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Optimal partition in terms of independent random vectors of any
non-Gaussian vector defined by a set of realizations

C. Soizef

Abstract. We propose a fast algorithm for constructing an optimalipiant in terms of mutually independent random
vectors, of the components of a non-Gaussian random véabistonly defined by a given set of realizations.
The method proposed and its objective are different fromirtlependent component analysis (ICA) that was
introduced to extract independent source signals fromeatimixture of independent stochastic processes. The
algorithm that is proposed is based on the use of the mutwedmnfrom information theory and on the use
of graph theory for constructing an optimal partition. Thethod has especially been developed for random
vectors in high dimension and for which the number of reélires that constitute the data set can be small. The
proposed algorithm allows for improving the identificatiohany stochastic model of a non-Gaussian random
vector in high dimension for which a data set is given. Indtefdirectly constructing a unique stochastic
model for which its stochastic dimension, which is identifley solving a statistical inverse problem, can be
large, the proposed preprocessing of the data set allovesfmtructing several mutually independent stochastic
models with smaller stochastic dimensions. Consequeth a method allows for decreasing the cost of the
identification and/or to make possible an identificationd@ase that is a priori in high dimension and that could
not be identified through a direct and global approach. Tgerdhm is completely defined in the paper and can
easily be implemented.
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Notations. The following notations are used:
A lower case letter such as n, or u, is a real deterministic variable.
A boldface lower case letter suchxsy, oru is a real deterministic vector.
An upper case letter such & H, or U, is a real random variable (except Bt K, S).
A boldface upper case lettef, H, or U, is a real random vector.
A letter between brackets suchla$, [n], [u] or [C], is a real deterministic matrix.
A boldface upper case letter between brackets su¢K]agH], or [U], is a real random matrix.
n: dimension of the random vectét”.
m: number of independent groups in the partitiorHdf.
E: mathematical expectation.
N': dimension of the random vect&r for which the set of realizations is given.
v: number of independent realizations>of
N: set of all the null and positive integers.
N*: set of the positive integers.
R: real line.
RY: Euclidean vector space of dimensidh
M., set of all the(n x N) real matrices.
M,,: My, .
M set of all the symmetri¢n x n) real matrices.

fUniversité Paris-Est, Laboratoire Modélisation et Simtion Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes,
77454 Marne-la-Vallee, France (christian.soize@uniispest.fr).
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2 CHRISTIAN SOIZE

M. set of all the positive-definitén x n) real matrices.
(©,7,P): probability space.

L?(©,R"): space of all théR"-valued second-order random variables &y 7, P).
xT': transpose of the column matrix representing a veciarR" .
[x]i;: entry of matrix[z].

[z]7" transpose of matrikr].

tr{[x]}: trace of a square matrix|.

[1,,]: identity matrix inlVL,.

IX||: Euclidean norm of vectox.

d;5: Kronecker's symbol such thag; = 0if i # jand=11if i = j.
pdf: probability density function.

1. Introduction. In this introduction, we explain the objective of the papee give some ex-
planations concerning the utility of the statistical tdoht is proposed, we present a very brief state
of the art, and finally, we give the organization of the paperae describe the methodology proposed.

(i) Objective The objective of this paper is to propose an algorithm forstucting an optimal parti-
tion of the components of a non-Gaussian second-order navdotorH” = (HY,...H”) in terms of
m mutually independent random vectdf%', ..., Y¥ with values inR*! , ..., R*m, such thaH” =
(Y ..., Y"™), wherem must be identified as the largest possible integer and whgre . | i,
must be identified as the smallest integers greater thanual émone, such that; + ... + p,;, = n.
Forallj = 1,...,m, the component§;™, ..., Y, of the R*-random vectory”’/ are mutually
dependent. For such a construction, it is assumed that tely swailable information is made up of
a given data set made up of'experimental” realizationgy®®!, ... n®®" of the random vectoH".

In the method proposed, a probability density functiprs py» (1) on R™ will be constructed by the
Gaussian kernel estimation method from the set ofitliealizations. Then, the random vectdr
will be defined as the random vector for which its probabitiigtribution will be py» (1) dn. This

is the reason why the random vector is denotetHagand notH) for indicating its dependence on
v). We are interested in the challenging case for whiaan be big (high dimension) and for which
the number of realizations can be small (the statistical estimatorstban not be well converged).
Note that the "experimental” realizations can come fromesgikpental measurements or come from
numerical simulations. Such an objective requagsiori (i) to construct an adapted criterion for test-
ing the mutual independence of random vectots , ..., Y*™ in a given approximation (the exact
independence will not be reached due to the fact that the aumbf "experimental” realizations is
finite, and can be small enough), and (ii) to develop an algworthat is faster than the one that would
be based on the exploration all the possible partitionseifttomponents o” (without repetition of
the indices). The number of possible partitions that shbeldonstructed and tested with the adapted
criterion would then b@;‘;ll C} with G, = ((n —j + 1) x ... x n)/4!, which is really too big
for a high value ofn. In this paper, we propose a statistical tool with a fast @igan for solving this
problem in high dimension and for which the valuexofan be small enough.

(i) What would be the utility of the statistical tool propo8e8or many years, probabilistic and sta-
tistical methodologies and tools have been developed foemminty quantification in computational
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sciences and engineering. In particular advanced metbgigsl and algorithms are necessary for mod-
eling, solving, and analyzing problems in high dimensionmegent state of the art concerning all these
methodologies can be found in the Handbook of Uncertaintgrfification R6]. The statistical tool
presented in this paper, which consists in constructingpdimal partition of a non-Gaussian random
vector in several mutually independent random vectord) eae having a smaller dimension than the
original random vector, can be used for decreasing the ricateost of many existing methodologies
devoted to the construction of stochastic models and tHeimtification by solving statistical inverse
problems, both for the uncertain parameters of the compuot&ltmodels and the stochastic represen-
tation of their random responses.

