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Battery State Estimation for a Single Particle Model
with Electrolyte Dynamics

Scott J. Moura, Federico Bribiesca Argomedo, Reinhardt Klein, Anahita Mirtabatabaei, Miroslav Krstic

Abstract—This paper studies a state estimation scheme for a
reduced electrochemical battery model, using voltage and current
measurements. Real-time electrochemical state information en-
ables high-fidelity monitoring and high-performance operation in
advanced battery management systems, for applications such as
consumer electronics, electrified vehicles, and grid energy storage.
This paper derives a single particle model with electrolyte (SPMe)
that achieves higher predictive accuracy than the single particle
model (SPM). Next, we propose an estimation scheme and prove
estimation error system stability, assuming the total amount of
lithium in the cell is known. The state estimation scheme exploits
dynamical properties such as marginal stability, local invertibil-
ity, and conservation of lithium. Simulations demonstrate the
algorithm’s performance and limitations.

I. INTRODUCTION

This paper studies a state estimation algorithm based upon
the single particle model with electrolyte dynamics – an elec-
trochemical battery model. The algorithm features properties
such as stability and conservation of lithium.

A. Background & Motivation

Batteries are ubiquitous. They power a spectrum of de-
vices, including consumer electronics, electrified vehicles, and
smart grid systems. Control system technologies that enhance
battery performance are of extreme interest. In particular,
electrochemical model-based control systems provide visibility
into operating regimes that induce degradation. This visibility
enables a larger operational envelope to increase performance
with respect to energy capacity, power capacity, and fast
charge rates [1]. Electrochemical model-based state estimation
is particularly challenging for several technical reasons. First,
the dynamics are governed by a system of nonlinear partial
differential algebraic equations [2], [3]. Second, local state ob-
servability does not hold globally [4]. Third, the model param-
eters vary widely with electrode chemistry, electrolyte, pack-
aging, and time. Finally, cells in battery packs are generally

This work was supported in part by the National Science Foundation
under Grant No. 1408107 and the Advanced Research Projects Agency-
Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-
AR0000278.

S. Moura is with the Department of Civil and Environmental Engineering,
University of California, Berkeley, CA 94720, USA (smoura@berkeley.edu).

F. Bribiesca Argomedo is with Université de Lyon - Laboratoire Ampère
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heterogeneous with respect to their parameters, temperature,
and state-of-charge. This motivates an intimate understanding
of the mathematical model structure for observer design. In
this paper, we address the first two technical challenges.

B. Relevant Literature

Over the past decade, the engineering literature on battery
estimation has grown considerably rich with various algo-
rithms, models, and applications. One may categorize this
literature by the battery models each algorithm employs. Note,
these studies all inherently assume the pack or modules can
be conceptualized as an aggregate single cell. This is valid
when cell balancing, binning, and temperature management
maintain homogeneity across the pack or module.

The first category utilizes equivalent circuit models (ECMs).
These models use circuit elements to mimic the input-output
behavior of batteries [5]. The seminal paper by Plett [6] was
one of the first to apply extended Kalman filtering (EKF)
to ECMs for simultaneous state and parameter estimation.
Over the past decade, a variety of ECM-based algorithms have
been developed, including linear parameter varying observers
[7], sliding mode observers [8], polynomial chaos [9], neural
networks [10], unscented Kalman filters [11], adaptive Kalman
filters [12], and particle filters [13].

The second category of literature considers electrochemical
models, which account for the diffusion, intercalation, and
electrochemical kinetics. Although these models can accu-
rately predict internal state variables, their mathematical struc-
ture renders observer design challenging. Consequently, most
approaches develop estimators for reduced-order models. The
model reduction and observer design process are intimately
intertwined, as simpler models ease estimation design at the
expense of fidelity. Ideally, one seeks to derive a provably
stable estimator for the highest fidelity electrochemical battery
model possible. The first wave of studies utilize the “single
particle model” (SPM) for estimator design [4], [14], [15],
[16], [17]. The SPM idealizes each electrode as a single spher-
ical porous particle by neglecting the electrolyte dynamics.
This model is suitable for low C-rates, but loses fidelity at
C-rates above C/2 (c.f. Section II-C). Recently, there has been
progress on extending the SPM to include electrolyte dynamics
[18], [19], [20], [21], [22]. In several cases, state observers
have been designed via linearization and Luenberger observers
[23] or EKFs [24]. State estimation designs have also emerged
for other electrochemical models that incorporate electrolyte
dynamics. Examples include spectral methods with output
error injection [25], residue grouping with Kalman filtering
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[26], semi-separable structures with an EKF [27], discrete-
time realization algorithms with an EKF [28], and composite
electrodes with nonlinear filters [29].

