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Séverine Fratani and El Makki Voundy
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Abstract. We study a family of context-free languages that reduce to
ε in the free group and give several homomorphic characterizations of
indexed languages relevant to that family.
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1 Introduction

The well known Chomsky–Schützenberger theorem [6] states that every context-
free language L can be represented as L = h(R∩Dk), for some integer k, regular
set R and homomorphism h. The set Dk used in this expression, called Dyck lan-
guage, is the set of well-bracketed words over k pairs of brackets. Combined with
Nivat’s characterization of rational transductions, this means that any context-
free language can be defined as a set L = h(g−1(D2) ∩ R), for some regular set
R, and homomorphisms h and g.

Let us consider wider families of languages, Maslov defines in [13] an infinite
hierarchy of languages included in recursively enumerable languages. The level
1 consists of context-free languages, the level 2 of indexed languages (initially
defined by Aho [1]). Known as higher order languages since the last decades, the
languages of the hierachy and derived objects as higher order trees [12], higher
order schemes [9], or higher order graphs [5], are used to model programming
languages and are in the core of the recent researches in program verification[18].

It is stated in [14] and proved in [8] that each level Lk of the hierarchy is
a principal rational cone generated by a language Mk ∈ Lk. This means that
each language in Lk is the image of Mk by a rational transduction. Roughly
speaking, the language Mk consists of words composed by k embedded Dyck
words and can be viewed as a generalization of the Dyck language. Indeed it
gives a description of derivations of an indexed grammar of level k, in the same
way that the Dyck language encodes derivations of a context-free grammar.

This latter characterization describes Lk from a single language Mk, but
this one is very complicated as soon as k ≥ 2, as the majority of higher order
languages. To better understand higher order languages, we think that it is
necessary to characterize them using more simple objects. So, we may wonder
whether it is possible to give versions of the Chomsky–Schützenberger theorem
and a characterization by transduction of the level k + 1 of the hierarchy, using
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only the level k of the hierarchy. The fundamental point is then to identify
mechanisms that bridge the level k to the level k + 1.

In this paper, we solve the problem for the class IL of Indexed Languages
(the level 2 of the hierarchy). In order to localize the problem, let us remark
that from [10], recursively enumerable languages are sets that can be written as
L = h(K ∩ Dk) where K is a context-free language, and h a homomorphism.
So if we want a homomorphic characterization of IL using only context-free or
regular languages, we would have to consider a restricted class of context-free
languages.

For this purpose, we introduce the class of ε-Reducible Context-Free Lan-
guages (ε-CFLs), which is a strict subclass of context-free languages that reduce
to ε by the bilateral reduction S = {aā → ε, āa → ε}a∈Γ (these languages are
thus defined over an alphabet Γ and its copy Γ̄ ). We extend this definition to
transductions: an ε-Reducible Context-Free Transduction (ε-CFT) is a context-
free transduction whose domain is an ε-CFL. Using these objects, we obtain
simple and elegant generalizations of the Chomsky–Schützenberger theorem. In-
dexed languages are:

– the images of D2 by ε-reducible context-free transductions. (Theorem 15);
– sets h(Z ∩Dk); where k is an integer, Z an ε-CFL, and h a homomorphism

(Theorem 18).

Beyond these two results, we study the classes of ε-CFLs and ε-CFTs defined
by means of context-free grammars and context-free transduction grammars.
First we express them using symmetric homomorphisms which are homomor-
phisms under which there are closed. We establish a Chomsky–Schützenberger-
like Theorem for ε-CFLs, and a Nivat-like characterization for ε-CFTs: every
ε-CFL L can be represented as L = g(R ∩Dk) for some integer k, regular lan-
guage R, and symmetric homomorphism g; and ε-CFTs are relations that can
be represented as {(g(x), h(x)) | x ∈ R ∩ Dk} for some integer k, regular lan-
guage R, homomorphism h and symmetric homomorphism g. This leads to a
third characterization: indexed languages are languages that can be described as
L = h(g−1(D2)∩R∩Dk), for some integer k, regular language R, homomorphism
h and symmetric homomorphism g (Corollary 17).