Let us consider, for instance, the case of the polynomiabsxpansion (PCE) of random vectors,
stochastic processes, and random fields, which has beeeepgzhby Ghanem and Span@s][in

the community of computational sciences and engineeringhe basis of the mathematical works
performed by Wienerq7] and Cameron and Martir®]. This initial work has then been extended by
Ghanem and his co-authors and by many researchers in thewdtyrof uncertainty quantification,
concerning the development of many methodologies and,tants for which numerous applications
have been performed in many fields of science and enginegithggreat success. In the area of the
methodologies, we refer, for instance, 8 14, 15, 16, 17, 24, 25, 40, 44, 45, 53, 55| for the spectral
approaches of linear and nonlinear stochastic boundang yabblems and some associated statistical
inverse problems; tolg, 41, 51, 56, 58] for the generalized chaos expansions;3p4, 5, 21, 36, 42]

for works devoted to the dimension reduction and to the acatbn of stochastic convergence of the
PCE. If we were interested in the identification of the PCEtfa random vectoH” with values in
R™, the use of the statistical tool that is proposed in this pameild allow for obtaining a significant
gain if the optimal partition was such that< m < n. We briefly explain hereinafter the reason
why. ForNg > 1 (N4 will be the maximum degree of the polynomials) and foKx N, < n (V,
will be the length of the random germ for the polynomial chatet o = (ay, ..., an,) € NYs be
the multi-index such that < oy + ... + ayn, < Ng. The firstl + K multi-indices are denoted by
a@ ... a®) inwhicha(® is the multi-index(0, ... ., 0), and whereX = (N, + Ny)!/N,! Ng! —1.

For N, fixed, let{¥(€), o € (ay,...,an,) € NV} be the family of multivariate orthonormal
polynomials with respect to a given arbitrary probabilitgasurep_ (&) d¢ on RYs such that, for all
aandBin NV, [y, Ua(€) Ug(€) pa(€) dé = E{Ua(E) ¥g(E)} = dap. Fora =0, ¥g(n) =1

is the constant normalized polynomial. The second-ordeidam vectoH” can then be expanded in
polynomial chaosl, asH” = limy, n N;—s+o0o H»Na:Ns with convergence in the vector space of
all the R™-valued second-order random variables, in whith¥e-Ns — Zszo h®) ¥ _ . (E) where

h© ... h%) are the coefficients ifk™. The statistical inverse problem consists in estimatirig-in
gersN, < n andN; > 1, and the coefficients® ... h) in R", by using thev "experimen-
tal” realizationsn®®!, ..., n®®" in order thatE{||H” — H""Na:Ne||2} < ¢ B{||H”||?}. An adapted

method such as those proposedany, 14, 16, 42, 45, 47, 53] can be used for solving this statisti-
cal inverse problem for which the numerical effort is ditgcelated to the value oV, < n. If an
optimal partitionH” = (Y”vl, ..., YY"™) is constructed withn < n, then the PCE can be identi-

fied for eachR"-valued random vector* such thaty Vi — Z,ﬁo hUR) W _ ;. (E7) in which
h0) .. hU-K5) are the coefficients il*/, where=’ is a random variable with values Vs with
N < p; < n for which its arbitrary probability measuye ; (¢7) d¢’ on RVs” is given, and where
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K; = (Néj) + Nc(lj))!/N;j)! Ncgj)! — 1. As the random vectoi®', . .., 2™ are mutually independent,
if m (with m < n) is big, then the gain obtained is very big, beca@}%“:1 K; < K.

(iii) Brief state of the art concerning the methodologies foiigsndependence

(1) A popular method for testing the statistical indepermaeof theN components of a random vector
from a given set of realizations is the use of the frequency distributi@f] [coupled with the use
of the Pearson chi-squareg?) test 46, 29]. For the high dimensionX big) and for a relatively
small value ofv, such a an approach does not give sufficiently good resudtaddition, if this type

of method allows for testing the independence, we alwayd aeeadditional fast algorithm for con-
structing the optimal partition that we are looking for.

(2) The independent component analysis (ICA),[35, 10, 11, 33, 12, 34, 39, 6], which is also
referred to as the blind source separation, is an efficiehadethat consists in extracting indepen-
dent source signals from a linear mixture of mutually statidly independent signals, which is used
for source-separation problems, and which is massiveld usesignal analysis for analyzing, for
instance, financial time series or damage in materials,fage processing, in particular for ana-
lyzing neuroimage data such as electroencephalogram (E&&#)es, neuroimaging of the brain in
computational neuroscience, data compression of speopizsdata sets, etc. The fundamental hy-
pothesis that is introduced in such an ICA methodology isttmaobserved vector-valued signal is a
linear transformation of statistically independent realded signals (that is to say, is a linear trans-
formation of a vector-valued signal whose components areiafly independent) and the objective
of the ICA algorithms is to identify the best linear operatdrhe ICA method can be formulated
as follows. LetT' = {t1,...,tn,} be a finite set (corresponding to a time index or any other in-
dex of interest). For alt in T, let 22®1(t),...,z®¥(t) be v observations (the realizations) of a
time series{Z(t) = (Z1(t),...,Zn(t)),t € T} with values inRY. In the ICA methodology, it is
assumed that, for allin 7', the random vectoZ (¢) can be modeled as a linear combination of hid-
den mutually independent random variablg$t), . . ., Y;,,(t), with some unknown coefficients];;,
that is to sayZ;(t) = > ", [cli; Y;(t), or Z(t) = [c] Y (), for which matrix[c] and the time series
{Yi(t),t € T},...,{Yn(t),t € T}, which are assumed to be mutually independent, must be esti-
mated using onl{z®®1(t),t € T}, ..., {z2P¥(t),t € T}.

(3) In this paper, the method proposed and its objective dfereht from the ICA. The common
building block with the existing methods developed for IGAhe use of the mutual information for
measuring the statistical independence. All the othespdrthe methodology presented in this paper
are different and have been constructed in order to obtadbwast construction of an optimal partition
of a non-Gaussian random vector in high dimension, whickefsdd by a relatively small number of
realizations.

(iv) Organization of the paper and the methodology propo3éa: problem related to the construction
of an optimal partition of a non-Gaussian random vector imseof several mutually independent
random vectors is a difficult problem for a random vector ghhilimension.