In all the aforementioned estimation studies for SPMs with
electrolyte dynamics, a rigorous analysis of observer estima-
tion error stability and conservation of lithium is lacking.
Additionally, all these methods are reliant on a particular
numerical discretization scheme. That is, they discretize the
PDEs immediately, then apply analysis and estimation syn-
thesis in the finite-dimensional domain. This paper performs
analysis and estimation synthesis on the PDEs before dis-
cretization. The advantages are two-fold: (i) One does not have
to revisit the estimator design if the discretization method is
altered. (ii) The physical significance of the equations (and
of the phenomena they represent) is retained regardless of the
discretization method used at the implementation stage, thus
yielding valuable insights as a by-product of the design process
that are lost in other approaches. Unfortunately, it becomes
increasingly difficult to prove estimation error stability as
model complexity increases, as highlighted in the referenced
literature. The core difficulty is lack of complete observability
from voltage measurements.

C. Main Contributions

In this paper we advance the aforementioned research by
designing a partial differential equation (PDE)-based observer
for a SPMe. The observer design is unique, since it exploits
fundamental electrochemistry dynamic properties, yielding a
deeper insight in battery state estimation. We additionally
prove stability of the estimation error system and conservation
of lithium. Consequently, the article’s main contributions are
summarized as follows:
• Derivation of a single particle model with electrolyte

(SPMe) oriented towards state estimation design. Similar
models have been derived in [18], [19], [20], [21], [22].
We additionally analyze dynamical system properties that
enable a provably convergent state estimator.

• A PDE-based state estimation design that exploits
marginal stability, conservation of lithium, and output
function invertibility to render convergent estimates. We
also include a rigorous stability analysis of the estimation
error systems.

D. Outline

The remainder of the paper is organized as follows. Section
II derives the Single Particle Model with Electrolyte (SPMe)
and analyzes relevant conservation properties, invertability,
and accuracy relative to other electrochemical models. Section
III derives the state estimation scheme for each constitutive
subsystem. Section IV analyzes stability of the estimation error
dynamics. The estimator is demonstrated via simulations in
Section V. Key conclusions are provided in Section VI.

II. SINGLE PARTICLE MODEL WITH ELECTROLYTE

A. The Doyle Fuller Newman (DFN) Model

In this section we describe the assumptions and steps
followed to derive the SPMe model. First, we summarize
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Fig. 1. Schematic of the Doyle-Fuller-Newman model [2]. The model
considers two phases: the solid and electrolyte. In the solid, states evolve in
the x and r dimensions. In the electrolyte, states evolve in the x dimension
only. The cell is divided into three regions: anode, separator, and cathode.

the DFN model in Fig. 1 to predict the evolution of lithium
concentration in the solid c±s (x, r, t), lithium concentration
in the electrolyte ce(x, t), solid electric potential φ±s (x, t),
electrolyte electric potential φe(x, t), ionic current i±e (x, t),
and molar ion fluxes j±n (x, t). The governing equations are:

(1)
∂c±s
∂t

(x, r, t) =
1

r2

∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(x, r, t)

]
,

(2)εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
,

for j ∈ {−, sep,+} and

(3)σeff,± · ∂φ
±
s

∂x
(x, t) = i±e (x, t)− I(t),

(4)

κeff(ce) ·
∂φe
∂x

(x, t) = −i±e (x, t) + κeff(ce) ·
2RT

F
(1− t0c)

×
(

1 +
d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t),

(5)
∂i±e
∂x

(x, t) = a±Fj±n (x, t),

(6)j±n (x, t) =
1

F
i±0 (x, t)

[
e
αaF
RT η±(x,t) − e−

αcF
RT η±(x,t)

]
,

i±0 (x, t) = k±
[
c±ss(x, t)

]αc [
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa
,

(7)