Similar characterizations have been given for subclasses of indexed languages,
by Weir [20] for linear indexed languages, by Kanazawa [11] and Sorokin [19] for
yields of tree languages generated by simple context-free grammars. The main
difference is that in their cases, the homomorphism g is not symmetric, but is
fixed in function of k.

Overview. Section 1 is devoted to the study of ε-CFLs. After introducing neces-
sary notions as free groups and Dyck languages, we define the class of grammars
generating ε-CFLs. We then study their closure properties, and conclude the
section by giving a Chomsky–Schützenberger-like characterization of the class
of ε-CFLs. In Section 2, we extend our definition to transductions and define
the class of ε-CFTs. After a subsection giving background on transductions we
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give a Nivat-like characterization of ε-CFTs. The last section is devoted to in-
dexed languages. After introducing indexed grammars, we prove that indexed
languages are images of the Dyck language by ε-CFTs and deduce from this
result several homomorphic characterizations.

2 Epsilon-Reducible Context-Free Languages

In this section, we study a family of context-free languages defined over a union
of an alphabet and its opposite-disjoint copy and that reduce to the neutral ele-
ment ε when projected into the free group. The main result here is a Chomsky–
Schützenberger-like homomorphic characterization of these languages. We as-
sume the reader to be familiar with context-free grammars and languages (see
[3] for example), and present below a few necessary notions on free groups.

2.1 Free groups and Dyck languages

Given an alphabet Γ , we denote by Γ a disjoint copy Γ = {ā | a ∈ Γ} of it, and

by Γ̂ the set Γ ∪ Γ . We adopt the following conventions: ¯̄a = a for all a ∈ Γ ,
ε̄ = ε and for any word u = α1 · · ·αn ∈ Γ̂ ∗, ū = ᾱn · · · ᾱ1.

Let us consider the reduction system S = {(aā, ε), (āa, ε)}a∈Γ̂ . A word in Γ̂ ∗

is said to be reduced if it is S-reduced, i.e. it does not contain occurrences of
aā, āa, for a ∈ Γ . As S is confluent, each word w is equivalent (mod ↔∗S) to a

unique reduced word denoted ρ(w). Note that for all u ∈ Γ̂ ∗, ρ(uū) = ρ(ūu) = ε.
Given a set X, we denote by ρ(X) the set {ρ(x) | x ∈ X}.

The free group F(Γ ) consists of reduced words over Γ̂ . Its neutral element is
the empty word and its product • is defined as u • v = ρ(uv).

The set of all words u ∈ Γ̂ ∗ such that ρ(u) = ε is denoted TΓ . The Dyck
language over Γ , denoted DΓ , is the set of all u ∈ TΓ , such that for every prefix
v 4 u: ρ(v) ∈ Γ ∗. We will also write Dk, k ≥ 1, to refer to the set of Dyck words
over any alphabet of size k.

2.2 ε-Reducible Context-Free Languages and Grammars

Definition 1. An ε-Reducible Context-Free Grammar (ε-CFG) is a con-

text free grammar G = (N,T, S, P ) (N is the set of nonterminal symbols, Γ̂ the
terminal alphabet, S ∈ N is the start symbol, and P is the set of productions)

such that T = Γ̂ for some alphabet Γ and every production is in the form:

X −→ ωΩω̄, for ω ∈ Γ̂ ∗, and Ω ∈ N∗

For all X ∈ N , we define LG(X) = {u ∈ Γ̂ ∗ | X ∗−→G u}; the language
generated by G is LG = LG(S).

An ε-Reducible Context-Free Language (ε-CFL) is a context-free language L
that can be generated by an ε-CFG.
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Example 2. Let G = (N, {α, β, ᾱ, β̄}, S, P ) be the ε-CFG whose productions are:
S −→ βXβ̄, X −→ αXᾱ+ Y , Y −→ ᾱY Zα+ β̄β, Z −→ ᾱZα+ β̄β.