The given data set is made up:ofealizations of a non-Gaussian second-order random vicidth
values inR", for which its probability distribution is unknown.

m In Section2, a principal component analysis Xfis performed and the realizations of the random
vectorH"” with values inR™ with n < N is carried out. Then, the random vectd¥ is defined by its
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probability distributionpy» (1) dn in which the pdfpy» is constructed by the kernel density estimation
method using the realizations oH".

m Section3is devoted to the proposed algorithm for constructing amgdtpartition of random vector
H¥ in terms of mutually independent random vectgts', ..., Y™, For testing the mutual indepen-
dence of the random vectox”!, ..., Y*™ of a given partition of random vectdi”, a numerical
criterion is defined in coherence with the statistical eates made with the realizations. We have
chosen to construct this numerical criterion on the bashefutual information that is expressed as
a function of the Shannon entropy (instead of using anotbgrcach such as the one based on the use
of the conditional pdf). This choice is motivated by the twddwing reasons:

() The entropy of a pdf is expressed as the mathematicalotaiien of the logarithm of this pdf.
Consequently, for a pdf defined on a high-dimension sdtig), the presence of the logarithm allows
for solving the numerical problems induced by the constAnbamalization of the pdf.

(il) As the entropy is a mathematical expectation, this reathtical expectation can be estimated by
the Monte Carlo method for which the convergence rate isgaddent of the dimension thanks to the
law of large numbers, a property that is absolutely needethéhigh dimensions.

(iii) The criterion that will be constructed by using the MerCarlo estimation of the entropy will
be coherent with the maximum likelihood method, which isoftise for solving statistical inverse
problems (such as the identification of the coefficients efRICE of the random vector from a set of
realizations).

(iv) We then formulate the problem related to the identifaratof the optimal partition as an opti-
mization problem. However, the exploration of all the pblsipartitions that would be necessary
for solving this optimization problem is tricky in high dimsion. This optimization problem is then
replaced by an equivalent one that can be solved with a fastitim from the graph theory (detailed
in Section3.6).

m Section4 deals with four numerical experiments, which allow for abitag numerical validations
of the approach proposed.

2. Construction of a non-Gaussian reduced-order statistic al model from a set of
realizations.

2.1. Data description and estimates of the second-order mom ents. LetX = (Xq,...,
X ) be aR™-valued non-Gaussian second-order random vector definagosbability spac€o, T,
P), for which its probability distribution is represented hy anknown pdfx — p, (x) with respect
to the Lebesgue measud on RY. It is assumed that (with v > 1) independent realizations
xepl o x®®Y of X are given (coming from experimental data or from numerigaugations). Let
My and[@’(’] be the empirical estimates of the mean veatgr= E{X} and of the covariance matrix
[Cx] = E{(X —myx) (X —mx)T}, such that

. 1 ~ 1 ~ .
A== ST 0K = (R ) (R — ) (2.1)
/=1 /=1

We introduce the non-Gaussian second-order random véttaith values inR” , defined on®e,7,P),
for which ther independent realizations ax&®! ... x®®V,

XV(0) =x"**eRY | g0 , (=1,...,v, (2.2)
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and for which the mean vector and the covariance matrix aaetlgpmy and[@;],
E{X"} =y , B{(X" - B{X"}) (X" - E{X"})"} = [C¥]. (2.3)

2.2. Reduced-order statistical model X  (™*) of X”. Letn be the reduced-order dimension
such thatn < N, which is defined (see hereinafter) by analyzing the comrezg of the principal
component analysis of random vecX¥. The eigenvalues; > ... > Ay > 0 and the associated
orthonormal eigenvectors’, . .., ¢, such thafp?)” ¢/ = 4;;, are such thalC%] @' = \; ¢'. The
principal component analysis allows for constructing ausedi-order statistical mod&l(™*) of X”
such that

X = @+ 3 AHY @ (2.4)
=1
in which
HY = (XY —m) o' /N, BE{H/}=0 , E{H/HY}=4;. (2.5)

It should be noted that the second-order random variahlgs . . , H}, are non-Gaussian, centered,
and uncorrelated, but are statistically dependent.(ket) — err(n, ) be the error function defined
on{l,..., N} x N* such that

Z?:l Ai

erfn,v) =1— ==
trlCy]

(2.6)

in which \; depends ow. Note thatn — err(n, ) depends omw, but that er(N, ) = 0 for all v. For
givene > 0 (sufficiently small with respect tb), it is assumed that

dv, eN*, dne{l,...,N} : Vv >y, , er(n,v) <e, (2.7)

in whichn ande are independent of (for v > 1,,). In the following, it is assumed thatis fixed such
that (.7) is verified. Consequently, sineeN*) = X¥, it can be deduced that

Vv>w, , E{X"=X®|2} < etr[CY). (2.8)

The left-hand side oA 8) represents the square of the norm of random vetterX "*) in L?(©,RY)
and consequently, allows for measuring the distance betX&andX ™) in L?(6,RM).

Note that the dimension reduction constructed by usingrecipal component analysis is not system-
atically mandatory but is either required for constructingeduced model such as for a random field
or is recommended in order to avoid some possible numeriffedutties that could occur during the
computation of the mutual information for which the Gausgkarnel density estimation method is
used and therefore, introduces the computation of expiat&nt

v

2.3. Probabilistic construction of the random vector H . In this section, we give the
probabilistic construction of the non-Gaussian randonmordd” whose components are the coordi-
natesHY, . .., H” introduced in the reduced-order statistical mog&t*) of X”, defined by 2.4).
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2.3.1. Independent realizations and second-order moments of the random vector
H”. LetH” = (HY,...,HY) be theR"-valued non-Gaussian second-order random variable defined
on (O, T, P). Thev independent realization@®®! = (>, ... %) e R", £ =1,...,v} of the
R™-valued random variable” are computed by

1 _ ; )
77;-3)@’[:W(Xexr”efmx)r‘rcpZ , (=1,....v , i=1,...,n, (2.9
and depend on, and for all fixedv,
" 1 v - 1 v
My, = ; Znexp,f =0 , [RH] — — ,rlexp,f (nexp,Z)T _ [In] ] (2.10)
(=1 (=1

Equations 2.5) and .10 show that
E{H"} =@}, =0 , E{H"(H")T} = [RY] = [L.]. (2.12)

2.3.2. Probability distribution of the non-Gaussian rando m vector H 7. At this step
of the construction of random vectst”, its v realizations{n®®* ¢ = 1,...,v} (see R.9)) and its
second-order moments (se2X1) are defined. For completing the probabilistic constarcif HY,
we define its probability distribution by the pdf — p,, (n) on R™ that is constructed by the Gaus-
sian kernel density estimation method on the basis of thevlatge of the independent realizations
n®®*l .. n®®". The modification proposed ibf] of the classical Gaussian kernel density estima-
tion method §] is used so that, for alt, (2.11) is preserved. The positive valued functign, onR"
is then written as