(8)η±(x, t) = φ±s (x, t)− φe(x, t)
− U±(c±ss(x, t))− FR±f j

±
n (x, t),

(9)c±ss(x, t) = c±s (x,R±s , t).

where Deff
e = De(ce) · (εje)brug, σeff = σ · (εjs + εjf )brug, κeff =

κ(ce) ·(εje)brug are the effective electrolyte diffusivity, effective
solid conductivity, and effective electrolyte conductivity given
by the Bruggeman relationship.
The boundary conditions for solid-phase diffusion PDE (1) are

∂c±s
∂r

(x, 0, t) = 0, (10)
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∂c±s
∂r

(x,R±s , t) = − 1

D±s
j±n (x, t). (11)

The boundary conditions for the electrolyte-phase diffusion
PDE (2) are given by

(12)
∂c−e
∂x

(0−, t) =
∂c+e
∂x

(0+, t) = 0,

(13)ε−e De(L
−)
∂c−e
∂x

(L−, t) = εsep
e De(0

sep)
∂csep
e

∂x
(0sep, t),

(14)εsep
e De(L

sep)
∂csep
e

∂x
(Lsep, t) = ε+

e De(L
+)
∂c+e
∂x

(L+, t),

(15)ce(L
−, t) = ce(0

sep, t),

(16)ce(L
sep, t) = ce(L

+, t).

The boundary conditions for the electrolyte-phase potential
ODE (4) are given by

φe(0
−, t) = 0, (17)

φe(L
−, t) = φe(0

sep, t), (18)
φe(L

sep, t) = φe(L
+, t). (19)

The boundary conditions for the ionic current ODE (5) are
given by

i−e (0−, t) = i+e (0+, t) = 0, (20)

and also note that ie(x, t) = I(t) for x ∈ [0sep, Lsep].
The model input is the applied current density I(t) [A/m2],

and the output is the voltage measured across the current
collectors,

V (t) = φ+
s (0+, t)− φ−s (0−, t). (21)

A complete exposition on the model equations and notation
can be found in [2], [3]. Symbols are defined in Table III
of the Appendix. Note the mathematical structure, which
contains linear PDEs (1), quasilinear PDEs (2), ODEs in
space (3)-(5), and nonlinear algebraic constraints (6)-(8). This
presents a formidable task for model-based state estimation.
Consequently, we seek an appropriately reduced model that
maintains prediction fidelity - at high C-rates in particular -
yet enables a provably convergent state observer.

B. SPMe Model Derivation

The SPMe is derived under the following assumptions:
• [A1]: The solid phase Li concentration in each electrode

is constant in spatial coordinate x, uniformly in time.
Mathematically, c±s (x, r, t) and j±n (x, t) are constant in
the x direction.

• [A2]: The exchange current density term i±0 (x, t) can
be approximated by its averaged value ī±0 (t), which is
independent of x.

• [A3]: The total moles of lithium in the electrolyte nLi,e
and in the solid phase nLi,s are both conserved. This
assumption, together with [A1] makes it possible to write
the fluxes j±n (x, t) as proportional to current I(t).

• [A4]: The constants αa = αc (hereafter denoted simply
by α). This assumption is almost always true in practice.

These assumptions ultimately render a model consisting
of: (i) two linear spherical diffusion PDEs modeling each

I(t)
-

-

-

-

c+s (r, t) -
c+ss(t)

c−s (r, t) -
c−ss(t)

c+e (x, t)

csep
e (x, t)

c−e (x, t)

-
c+e (0+, t)

-
c−e (0−, t)

Output -
V (t)

Fig. 2. Block diagram of SPMe. Note that the c+s , c
−
s , ce subsystems are

independent of one another.

Fig. 3. Simplified form of ie(x, t) in the SPMe model.

electrode’s solid concentration dynamics, (ii) a quasilinear
diffusion equation (across three domains) modeling the elec-
trolyte concentration dynamics, and (iii) a nonlinear output
function mapping boundary values of solid concentration,
electrolyte concentration, and current to voltage (see Fig. 2).