One can easily check that:

LG(Z) =
⋃
n≥0 ᾱ

nβ̄βαn, LG(Y ) =
⋃
n≥0 ᾱ

nββ̄(Πn
i=1LG(Z)α),

LG(S) = βLG(X)β̄, LG(X) =
⋃
n≥0 α

nLG(Y )ᾱn.

It follows that: LG =
⋃

n,m,r1,...rm≥0

βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄. ut

It seems clear that every ε-CFL L satisfies ρ(L) = {ε}. One can indeed
observe that every terminal word generated from a nonterminal symbol X ∈ N
reduce to ε. However, there are context-free languages that reduce to ε and which
cannot be generated by an ε-CFG. We prove this by using a “pumping lemma”
for ε-CFLs.

Lemma 3. If L ⊆ Γ̂ ∗ is an ε-CFL, then there exists some integer p ≥ 1 such
that every word s ∈ L with |s| ≥ p can be written as s = uvwxy with

1. ρ(uy) = ε, ρ(vx) = ε and ρ(w) = ε
2. |vwx| ≤ p,
3. |vx| ≥ 1, and
4. uvnwxny is in L for all n ≥ 0.

Proof (Sketch). Let G be an ε-CFG generated L. The proof of the pumping
lemma for context-free languages is based on the fact that if a word s ∈ L is
long enough, there are a non terminal A and terminal words u, v, w, x, y such
that S

∗−→G uAy
∗−→G uvAxy

∗−→G uvwxy and s = uvwxy. Since G is an
ε-CFG, this implies that ρ(uy) = ε, ρ(vx) = ε and ρ(w) = ε ut

Proposition 4. There is a context-free language L satisfying ρ(L) = ε which is
not an ε-CFL.

Proof (Sketch). By applying Lemma 3 to the set L of words (αᾱ)nβ(αᾱ)nβ̄ for
n ≥ 0, we can show that L is not an ε-CFL. ut

Proposition 5. The class of ε-CFLs is closed under union, intersection with
regular sets, concatenation and Kleene star.

Proof. Obviously, the class of ε-CFLs is closed under union, concatenation and
Kleene star. Let us prove the closure under intersection with regular sets. Let
L be generated by an ε-CFG G = (N, Γ̂ , P, S) and R be a regular language.

There is a monoid morphism µ : Γ̂ ∗ → M , where M is a finite monoid and
H ⊆ M such that R = µ−1(H). We construct the ε-CFG G′ = (N ′, Γ̂ , P ′, S′)
where N ′ = {Xm | X ∈ N,m ∈M} ∪ {S′} and P ′ is the set of all productions:

– Xm −→ αX1,m1
· · ·Xn,mn

ᾱ such that X −→ αX1 · · ·Xnᾱ ∈ P and m =
µ(α)m1 · · ·mnµ(ᾱ)
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– S′ −→ Sm for m ∈ H

Then for every u ∈ Γ̂ ∗, for every X ∈ N and m ∈M :

Xm
∗−→G′ u iff X

∗−→G u and u ∈ µ−1(m).

It follows that LG′ = L ∩ µ−1(H). ut

2.3 A Chomsky–Schützenberger-like theorem for ε-CFLs

The Chomsky–Schützenberger theorem states that a language L ⊆ Σ∗ is context-
free iff there is an alphabet Γ , a regular set R ⊆ Γ̂ ∗, and a homomorphism
h : Γ̂ ∗ → Σ∗ such that

L = h(R ∩DΓ ).

This implies that the whole class of context-free languages is generated by homo-
morphic images of ε-CFLs, since R ∩DB is an ε-CFL. To get an homomorphic
characterization for ε-CFLs, we introduce a class of homomorphisms under which
the family of ε-CFLs is closed.