Pyv (77) = Cnp qy(n) ; Vn eR" ; (212)
in which the positive constamt, and the positive-valued functiamp — ¢*(n) on R™ are such that

1 v 1 = 1 /S\n exp,l 2
cp=——— = - exp{——|— — , 2.13
VAT V; p{=ggall o ™ —nl*) (2.13)
and where the positive parametegsands,, are defined by
4 1/(n+4)
Sp =8 ——— , Sy = o (2.14)
v(2+mn)

2 v—1 '
w/sn+—y

Parametes,, is the usual multidimensional optimal Silverman bandwid#king into account that the
standard deviation of each componentfis unity) and parametet,, has been introduced in order
that the second equation &f.( 1) be verified. It should be noted that, feffixed, parameters,, ands,,
go to0™, ands,, /s, goes tol ~, whenv goes to+occ. Using €.12) to (2.14), it can easily be verified
that

BHY = [ g ) dn = 2 o, (2.15)
~ 2 . .
B ) = [ o pman =i+ () CoRmI =10 @9
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Remark By construction of,,,, the sequencgp,,, },, has a limit, denoted by, = lim,_, .~ p,.,
in the space of all the integrable positive-valued functionR™. Consequently, the sequengd” },
of R™-valued random variables has a limit, denoted-by= lim,,_, . o, H", in probability distribution.
The probability distribution of th&”-valued random variablel is defined by the pdb,,.

2.3.3. Marginal distribution related to a subset of the comp onents of random vector
H”. Letj; < jo < ... < g, Withpu; < nbeasubsetofl,2,...,n}. LetY”/ = (HJI,HJQ,...,HJ»HJ_)

be the random vector with values Rrs and let ben/ = (n],...,n},) € R*. From Q.12 and
(2.13, it can easily be deduced that the pdf ; of Y7 with respect todn?, which is such that

Py, (n) =p, . (m,---,m;), can be written as

Py, () =Cu () , Vi eRM, (2.17)

in which the positive constai,; and the positive-valued functiopf — qj (n?) onR* are such that

~ _; Sn exp;éi \2
C:U'j - (\/ﬁé\n )Mj ’ Z eXp{ /\2 Z ]k n]k) } (218)

Note that, in 2.18), s,, ands,, must be used and nef,; and§uj.

2.4. Remark concerning convergence aspects. It can be seen that, far — 400, the
sequence of random vectdr¥"”}, converges in probability distribution to random vecxofor which
the probability distributionPx (dx) = p, (x) dx on R¥ is the limit (in the space of the probability
measures o) of the sequence of the probability distributiofBx» (dx) = p,, (X) dx}, in which
p,. is the pdf of the random vectot” = X(V'¥) given by @.4) with n = N, and where the pdj,, of
random vectoH" is defined by 2.12). It should be noted that this result holds because it israsdu
thatX is a second-order random vector and that its probabilityidigion Px (dx) admits a density,
with respect taix.

3. An algorithm for constructing an optimal partition of ran dom vector H " in terms
of mutually independent random vectors Y ~ “'....,Y"™. Forn fixed such tha < N and
for any v fixed such thav > v, asH” = (HY,...,HY) is a normalized random vector (centered
and with a covariance matrix equal tf,], see 2.11)), if H” was Gaussian, then the components
HY,...,H” would be independent. As” is assumed to be a non-Gaussian random vector, although
H" is normalized, its componentdy,... H! are,a priori, mutually dependent (it could also be
non-Gaussian and mutually independent). In this sectiahighcentral for this paper, the question
solved is related to the development of an algorithm for tracing an optimal partition ofl”, which

consists in finding the largest valuen., > 1 of the numbern of random vectorsy”! ... Y*™
made up of the component¥, ..., HY, such thatH” can be written a$1” = (Y*! ... Y*™)in
which the random vectorg*!, ..., Y*™ are mutually independent, but for which the components of

each random vector”/ are,a priori, mutually dependent. If the largest valug,., of m is such that
e Mmmax = 1, then there is only one random vecty’! = H”, and all the components &f”
are mutually dependent and cannot be separated into sexrdaim vectors;
e Mmmax = 1, then each random vector of the partition is made up of ongooient ofH”, which
means thaty”/ = HY and all the componentsy, ..., Hy of H” are mutually independent.
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As we have explained in Sectidnfor a random vectoH” in high dimension (big value of) defined
by a set of realizations, this problem is difficult. An effigie@lgorithm based on the use of information
theory and of graph theory is proposed hereinafter.

3.1. Defining a partition of H ” in terms of mutually independent random vectors.
Let m be an integer such that

1<m<n.
A partition of the componentHY, ..., H” of H”, denoted byP" (m; 1, . .., ttm ), CONSISts in writing
H" in terms ofm random vectory ™!, ..., Y™ such that
HY = (Y»i ... y»m), (3.1)

in which, for all j in {1,...,m}, u; is an integer such that< u; < nandY*’ = (Y, ,Yﬁ’j’j)
is aR*i -valued random vector, which is written as

N2 (HY, o HY )] <r<rj<..<r <n, (3.2)
J
in which the equalityr@ = n can exist only ifm = 1 (and thus:; = n that yieldsY*! = H¥). For
fixedv, the integergi; > 1,..., u,, > 1 are such that

U el ol =1 n) A =0} mt A =n. (33)
It should be noted that3(2) implies that there is no possible repetition of indioés. .. ,ri;j and
that no permutation is considered (any permutation wousthiyhe same probability distribution for
Y¥J). If the partition P (m; pq,. .., 1) IS made up ofm mutually independent random vectors
Y»l ..., Y»™, then the joint pdin',...,.n™) —p_,, ,.(1n' ...,n™) defined orR* x ... x

AAAAA

RAm is such that, foralh = (p!,..., ™) INR™® = R4 x ... x RAm,

P M) =Dps  om@ ™) =p,,,(0") X ... X pyrm(n™), (3.4)

AAAAA

where, for allj in {1,...,m}, n? — p_, . (n?) is the pdf orR* of random vectol /. From @.12)
and @.1), it can be deduced that the joint palf,, ., onR¥ x ... x R¢m of the random vectors

AAAAA

p\(u,l yv,m (7717 cte 7nm) = le’ (n) = Cn qy(n) I (3'5)

AAAAA

in which ¢,, andg” are defined by4.13).