We now introduce the resulting SPMe equations. Whenever
assumptions [A1]-[A3] remove the spatial dependence of a
variable, an overline is added to the variable name to avoid
confusion. The first step is to combine [A1], ODE (5) and
its boundary conditions (20) to express molar ion flux as
proportional to current,

j̄+
n (t) = − I(t)

Fa+L+
, j̄−n (t) =

I(t)

Fa−L−
. (22)

Note the ionic current ie(x, t) has the trapezoidal shape shown
in Fig. 3. Apply j

±
n in (22) to boundary conditions (10)-(11)

and [A1] to derive the solid diffusion equations:

∂c±s
∂t

(r, t) =
1

r2

∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(r, t)

]
, (23)

∂c±s
∂r

(0, t) = 0,
∂c±s
∂r

(R±s , t) = ± 1

D±s Fa±L±
I(t). (24)

Next, derive the electrolyte diffusion equations by combining
PDE (2) with (5), (22), and [A1]:

∂c−e
∂t

(x, t) =
∂

∂x

[
De(c

−
e )
∂c−e
∂x

(x, t)

]
+

(1− t0c)
ε−e FL−

I(t), (25)

∂csep
e

∂t
(x, t) =

∂

∂x

[
De(c

sep
e )

∂csep
e

∂x
(x, t)

]
, (26)
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∂c+e
∂t

(x, t) =
∂

∂x

[
De(c

+
e )
∂c+e
∂x

(x, t)

]
− (1− t0c)
ε+
e FL+

I(t),

(27)

with the same boundary conditions as (12)-(16).
Next, we derive the nonlinear output function for terminal

voltage. From (21), we note the voltage V (t) depends on the
solid potential at the current collectors φ±s (x, t). Therefore,
we solve (8) in terms of φs and spatially averaged quantities,

φ±s (x, t) = η̄±(t)+φ̄±e (x, t)+U±(c̄±ss(t))+FR±f j̄
±
n (t). (28)

Next we derive each term on the right hand side of (28).
Overpotential η̄±(t) is found by solving the Butler-Volmer
equation (6) in terms of η̄±(t), applying [A1], [A2], [A4],
and substituting (22),

(29)η̄±(t) =
RT

αF
sinh−1

(
∓I(t)

2a±L±ī±0 (t)

)
.

The electrolyte potential φ̄±e (x, t) is found by integrating ODE
(4) w.r.t. x across the entire cell width,∫ 0+

0−

∂φe
∂x

(x, t)dx =

∫ 0+

0−

i±e (x, t)

κ(ce)
dx+

∫ 0+

0−

2RT

F
(1− t0c)

×
(

1 +
d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t)dx.

(30)

In order to analytically integrate (30), we further assume

• [A5]: The term kf (x, t)
.
=
(

1 +
d ln fc/a
d ln ce

(x, t)
)

is ap-
proximately constant in x, i.e. k̄f (t) ≈ kf (x, t).

• [A6]: The term κ(ce) is approximately constant in ce, i.e.
κ ≈ κ(ce).

This yields the expression

φ
+

e (0+, t)− φ−e (0−, t) =
L+ + 2Lsep + L−

2κ
I(t) (31)

+
2RT

F
(1− t0c)kf (t)

[
ln ce(0

+, t)− ln ce(0
−, t)

]
.

Now we combine (28)-(31) and (22) to compute V (t) =
φ+
s (0+, t)− φ−s (0−, t),

V (t) =
RT

αF
sinh−1

(
−I(t)

2a+L+ī+0 (t)

)
−RT
αF

sinh−1

(
I(t)

2a−L−ī−0 (t)

)
+U+(c̄+ss(t))− U−(c̄−ss(t))−

(
R+
f

a+L+
+

R−f
a−L−

)
I(t)

+
L+ + 2Lsep + L−

2κ
I(t)

+kconc(t)
[
ln ce(0

+, t)− ln ce(0
−, t)

]
(32)

V (t) = h(c̄+ss, c̄
−
ss, c

+
e (0+, t), c−e (0−, t), I(t)), (33)

where kconc = 2RT
F (1− t0c)kf (t).

This summarizes the SPMe. Note the significantly simplified
structure. The dynamical equations (23), (25)-(27) are linear
and quasilinear PDEs, respectively. The boundary conditions
are all linear. Finally, the output function (32) is nonlinear

w.r.t. states and inputs. As shown in Section III, the SPMe is
amenable to state observer design with provable convergence.
Moreover, it maintains accuracy at high C-rates, as discussed
in Section II-C.