Definition 6. A homomorphism g : Σ̂∗ → Γ̂ ∗ is said to be symmetric if for all
α ∈ Σ̂, g(ᾱ) = g(α).

Proposition 7. The class of ε-CFLs is closed under symmetric homomorphism.

Proof. Consider a language L generated by an ε-CFGG = (N, Γ̂ , P, S) and

g : Γ̂ ∗ → Σ̂∗ be a symmetric homomorphism. We construct an ε-CFGG′ =
(N, Σ̂, P ′, S) generating g(L) as follows:

P ′ = {X −→ g(u)Ωg(ū) | X −→ uΩū ∈ P,Ω ∈ N∗, u ∈ Γ̂ ∗}. ut

More generally, ε-CFLs are closed under every homomorphism g satisfying “ρ(u) =
ε =⇒ ρ(g(u)) = ε”.
We can now state the main result of this section.

Theorem 8. A set L ⊆ Γ̂ ∗ is an ε-CFL iff there is an alphabet Σ, a symmetric
homomorphism g : Σ̂∗ → Γ̂ ∗, and a regular set R ⊆ Σ̂∗ such that

L = g(R ∩DΣ).

The “if” part of Theorem 8 is direct using Propositions 5 and 7. The “only if”
part is obtained using a slight adaptation of the proof of the non-erasing variant
of the Chomsky–Schützenberger theorem given in [17].
We conclude this section by emphasizing that Theorem 8 and Propositions 5
and 7 provide another characterization of the class of ε-CFLs:

Corollary 9. The family of ε-CFLs is the least family of languages that contains
the Dyck language and is closed under union, intersection with regular sets,
symmetric homomorphisms, concatenation and Kleene star.
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2.4 Related works

In [4], the authors define (pure) balanced grammars that are context-free gram-
mars whose set of productions is a (possibly infinite) regular set of rules of the
form X −→ αmᾱ, where α ∈ Γ and m ∈ N∗. Balanced grammars do not
generate all ε-CFLs included in DΓ , for example they cannot generate the set
{β(αᾱ)n(γγ̄)nβ̄ | n ≥ 0}.

Introduced in [15], input-driven languages, more recently known as Visibly
Pushdown Languages (VPLs), are extensions of balanced languages defined over
a structured alphabet: Σc is the set of call symbols, Σr the set of returns and
Σ` the set of local symbols. They are recognized by pushdown automata that
push onto the stack only when reading a call, pop the stack only on returns, and
do not use the stack when reading local actions. The input word hence controls
the permissible operations on the stack—however, there is no restriction on
the symbols that can be pushed or popped. This implies that there are visibly
pushdown languages which are not ε-CFLs. However the ε-CFL {(αᾱ)n(ββ̄)n |
n ≥ 0} is not a VPL when Σc = Γ and Σr = Γ̄ .

Also note that unlike ε-CFLs, VPLs are closed under intersection. We will
see (Theorem 18) that the intersection of an ε-CFL with the Dyck language is
an indexed language.

3 Epsilon-Reducible Context-Free Transductions

In this section, we extend the notion of ε-reducibility to transductions. We con-
sider a subclass of context-free transductions such that their domains are ε-CFLs.
We give a Nivat-like presentation of those transductions.

3.1 Transductions

We briefly introduce rational and context-free transductions. The reader can
refer to [2] for a more detailed presentation.

Let Γ and Σ be two finite alphabets, we consider the monoid Γ ∗×Σ∗ whose
product is the product on words, extended to pairs of words : (u1, v1)(u2, v2) =
(u1u2, v1v2). A subset τ of Γ ∗ ×Σ∗ is called a (Γ,Σ)-transduction.

Transductions are viewed as (partial) functions from Γ ∗ toward subsets of
Σ∗: for any u ∈ Γ ∗, τ(u) = {v ∈ Σ∗ | (u, v) ∈ τ}. For every L ⊆ Γ ∗, the
image (or transduction) of L by τ is τ(L) =

⋃
u∈L τ(u). The domain of τ is

Dom(τ) = {u | ∃v, (u, v) ∈ τ}.