3.2. Setting the problem for finding an optimal partition Popt in terms of mutually
independent random vectors.  Forn andv fixed such thatZ.7) is satisfied, the problem related
to the construction of an optimal partitid, = P¥ (mmax; 117" - - - , finma) in terms of mutually inde-
pendent random vectow”!, . .., Y*™ma consists in finding the largest numbey,,, of integerm on
the set of all the possible partitiof® (1m; 1, . . ., 1m). As we will explain later, a numerical criterion
must be constructed for testing the mutual independenckeofandom vector¥*!. ... Y*™ in a
context for which, in general, the numheof the given realizations dfl” is not sufficiently large so

that the statistical estimators are well converged (ndgéigstatistical fluctuations of the estimates).
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3.3. Construction of a numerical criterion for testing a par tition in terms of mu-
tually independent random vectors. In order to characterize the mutual independence of the
random vectorsy:!, ..., Y»™ of a partitionP” (m; 1, . . ., jt,,) Of random vectoH”, we need to
introduce a numerical criterion that we propose to constsyasing the mutual informatior8f, 13)),
which is defined as the relative entropy (introduced by Kadlband Leibler 38]) between the joint
pdf of all the random vectorg®!, ..., Y*™ (that is to say, the pdf afl*) and the product of the pdf
of each random vector”. This mutual information and the relative entropy can beresged with
the entropy (also called the differential entropy or ther8lwa entropy, introduced by Shann@])
of the pdf of the random vectors. This choice of construcamyumerical criterion based on the use
of the entropy (instead of using another approach such asrthéased on the use of the conditional
pdf) is motivated by the following reasons:

e As it has previously been explained, we recall that the gytaf a pdf is expressed as the
mathematical expectation of the logarithm of this pdf. Ganegently, for a pdf whose sup-
port is a set having a high dimension, the presence of theitbgaallows for avoiding the
numerical problems that are induced by the presence of thetaat of normalization of the
pdf.

e As the entropy is a mathematical expectation, this mathieaiatxpectation can be estimated
by the Monte Carlo method for which the convergence ratedspendent of the dimension
thanks to the law of large numbers (central limit theore&y) §8, 49|, property that is abso-
lutely needed for the high dimensions.

e The numerical criterion that will be constructed by using Monte Carlo estimation of the
entropy will be coherent with the maximum likelihood methae¢hich is, for instance (see
Sectionl), used for the identification of the coefficients of the PCEasfdom vectoH” by
using the set of realizationg™®!, ..., n®®¥ [47, 53).

Nevertheless, a numerical criterion that is based on th@ude mutual information cannot be con-
structed as a direct application of the mutual informatiangd some additional specific ingredients
must be introduced for obtaining a numerical criterion tisatobust with respect to the statistical
fluctuations induced by a nonperfect convergence of thistitall estimators used, because, for many
applications, the number of the available independent realizations of the randontoveéd” is not
sufficiently big.

3.3.1. Entropy of the pdfs related to a partition. Foralljin{1,...,m}, the entropy of the
pdfp,, ; of theR*-valued random variablg” is S(p,.,) € R that is defined (using the convention
0 log(0) = 0) by

S(py.,) =~ B0zl (YN} == [ p () loglp, (7D’ (36

inwhich pdfp,, ; is defined by2.17). Similarly, the entropys (p
is defined by

,,,,,,,,,,

,,,,,,,,,,

,,,,,
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3.3.2. Mutual information of the random vectors related to a partition. The mutual
informationi(Y*!, ..., Y*™) between the random vector$!, ..., Y"™ is defined by
YO 5 X oy (YO
’L'(Yy’l,...,YV’m) - _E log(pyu,l( ) - Py, (Vm )) , (39)
pyu,l """ Yl/,m(Y’?”’?Y’ )

in which the convention$ log(0/a) = 0 for @ > 0 andb log(b/0) = +oo for b > 0 are used.
The mutual information is related to the relative entropwl{Back-Leibler divergence) of the pdf
Pyus o Withrespecttothe pdf ,, @ ... ® pym,

o Pyt @ @ Py ) = iyt oo yrmy, (3.10)

,,,,,

In the following, we will use the mutual information that iguevalent to the Kullback-Leibler diver-
gence. From3.6) and (3.7), it can be deduced that the mutual information defined39) can be
written as

iYL Y =S, ) A Sy ) =SB e - (3.11)

AAAAA

3.3.3. Inequalities verified by the mutual information and b y the entropy. We have
the classical important following inequalities that alléar testing the mutual independence of the
random vectors defined by a partiti® (m; i1, . . . , im):

(i) Using the Jensen inequality, it can be provéd]that the mutual information is non negative and
can be equal te-oo,
0<i(Y"h...,Y"™) < 4o0. (3.12)

(ii) From (3.11) and @.12), it can be deduced that

S(pyu,l """ Yl/,m) S S(pyu,l) + cee + S(pYV»m) ° (313)

(iii) If random vectorsY*!, ..., Y*™ are mutually independent, then fro®.4) and 3.9), it can be
deduced that

iYWl Y™y = 0. (3.14)

Therefore, 8.11) and @.14) yield

S(pyl/,l Yu,m) = S(pyu,l) + tee + S(pYVﬂ”) N (315)

AAAAA

3.3.4. Defining a theoretical criterion for testing the mutu al independence of the
random vectors of a partition.  Let us assume that andv are fixed such that(7) is satisfied.
Taking into account the properties of the mutual informatir testing the mutual independence of
random vector& 1, ... Y¥™ of a partitionP” (m; ui1, . . . , tm ), WE choose the mutual information
0 <4(Y»l ..., Y»™) < +oo as the theoretical criterion that is such th@t™!,... Y*™) = 0 if
Yl o . Y»™ are mutually independent. Equatior&s1(d and @.18) yield ¢, = Cuy X oo X Cpypy -
Consequently,Z.12) and @.17) show that the mutual informatiaifY*:*, ..., Y*™), which is defined
by (3.11) and deduced fronB(9), is independent of the constants of normalizatignc,,, , . . . , ¢y, -
However, such a theoretical criterion cannot directly bedué@nd will be replaced by a numerical
criterion derived from the theoretical criterion) for tha@léwing reasons:
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e The number of realizations is fixed and can be relatively small (this means that the asymp
totic valuer — +o0o is not reached at all for obtaining a good convergence of tdtgstcal
estimators). Consequently, there are statistical flucmgtof the theoretical criterion as a
function of v, which exclude the possibility for obtaining exactly thduea0 (by superior
values).