Remark 1 (SPMe vs. SPM Comparison). Note the voltage
expression (32) is identical to the SPM voltage expression
[15], but the SPMe adds the last two terms. These respectively
represent ohmic potential drop due electrolyte conductivity and
the electrolyte concentration overpotential.

Remark 2 (Comparison to existing SPMe Models). The
SPMe model development was motivated by the difficulty of
extending the results in [15] using the models available in
the literature. For instance, the model in [19] does not allow
for the output-inversion step we require to design a provably
convergent observer, due to the spatial distribution of the sur-
face concentration in the solid given by the interaction of the
approximate diffusion representation and the polynomial (in
space) approximation of the electrolyte concentration profiles.

The model in [21] linearizes the transportation equations
first. Then it applies a Laplace transformation and performs
a polynomial approximation across space. This results in a
linear output function, but produces a non-physical state-space
representation. The model we propose, in contrast, maintains
the physical interpretation of the state-space - a useful property
for state estimation. Furthermore, our time-domain model
can accommodate some time-varying coefficients in a much
simpler way than an approximate transfer function model.

The models in [18], [20], [22] are the most similar to the
SPMe derived here, as they apply [A1] in addition to various
numerical approximations. In [18], bulk solid concentration
is used in the voltage output function instead of the surface
concentration we use here (see (26) in [18]). In the case
of [20], volume averaging is performed in the electrolyte
phase which partially obscures electrolyte polarization. In [22],
the authors use an approximation of the solid state diffusion
equation instead of retaining the PDE version we use in (23)-
(24) (see Section 2 of [22]). Since our main objective is
provably convergent state observers, we additionally analyze
the SPMe’s dynamical properties in Section II-D. Furthermore,
the structure of our proposed SPMe would allow for relatively
simple extensions to nonhomogeneous (in space) transport and
conductivity terms, albeit rendering the integration required
to obtain the output equation in (32) harder. Namely, it
would require numerically integrating the electrolyte potential
gradient instead of obtaining an explicit form for the ohmic
potential drop.

TABLE I
RMS VOLTAGE ERROR WITH RESPECT TO DFN MODEL

0.1C 0.5C 1C 2C 5C UDDSx2
SPM 2 mV 8 mV 17 mV 31 mV 72 mV 14 mV
SPMe 2 mV 5 mV 9 mV 13 mV 19 mV 7 mV
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C. Model Comparison

In this subsection, we compare voltage predictions between
the SPMe, SPM, and DFN models. Note the SPM output
voltage equation is equivalent to (32), but without the last
two terms. The model parameters used in this study originate
from the publicly available DUALFOIL simulation package
[30] and correspond to a lithium cobalt oxide cathode /
graphite anode chemistry. Discharge curves at various C-rates
are provided in Fig. 4(a). At low C-rates (e.g. 0.1C or 0.5C)
the electrolyte concentration gradient is negligible and both the
SPM and SPMe accurately predict voltage. As C-rate increases
beyond 0.5C the electrolyte gradient becomes significant (c.f.
Fig. 4(b)), thereby violating the SPM model reduction assump-
tion. Consequently, the SPMe predicts voltage with greater
accuracy than the SPM (see Table I). Figure 5 provides a visual
comparison of the SPM, SPMe, and DFN models on a transient
electric vehicle-like charge/discharge cycle, generated from
two concatenated Urban Dynamometer Driving Schedules
(UDDSx2) (see [31] for details). The mean C-rate is about
0.5C. The SPM predicts voltage with 14 mV RMS error,
whereas the SPMe achieves 7 mV RMS error. Clearly, battery
management systems for applications with large sustained C-
rates greatly benefit from models with electrolyte dynamics.
This, however, complicates observer design – a challenge we
address in this manuscript.

D. Mathematical Model Properties

The causal structure of the SPMe is elucidated in Fig. 2.
Namely, the c+s , c

−
s , ce subsystems are all mutually indepen-

dent from one another. Moreover, they are governed by linear
(c±s subsystem) or quasilinear (ce subsystems) PDEs. Note
the bar notation used in the previous section is herein after
dropped to reduce clutter. Note also that the PDE subsystems
produce boundary values c+ss(t), c

−
ss(t), c

+
e (0+, t), c−e (0−, t)

that serve as inputs to the nonlinear output function. We pursue
the following observer structure, which exploits the linear PDE
dynamical subsystems and nonlinear output function. (i) De-
sign linear observers for each dynamical subsystem, assuming
a “virtual” measurement of c+ss(t). (ii) Design a recursive
nonlinear output function inversion scheme to “process” c+ss(t)
from measurements I(t), V (t).