Rational transductions: A rational (Γ,Σ)-transduction is a rational subset of the
monoid Γ ∗×Σ∗. Among the different characterizations of rational transductions,
let us cite the Nivat theorem [16] stating that rational transductions are relations
τ = {(g(u), f(u)) | u ∈ R}, for some regular set R and homomorphisms f and g.

Rational transductions are closed by composition and many classes of lan-
guages are closed under rational transductions. In particular, τ(L) is rational if
L is rational, and τ(L) is context-free if L is context-free.
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Associated with the Nivat theorem, the Chomsky–Schützenberger theorem
establish in a stronger version that a language L is context-free iff there is a
rational transduction τ such that L = τ(D2).

Context-free transductions: Following [2, page 62], a transduction τ ⊆ Γ ∗×Σ∗
is context-free if there is an alphabet A, a context-free language K ⊆ A∗ and
two homomorphisms f : A∗ → Σ∗ and g : A∗ → Γ ∗ such that τ = {(g(u), f(u)) |
u ∈ K}.

Equivalently, τ is context-free if it is generated by a context-free transduction
grammar. This is a context-free grammar whose terminals are pairs of words.
Derivations are done as usually but the product used on terminal pairs is the
product of the monoid Γ ∗ ×Σ∗.

Context-free transductions enjoy however fewer good properties, in particu-
lar, [2, page 62] they are not closed under composition and classes of languages
are usually not closed under them. For example, images of regulars languages
are context-free languages and images of context-free languages are recursively
enumerable languages.

3.2 ε-Reducible Context-Free Transductions and Transducers

Definition 10. An ε-Reducible Context-Free Transduction Grammar
(ε-CFTG) is a context-free transducer G = (N, Γ̂ ,Σ, S, P ) in which every pro-
duction is in the form

X −→ (ω, u)Ω(ω̄, v), with ω ∈ Γ̂ ∗, u, v ∈ Σ∗, Ω ∈ N∗.

The transduction generated by G is TG = {(u, v) ∈ Γ̂ ∗ × Σ∗ | S ∗−→G (u, v)}.
An ε-reducible context-free transduction (ε-CFT) is a context-free transduction
generated by an ε-CFTG.

Example 11. Let G = (N, {α, β, ᾱ, β̄}, {a}, S, P ) be the ε-CFTG whose produc-
tions are:

S −→ (β, ε)X(β̄, ε) X −→ (α, ε)X(ᾱ, ε) X −→ (ε, ε)Y (ε, ε)
Y −→ (ᾱ, a)Y Z(α, ε) Z −→ (ᾱ, a)Z(α, a) Y −→ (β̄, ε)(β, ε) Z −→ (β̄, ε)(β̄, ε).

Let τ be the transduction generated by G. The domain of τ is the ε-CFL given
in Example 2 and one can easily check that

τ =
⋃

n,m,r1,...rm≥0

(βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄, am+2r1+···+2rm).

ut

Theorem 12. Given a transduction τ ⊆ Γ̂ ∗ × A∗, the following properties are
equivalent:

1. τ is an ε-reducible context-free transduction;
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2. there is an alphabet ∆, an ε-CFL X ⊆ ∆̂∗, a symmetric homomorphism
g : ∆̂∗ → Γ̂ ∗ and a homomorphism h : ∆̂∗ → A∗ such that

τ = {(g(u), h(u)) | u ∈ X};

3. there is an alphabet ∆, a symmetric homomorphism g : ∆̂∗ → Γ̂ ∗, a homo-
morphism h : ∆̂∗ → A∗ and a regular set R ⊆ ∆̂∗ such that

τ = {(g(u), h(u)) | u ∈ R ∩D∆}.