e Although the pd

yv,1

AAAAA

AAAAA

must be used and, consequently, only a numerical appraximean be obtained. As,, is
known, a generator of realizations could be used for geingratlarge number of independent
realizations in order to obtain a very good approximatiotheke entropies. Such a generator
could be constructed by using a Markov Chain Monte Carlo (MMIgorithm such as the
popular Metropolis-Hastings algorithr2q, 30, 43, the Gibbs samplingZ0Q], or other algo-
rithms. Nevertheless, in a following section, for estimgtthese entropies, we will propose
to use only the given set of realization&®!, ..., n®®” without adding some additional re-
alizations computed with an adapted generator. The readgniswe want to use exactly
the same data for testing the independence and for conetjube estimators related to the
identification of the representation B under consideration in order to preserve the same
level of statistical fluctuations in all the estimators used

Remarks concerning the choice of the theoretical criteriofihe theoretical criterion consists in
testing the mutual information(Y*!, ... Y*™) with respect to zero (by superior values) because
i(YVt ..., Y»™) > 0, and the mutual independence is obtained(forAs this type of test (with
respect ta)) has no numerical meaning, this theoretical criterion nigsteplaced by a numerical
criterion that will be derived, and which will be presentedSection3.3.5 However, it could be
interesting to examine what could be other choices for dejiaitheoretical criterion for mutual inde-
pendence. Hereinafter, we examine two possibilities anuimers:

() Considering 8.11), (3.13, and @.14), a first alternative choice would consist in introducing th
quantity S(p,... )/ >_7=; S(p,,;) < 1thatis equal tal whenY®! ... Y*™ are mutually indepen-
dent, but which requires us to introduce the hypothe§§’:;1 S(pyw.) > 0. Unfortunately, such a
hypothesis is not satisfied in the general case.

(ii) A second choice could be introduced on the base of tHeviahg result. LetG” be the Gaussian
second-order center&’-valued random vector for which its covariance matrigjg. Consequently,
its components are mutually independent and its entrog(ss, ) = n (1 + log(27))/2 > 1. On
the other hand, it is known (se&d]) that for any non-Gaussian centered random vektbrwith
covariance matrix equal tfd,,], we haveS(p,,) < S(ps. ). It should be noted that the equality
S(py) = S(pgv) is verified only if H” is Gaussian. The components léf can be independent
and not Gaussian, and in such a case, we f8yg,) < S(ps.). Thus, for allj = 1,...,m,
we haveS(p,, ;) < S(p,,,) and it can then be deduced that< >', S(p,, ;) — S(p,) <

> ie18(pg;) = S ) = S(pe) — S(py.)- For the non-Gaussian casép,, ) — S(p,.) > 0 and,
consequently, the theoretical criterion< {37, S(p,, ;) = S(P )} /{S (P ) — S(py.)} < 1 could
be constructed. Unfortunately, such a criterion would bdigoous because (by superior values)
corresponds to the independence of non-Gaussian vectr®rka small non-Gaussian perturbation
of a Gaussian vector, that is to sayHf — G” in probability distribution, thetb(p, ) — S(p,.,) — 0
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(by superior values) and, consequently, an indetermirate 6f the criterion isa priori, obtained.

3.3.5. Numerical criterion for testing the mutual independ ence of the random vec-
tors of a partition. As we have explained in Sectid3.4 the theoretical criterion cannot directly
be used and a numerical criterion must be derived. Let ugdnte the positive-valued random vari-

ableZ" such that .
Pyus (Y77) X o X Py (Y)

VA > > (3.16)
pyu,l AAAAA Yu,m(Y ’17"'7Y ’m)
The theoretical criterion (mutual information) defined Bydj can be rewritten as
iYW YY™) = —E{log Z¥} . (3.17)

() Defining an approximate criterion for testing the mutual épgndence of the random vectors of
a partition. An approximation of the theoretical criterion defined By, and rewritten as3;17),
is constructed by introducing the usual estimator of theheraiatical expectation, but, as we have
previously explained, by using only theindependent realizationg®®!, ... n®® of HY. Asn =
(n',...,n™) € R" = RM x.. . xR~ is the deterministic vector associated with random vedtor=
(Yl ..., Yvm), for¢ = 1,...,v, the realizatiom®®* c R" is rewritten agy®®t = (nlo®f,

,rlm,exné) with ,r'j,exp,ﬁ — (n%,exnf’ o )U{fone) _ (n;ejnf’ o a’r/i;p’é) c RW. Let Zexnl’ ..., Zem
1 .

1
be v independent copies of random variatii&. The approxirr]1ate criterion for testing the mutual
independence of random vect&&!, ..., Y*™ is defined as the real-valued random variable

1 14
V(YW Y™y = - > log 270 (3.18)
/=1

If the random vectory™!, ... Y™ are mutually independent, thdH(Y»!, ... Y"™) = 0 almost
surely.

(i) Computing a realizatios” (Y*!, ..., Y*™) of the random variablg” (Y"!, ..., Y*™). The real-
ization of IV (Y™, ..., Y"™) associated with the independent realizationg™®! ... n®® of H” is
denoted by¥ (Y*1, ..., Y*™), which can be written (se&(), (3.9), (3.11), and 3.16) to (3.18) as

(YY) = s st — s (3.19)
in which the real numberssjy.,j =1,...,m} ands” can be computed with the formulas,
, 1« : :
sj=—7 Zlog(pw’j (M), j=1,...,m, (3.20)
=1
v 1 -
S = == 3 log(p,. (n™™)). (3.21)
=1

If the random vectory !, ..., Y""™ are mutually independent, then(Y*1, ... Y»™) = 0.
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(iif) Connection with the likelihood functionFrom @3.20) and @.2J), sy and s¥ can be rewritten
with the log likelihood functionsly = >~/ log(p, ,, (n”®®)) and L* = Y~7_, log(p,. (n®®")) as
sy = —LY/vands” = —L"/v. The realization of the approximate criterion can then beiteen as
Yl oY) = (LY + ...+ LY, — L) /.

