly independent eigenfunctions with eigenvalue λ 2 = 2 such that df i (p) = 0. One can then construct at least 4 linearly independent eigenfunctions f i , i = 1, . . . , 4, such that f i (p) = 0, d f i (p) = 0. This means that all f i have zero of order 2 at p. Using Bers Theorem 3.1 one can then construct at least 2 linearly independent eigenfunctions with eigenvalue λ 2 = 2 with zero of order 3 at p, but this contradicts Lemma 4.5.

Let us suppose that f = (f 1 , . . . , f 5 ) and p ∈ RP 2 is an umbilic. Let z be a local conformal parameter on RP 2 in a neighborhood of the point p. Let ds 2 = 2Φ|dz| 2 be the induced metric. It is well-known that f z z = -Φf, see e.g. [START_REF] Barbosa | On minimal immersions of S 2 into S 2m[END_REF][START_REF] Calabi | Minimal immersions of surfaces in Euclidean spheres[END_REF], this is in fact a harmonic map equation in this particular setting. Since p is an umbilic, II f p (∂/∂z, ∂/∂z) = 0. By definition of the second fundamental form, this means that f zz (p) is a tangent vector and hence f zz (p) is a linear combination of f z (p) and f z(p). It follows that there exist α, β ∈ C such that for any i = 1, . . . , 5 the following equations hold, f i z z (p) = -Φ(p)f i (p), ( 14)

f i zz (p) = αf i z (p) + βf i z (p), (15) 
f i z z (p) = βf i z (p) + ᾱf i z (p). [START_REF] Eells | A report on harmonic maps[END_REF] Remark that these equations are linear. This implies that they hold for any linear combination of f i . Now one can construct two linear combinations ϕ = As it was remarked before, the equations ( 14), ( 15), ( 16) hold for ϕ and ψ. It follows that they are eigenfunctions with eigenvalue λ 2 = 2 with zero of order 3 at the point p. This contradicts Lemma 4.5.

Thus, it is proven that for any extremal metric g smooth except possibly finite number of conical singularities one has λ2 (RP 2 , g) = 12π. This contradicts our assumption λ2 (RP 2 , g) > 20π and finishes the proof.
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 55 i f i with real coefficients A i , B i such that ϕ and ψ have zero of order 2 at p. It follows thatϕ(p) = ϕ z (p) = ϕ z (p) = 0, ψ(p) = ψ z (p) = ψ z (p) = 0.

Proposition 7.8. A point p ∈ S 2 is an umbilic point of a harmonic immersion F : S 2 -→ S 4 if and only if [START_REF] Cianci | Maximization of the Fundamental Tone on the Klein Bottle[END_REF] II F p (∂/∂z, ∂/∂z) = 0. Proof. If a point p is umbilic then

, since z is a conformal coordinate and g p = 2Φ|dz| 2 for some Φ.

Let equality [START_REF] Cianci | Maximization of the Fundamental Tone on the Klein Bottle[END_REF] holds. Since F is real, this implies that

and p is umbilic. The higher singularities of a holomorphic horizontal lift f of a harmonic immersion with branched points F : S 2 -→ S 4 are related to the branch points and the umbilics of F. Proposition 7.9 (Bolton, Woodward [START_REF] Bolton | Higher singularities and the twistor fibration π : CP 3 -→ S 4[END_REF][START_REF] Bolton | Linearly full harmonic 2-spheres in S 4 of area 20π[END_REF]). A point p is a branch point of F if and only if r 0 (p) > 0. Moreover, r 0 (p) is equal to the order of zero of dF (∂/∂z) at p.

If r 0 (p) = 0 then p is an umbilic if and only if r 1 (p) > 0. Moreover, r 1 (p) is equal to the order of zero of II F (∂/∂z, ∂/∂z) at p.

The higher singularities of f occur exactly at the branch points and umbilics of F. Combining Propositions 7.6 and 7.9, we obtain the following Proposition.

Proposition 7.10. Let F : S 2 -→ S 4 be a harmonic immersion with branch points of harmonic degree d. Then (i) if d = 3 then F does not have either branch points or umbilics, (ii) if d > 3 then F has at least one branch point or an umbilic.

Existence of maximal metrics

What can we say about the existence of the maximal metric for a given eigenvalue on a given surface? The situation in the case of the first eigenvalue is the following.