Proof. (1 ⇒ 2) Suppose τ to be generated by an ε-CFTG G = (N, Γ̂ ,Σ, S, P ).

We define the ε-CFG G′ = (N, ∆̂, S, P ′) where ∆ = P , and the set of productions
of P ′ is obtained by transforming every p : X −→ (ω, v)Ω(ω̄, w) ∈ P into

X −→ pΩp̄. Now, let h : ∆̂∗ → A∗ and g : ∆̂∗ → Γ̂ ∗ such that for every
p : X −→ (ω, v)Ω(ω̄, w) ∈ P , g(p) = ω, g(p̄) = ω̄ and h(p) = v, h(p̄) = w.
Clearly we have

TG = {(g(u), h(u)) | u ∈ L(G′)}.

(2 ⇒ 3) Suppose that τ = {(g(u), h(u)) | u ∈ X} where X is an ε-CFL and

g symmetric. From Theorem 8, there is an alphabet C, a regular set R ⊆ Ĉ∗,
and a symmetric homomorphism g′ : Ĉ∗ → ∆̂∗ such that X = g′(R ∩ D∆).
The homomorphism g ◦ g′ is symmetric as g and g′ are both symmetric and
τ = {(g(g′(x)), h(g′(x))) | x ∈ R ∩D∆}.

(3 ⇒ 1) Let τ = {(g(u), h(u)) | u ∈ R ∩D∆} where R is a regular language and
g is symmetric. From Proposition 5, R ∩D∆ is an ε-CFL. Let us suppose that
R∩D∆ is generated by the ε-CFG G = (N, ∆̂, P, S), then τ is generated by the

ε-CFTG G′ = (N, Γ̂ , Σ̂P ′, S) where

P ′ = {X −→ (g(u), f(u))Ω(g(ū), h(ū)) | X −→ uΩū ∈ P,Ω ∈ N∗, u ∈ Γ̂ ∗}.
ut

Theorem 12 implies that the image of a set X by an ε-CFT can be represented
as h(g−1(X) ∩ R ∩ D∆) with R being a regular set, h a morphism and g a
symmetric morphism. It is then clear that the family of images of regular sets
by ε-CFTs is the family of context-free languages; we will see (Theorem 15) that
the family of images of the Dyck language is that of indexed languages, but more
generally, images of ε-CFLs by ε-CFTs are recursively enumerable languages.

Proposition 13. Given a recursively enumerable language E, there is an ε-CFT
τ , and an ε-CFL Z such that E = τ(Z).

Proof. Let E ⊆ Σ∗. From [10], there is an alphabet Γ , a homomorphism h :

Γ̂ ∗ → Σ∗, and a context-free language K ⊆ Γ̂ ∗ such that E = h(K ∩DΓ ).

Let g : Γ̂ ∗ → Γ̂ ∗ be the injective symmetric homomorphism defined by
x 7→ xx̄, for all x ∈ Γ̂ . Then E = h(g−1(Z) ∩DΓ ), for Z = g(K), that is, from
Theorem 12, E = τ(Z), where τ is an ε-CFT. Note finally that Z is an ε-CFL:
from the grammar in Chomsky normal form generating K, one obtain an ε-CFG
generating Z by replacing the terminal productions X −→ a by X −→ g(a). ut
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4 Characterizations of Indexed Languages

In this final section, we relate indexed languages to ε-CFTs by showing that
indexed language are sets τ(D2), where τ is an ε-CFT. This gives rise to various
homomorphic characterizations of indexed languages.

4.1 Indexed Grammars and Languages

Introduced by Aho[1], indexed grammars extend context-free grammars by al-
lowing nonterminals to yield a stack. Derivable elements are then represented by
symbols Xω where X is a nonterminal and ω is a word called index word. Index
words are accessed by a FIFO process: during a step of derivation of Xω, it is
possible to add a symbol in head ω, or to remove its first letter. Additionally, ω
can be duplicated and distributed over other nonterminals.