(iv) Random lower bound of the approximate criteribf(Y*!, ..., Y*™). As the independent ran-
dom variablesZ®®! ... Z®®" are positive almost surely, and as the arithmetic m@gn, Zo®*) /v
is greater than or equal to the geometric meﬁp:lZexF’»z)l/”, it can be deduced that

log{ (S, 2°%) v} > log{(Il/_, Z%%)1/7} = £ 3" log(2°%)  a.. (3.22)
v
=1
Consequently,3.18 and @.22 yield the following inequality of real-valued random \ainles,
BY < I(Y»l ..., Y™ s, (3.23)

in which the real-valued random variabl® is written as

14

1
BY = —log(~ enly . .
og( > zo%h (3.24)
/=1
If the random vectory ™!, ..., Y*™ are mutually independent, thé®¥ = 0 almost surely. Consid-

ering ther independent realizationg™?!, ... n®®" of H”, (3.16) and @.24) yield the deterministic
inequality
0< b < V(Y™ .., Y»my, (3.25)

in which the real numbeéy” is given by

v

1 D, (nl,exp,ﬁ) X o X Dy (,r,m,exp,ﬁ)
B=—log| =) — o . (3.26)
v~ P (M)

If the random vectory ™!, ..., Y»™ are mutually independent, théh = 0. It should be noted that
v, is assumed to be such that, for all> v, we have effectively) < b”, which implies that for all
v > v, VYV, YP™) > 0. Unfortunately, as’ is generally not sufficiently large for getting
good convergence of the estimator of the pdfs in the rightdhside of 8.26), the lower bound”
cannot directly be used in the algorithm. An adapted nurakddterion is introduced in paragraph
(vi) hereatfter.

(v) Convergence analysisTaking into accountd.7), n is fixed and is independent of From the
remark given in Sectiof.3.2 the sequencéH” }, of random vectors tends in probability distribution
to the random vectad whenv goes to+oco. The probability distribution of is defined by the pdf
p,- Similarly to 3.1), the limit H is written asH = (YL,...,Y™)in which for alljin {1,...,m},
Y7 = (Y{,...,Y{)is anR*-valued random vector, where the integersind s, . . ., uu,,, are fixed,
independent of, and verify 3.3 (see SectioB.1). Consequently, for — +oo,i(Y"?!, ..., Y»™) —
i(Y,...,Y™). Itis assumed that pdfy (that is unknown) is such that there existssuch that, for
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all v > vy, E{(log Z")?} < cz < +oo in which the positive constant; is independent of. For all
v fixed, it can easily be proved that;, = E{I*(Y*!,...,Y"™)} =4i(Y»! ..., Y""™) ando?, =
E{(I"(Y", ..., YY) —mp)?} = Jop, g0 With o 5 = E{(log Z¥)*} —i(Y"!,...,Y»™)2,
Consequentlyg?, — 0 asv — 0. Foralle > 0, the use of the Chebyshev inequality yields
P{IY(Y» Y™y —i(Y»h L YR ™) > e} < o3, /€% that allows for obtaining the follow-
ing convergence property in probability,

lim 1YY" Y™y =gy L Y™y, (3.27)

v——+00

Equation 8.16) shows thatF{Z”} = 1 and @3.24) shows thatB” tends to— log(1). Consequently,

VETOO B” =0 in probability. (3.28)
It should be noted that the mutual information of the rand@utarsY!, ..., Y™ is such that
0<i(YL...,Ym), (3.29)
and, if the random vectoré!, . .., Y™ are independent, theiiY!, ..., Y™) = 0.

(vi) Defining a numerical criterion for testing the mutual indegence of the random vectors of a
partition P¥(m; 1, ..., um). For fixedv, we have proved that” < #(Y"!, ..., Y"™) and, if
the random vector¥™!, ..., Y*™ are mutually independent, thén= v* = *(Y*! ... Y»™),
Unfortunately, ofteny is not sufficiently large for getting good convergence of élsémator of the
pdfs, and consequently, the mutual informatisay ™!, ... Y*™) cannot be compared to the valtie
for testing the mutual independence. We thus propose tdroohs numerical criterion derived from
the approximate criterion in order to test the mutual indeleace, as explained hereinafter.

LetG = (Gy,...,G,) be the Gaussian second-order centék&evalued random vector for which
its covariance matrix i$l,,]. It is assumed thab is statistically independent of random vectef.
Therefore the components,, ..., G, are mutually independent real-valued random variables. Le
{g&®¢ 0 =1,...,v} bev independent realizations &f such thag®® = (¢ ... g2%) ¢ R,

e By applying the partitior®” (m; u1, . . . , 1um) defined by 8.1) to (3.3) to random vectolG,
this vector is rewritten a§ = (G',...,G™) in which the Gaussian random vect/ =
(G%;,...,G7; ) has values ifR*7, where the indice$ < r{ < rj <... <y, <narethose

1 ©

J

defined in 8.2) and @.3), and where the independent realizations @’ are {g/®! 1 =
1,...,v} such thagy el = (g7 ,g,ﬂijM) = (g™ P e R,

r ribj

e The mutual informatiom’”(Gl, ...,G™) ofrandom vector§&', ..., G™ is calculated by using
(3.19 to (3.21) after replacing random vectols”!, ..., Y"™ by the mutually independent
Gaussian random vecto@', ..., G™. However, although the values of the pg’ig(geXM)
andp_, (g*®)), could be calculated exactly, these quantities are apmiateid by using the
Gaussian kernel density estimation method as explaineddtidhs2.3.2and2.3.3(in order
to define a numerical criterion that is coherent from a nucaépoint of view).

e The Gaussian random vectdgs, ... ,G™ are mutually independent. For— +oo, b%,,..=

iV(Gl,...,G™) goes ta). Nevertheless, asis finite (and sometimes small enough), the nu-
merical valug” (G!, ..., G™) will not be zero, but will be such that< v%_ < i (G!,...,G™).

Gauss —
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Consequently, for fixed, the numerical vaIué’(Gl, ...,G™) is chosen as the lower bound
of the mutual information for testing the mutual indeperaien
e The random vectory™!, ... Y»™ of the partitionP” (m; 1, . . . , i) Will be considered as

mutually independent

0 <dv(Y"h ..., Y»™) <i¥(Gh,...,G™), (3.30)
while they will be considered anutually dependerit

0 <i’(Gh,...,G™) < (YW, ... y»™). (3.31)

e Taking into account3.25), (3.30), and @.31), for testing the independence of the random
vectorsY?1, ..., YV™ of partition P¥ (m; p1, . . . , fim), WE iNtroducer, (m; iy, . . . , fhm) as
thenumerical criterion which is defined by

_ v(Ywl o ynm)
(M - ) = 1 — . 3.32
T (m H1 K ) i”(Gl,...,Gm) ( )

This numerical criterion is such that random vectéts, ..., Y™ will be considered as

mutually independentf 0 <7,(m;u1,...,um) <1,
mutually dependentf To(my ey .oy i) < 0.

By convention, 7, (m; 1, . . ., ) Will be taken equal tal if i(G',...,G™) < 1 with

VYR YR <GV(GH L, G™).
The numerical criterion defined b$.32 has been constructed for analyzing the high-dimensioe cas
(n big) with a number of realizations, which can be relativatyadl (v small). Consequently, the esti-
matei” (Y*1, ..., Y”™) of the mutual information performed by using the nonparaimetatistics is
not sufficiently accurate and there exist statistical flattans. In order to increase the robustness of
the prevision of the mutual independence, the theoretieati bound "zero” is replaced by the lower
boundd’,, . (that would be equal to zero if was equal to infinity), and which is estimated with the
same numbew of realizations as foi (Y*!,...,Y*™), in order to construct a robust numerical cri-
terion that takes into account the statistical fluctuatioinhe lower bound and that allows for testing
the mutual independence of the random vectors of a giveitipartFinally, it should be noted that the
numerical criterion defined bya(32) corresponds to a lower bouny, . that depends on the partition
analyzed and, consequently, the numerical criterion absifgy every partition, but, this is the effect
that is searched in order to adapt the level of the statidlisetuations of the numerical criterion to
every partition analyzed.

(vii) Comment about the introduction of random varial#¥. It should be noted that the random
variableB” and its estimaté” have been introduced for justifying the introduction of keer bound
for the Gaussian case, which allows for constructing theearigal criterion defined by3(32). Conse-
quently, B andb” are introduced for a theoretical understanding of the ppega@onstruction, but do
not play any role in the algorithm that will be introduced iecBons3.5and3.6.
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3.4. Optimization problem for finding the optimal partition of the random vectorH ¥
in terms of mutually independent random vectors. Using the numerical criterion defined by
(3.32), we propose to construct the solution of the problem foatad in Sectior8.2 by solving the
following optimization problem:

(Mmax; ,uipt, .. ,,ugg:nax) = inf{arg max { max To(mspa, -y m) }} s (3.33)
m 1<m<n “(p1,....1tm)ECm

in which the admissible s&,, C {1,...,n}™issuchthaC,, = {1 > 1,...,p0m > 1,1+ ... +
um = n} and where the notation used i8.83 is detailed in the fourth paragraph of the following
remarks.

Remarks about the construction proposed

e The optimal partition that is constructed dependsronSuch a formulation is reasonable
because the available information is only made up of the fstitea” realizations of random
vectorH”.

e The principle that corresponds to the formulation defined3$3 consists in finding the
partition in terms of mutually independent vectors for wh{8.30) is obtained with the largest
positive value of the differenc& (G!,...,G™) — i¥(Y®!, ... Y»™), that is to say, with the
largest positive value af, (m; u1, . . ., ). Such a criterion yields the largest robustness with
respect to the statistical fluctuations induced by the fzat:t can be small enough.

e The mathematical analysis of the optimization problem a@efiby 3.33 seems difficult
enough and we have not been able to obtain interesting piegpén this way, as against
many numerical experiments have confirmed that this choa=efficient with respect to the
problem that we had to solve.

o FOrmmax > 2, letT = arg maxi<m<n {MaX(y, . um)ecm Tv(M; p1; - - -5 ftm) } € the set of
all the integersn with 1 < m < n such thatm — max,, . ..)ec,, Tv (M5 11, -+ -5 fin) IS
maximum with respect tex. A priori, setT" is not always reduced to a single pointaif2f is
the number of independent random vectors of the optimaitioarcorresponding tinf,,, {7'}
andms' the one corresponding taip,, {7}, then it can be deduced thaff < ms$iP. Al-
though we are interested in identifying the largest value.pthe most robust solution leads us
to choose the largest number of dependent random vectatsefadentified optimal partition.
Therefore,mma = mi%, = inf,, {T} is selected as the maximum number of independent
random vectors for this optimal partition. This is the reasdy the inferior value of sef’
has been introduced i3.33).

3.5. Reformulation of the optimization problem for constru cting the optimal parti-
tion of the random vector H " in terms of mutually independent random vectors. The
reason why a reformulation of the optimization problem d&diy .33 is necessary is explained
hereinafter, and a new formulation that will be adapted eéodbvelopment of an algorithm based on
graph theory (presented in Sectidrb) is proposed.

3.5.1. Why a reformulation of the optimization problem is ne cessary. The optimiza-
tion problem defined by3(33) consists in finding the optimal partitid},, = P(mmax 19" - - -, rmar)
on the set of all the possible partitiof®” (m; p1, ..., tm), 1 < m < n,pu1 + ... + pmy = n}, for

which 0™ + ... + b .. = n and wheren. is the largest value of the number of independent
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random vectory !, ..., Y¥™ such that, forj = 1,...,m,

Ym:4HQVH,H%) , 1<ri<ry<..<rl <n verfying 3.3. (3.34)
For solving 8.33), a natural algorithm would consist in computingm; 1, . . ., um,) for each parti-
tion PV (m; 1, . . ., ) @among all the possible partitions. However, as the numbali tie possible
partitions |SZ”_11 ClwithC), = ((n—j+1) x...xn)/j!, itcan be seen that, for a high valuerof
such a computatlon would be very tricky. We then proposetamatlgorithm, which is faster than the
natural one. This algorithm will be based on the use of thplgtheory. The edges of the graph that
will be constructed are obtained by analyzing the stagéistiependence of the comp