Formally, an indexed grammar is a structure I = (N, I,Σ, S, P ), where N
is the set of nonterminals, Σ is the set of terminals, S ∈ N is the start symbol,
I is a finite set of indexes, and P is a finite set of productions of the form

X0
η0 −→ u0X1

η1u1 · · ·Xn
ηnun

with ui ∈ Σ∗, Xi ∈ N and ηi ∈ I ∪ {ε} for i ∈ {0, . . . , n}.

Indexes are denoted as superscript, and we do not write indexes equal to ε.

Sentences are words u1A1
ω1 . . . unAn

ωnun+1 with ui ∈ Σ∗, Ai ∈ N and ωi ∈ I∗.
The derivation rule “−→I” is a binary relation over sentences defined by

Ω1A
ηωΩ2 −→I Ω1u0B1

η1ω · · ·Bnη1ωunΩ2

iff there is a production Aη −→ u0B1
η1u1 . . . Bn

ηnun ∈ P .

The language generated by I is LI = {u ∈ Σ∗ | S ∗−→I u}. Languages generated
by indexed grammars are called indexed languages.

Example 14. Let us consider the following indexed grammar I = (N, I,A, S, P )
with N = {S,X,A,B,C}, I = {β, α}, A = {a, b, c} and P consists of the
following rules:

p1 : S −→ Xβ , p2 : S −→ ε, p3 : X −→ Xα, p4 : X −→ ABC,
p5 : Aα −→ aA, p6 : Aβ −→ ε, p7 : Bα −→ bB, p8 : Bβ −→ ε,
p9 : Cα −→ cC, p10 : Cβ −→ ε.

Here is a possible derivation:

S
p1−→I X

β p3−→I X
αβ p3−→I X

ααβ p4−→I A
ααβBααβCααβ

p5−→I aA
αβBααβCααβ

p5−→I aaA
βBααβCααβ

p6−→I aaB
ααβCααβ

p7p7p8−→I aabbC
ααβ p9p9p10−→I aabbcc

The language generated by I is {anbncn, n ≥ 0}. ut
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4.2 Characterizations of Indexed Languages

We provide now homomorphic characterizations of indexed languages by estab-
lishing a strong connexion between indexed languages and ε-CFTs.

Theorem 15. A language L is indexed iff there is an ε-CFT τ such that

L = τ(D2).

Let us informally explain the proof of Theorem 15. First we need to consider
normal forms of indexed grammars (which extend the normal form given in [1])
and ε-CFT grammars.

An indexed grammar is said to be reduced if its productions are in the forms:

X0 −→ uX1
α · · ·Xn

αv, or X0
α −→ uX1 · · ·Xnv;

with n ≥ 0, Xi ∈ N , u, v ∈ Σ∗ and α ∈ I ∪ {ε}.

An ε-CFTG is said to be reduced if its productions are in the form:

X0 −→ (α, u)Ω(ᾱ, v) with Ω ∈ N∗, u, v ∈ Σ∗ and α ∈ Γ̂ ∪ {ε}.

Let us consider the bijective mapping ϕ that maps a reduced indexed gram-
mar I = (N, I,Σ, P, S) into a reduced ε-CFTG ϕ(I) = (N, Î, Σ, ϕ(P ), S) by
transforming every production

p : X0 −→ uX1
α · · ·Xn

αv into ϕ(p) : X0 −→ (α, u)X1 · · ·Xn(ᾱ, v), and
p : X0

α −→ uX1 · · ·Xnv into ϕ(p) : X0 −→ (ᾱ, u)X1 · · ·Xn(α, v).

The idea behind the construction is to write, into the terminal inputs of the
ε-CFTG, the index operations made by the indexed grammar. The transduc-
tion grammar thus created is able to capture every index modifications of the
initial indexed grammar, but also accepts bad computations. We claim that by
restricting the domain to Dyck words, we exactly get derivations equivalent to
those of the indexed grammar.

For example, there would be a derivation

X −→ u1X1
αv1 −→ u2Y1

αY2
αv2 −→ u3Y1

αw3Zv3

in I iff there was a derivation of the following form in ϕ(I):

X −→ (α, u1)X1(ᾱ, v1) −→ (α, u2)Y1Y2(ᾱ, v2) −→ (α, u3)Y1(ᾱ, w3)Z(αᾱ, v3).

Claim: There is a derivation S
∗−→I v1Y1

w1v2 · · ·Ynwnvn+1 iff there is a deriva-

tion S
∗−→ϕ(I) (u1, v1)Y1(u2, v2) · · ·Yn(un+1, vn+1) where u1 · · ·un+1 belongs to

DI and ρ(u1 · · ·ui) = wRi for i ∈ {1, . . . , n} (wRi is the mirror image of wi).

This can be proved by induction over the length of derivations, and implies that
Tϕ(I)(DI) = LI. Because of the bijectivity of the construction, we obtain:

“A language L is indexed iff there is an ε-CFT τ and k ∈ N s.t. L = τ(Dk).”

Finally, it is possible to define from every ε-CFT τ , an ε-CFT τ ′ such that
τ(DΓ ) = τ ′(D2), by encoding every αi ∈ Γ by a word 01i0 and ᾱi by 0̄1̄i0̄.
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Example 16. Let I = (N, I,Σ, S, P ) be an indexed grammar with N = {S,X, Y,
W,Z}, I = {β, α}, A = {a} and P consists of the rules:

S −→ Xβ , X −→ Xα, X −→ Y , Y α −→ aY Z
Y β −→ ε, Zα −→ aZa, Zβ −→ ε.

Initially defined in [7], the grammar I generates the language L = {an2 | n ≥ 0}.
Applying the bijection ϕ defined above to I, we get the ε-CFTG G given in

Example 11 and generating the transduction

τ =
⋃

n,m,r1,...rm≥0

(βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄, am+2r1+···+2rm).

For every u = βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄ ∈ Dom(τ),

u is a Dyck word =⇒ m = n, r1 = 0, and for all i ∈ [0,m− 1], ri+1 = ri + 1
=⇒ τ(u) = an+2(0+1+···+n−1)

=⇒ τ(u) = an
2

.

It follows that τ(DI) = {an2}n≥0 = LI. ut

Corollary 17. A language L is indexed if there is a homomorphism h, a sym-
metric homomorphism g, a regular set R and k ∈ N such that

L = h(g−1(D2) ∩R ∩Dk).

Theorem 18. A language L is indexed iff there is an ε-CFL K, a morphism h,
and an alphabet Γ such that

L = h(K ∩DΓ ).

Proof. (⇒) Let L ⊆ A∗ be an indexed language. From Theorem 15 and Theorem

12, there are alphabets Σ,Γ , an ε-CFL K ⊆ Γ̂ ∗, a homomorphism h : Γ̂ ∗ → A∗

and a symmetric homomorphism g : Γ̂ ∗ → Σ̂∗ such that L = h(K ∩ g−1(DΣ)).
We suppose that Σ∩A = ∅ (otherwise, it suffices to work with a copy of Σ), and

define the homomorphism µ : Γ̂ ∗ → ∆̂∗, for ∆ = Σ ∪ A, by α 7→ g(α)h(α)h(α).

For all u ∈ Γ̂ ∗, µ(u) ∈ D∆ iff u ∈ g−1(DΣ); in addition, πA(µ(u)) = h(u), with

πA being the projection of ∆̂∗ into A∗. Then we have:

πA(µ(K) ∩D∆) = h(K ∩ g−1(DΣ)) = L.

Now, as µ satisfies “ρ(u) = ε =⇒ ρ(g(u)) = ε” and K is an ε-CFL, so is µ(K).

(⇐) Obvious from Theorem 15 and Proposition 12, by choosing g to be the
identity mapping. ut
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