The model is also characterized by the following dynamical
properties, which are the critical insights underpinning the
observer design in Section III. We present the following
propositions, whose proofs are straight-forward, non-insightful
within themselves, and omitted for brevity.

Proposition 1 (Marginal stability of c+s , c
−
s , ce subsystems).

Each individual subsystem in (23)-(27) governing states
c+s (r, t), c−s (r, t), and ce(x, t) is marginally stable. Specifi-
cally, each subsystem contains one eigenvalue at the origin,
and the remaining eigenvalues lie on the negative real axis of
the complex plane.

Proposition 2 (Conservation of solid-phase lithium). The
moles of lithium in the solid phase is conserved [25]. Mathe-
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Fig. 4. [a] Voltage discharge curves across various C-rates, for the single
particle model (SPM) [15], single particle model with electrolyte (SPMe), and
Doyle-Fuller-Newman (DFN) model [30]. The SPMe maintains smaller errors
as C-rate increases relative to the SPM. [b] Electrolyte concentration ce(x, t)
predicted by DFN and SPMe for various C-rates after 5 Ah/m2 of discharge.
The concentration gradient increases as C-rate increases.

matically, d
dt (nLi,s(t)) = 0 where

nLi,s(t) =
∑

j∈{+,−}

εjsL
j

4
3π(Rjs)3

∫ Rjs

0

4πr2cjs(r, t)dr. (34)

In the following observer design, we select the estimation
gains to conserve moles of lithium.

Proposition 3 (Conservation of electrolyte-phase lithium).
The moles of lithium in the electrolyte phase is conserved.
Mathematically, d

dt (nLi,e(t)) = 0 where

nLi,e(t) =
∑

j∈{−,sep,+}

εje

∫ Lj

0j
cje(x, t)dx. (35)

In particular, this property implies that the equilibrium solution
of the ce subsystem (25)-(27) with zero current density, i.e.
I(t) = 0, is given by

ce,eq(x) =
nLi,e

ε−e L− + εsep
e Lsep + ε+

e L+
,∀x ∈ [0−, 0+]. (36)
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E. Invertibility Analysis

Next, we study invertibility of the output function (32)
w.r.t. boundary state variables c±ss(t). Invertibility enables
one to “process” surface concentration from measurements
I(t), V (t) and design linear observers. Let output function
h : R×R×R→ R be defined such that V (t) = h(c+ss, c

−
ss, I),

where we assume the electrolyte concentrations c±e (0±, t) in
(33) are known and therefore suppress their dependence. This
assumption is valid, because we later substitute exponentially
convergent estimates of c±e (0±, t) into output function h(·) -
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−
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ĉsep
e (x, t)

ĉ−e (x, t)

6

ĉ+e (0+)

6

ĉ−e (0−)

Output Fcn.
Inversion

Fig. 7. Block diagram of SPMe Observer.

as shown in Section IV. The output function h(c+ss, c
−
ss, ·) is

locally invertible around c+s = a or c−s = b, if h(c+ss, c
−
ss, ·) is

one-to-one in the respective local domains {c+ss : |c+ss−a|< ε}
or {c−ss : |c−ss− b|< ε}, for small ε > 0. If the aforementioned
condition is true for all I , then h(a, b, ·) is locally invertible
uniformly in I . Consequently, invertibility can be tested by
examining the gradient of h(c+ss, c

−
ss, ·) w.r.t. c+ss or c−ss.

Under equilibrium conditions and zero current, the output
function simplifies to

V (t) = U+(c+ss(t))− U−(c−ss(t)). (37)

Figure 6(a) provides the open circuit potential (OCP) func-
tions U−(θ−), U+(θ+) where θ± = c±ss/c

±
s,max. In general,

U+(θ+) is more sensitive to perturbations in its argument
than U−(θ−). Figure 6(b) depicts the partial derivatives of
h(c+ss, c

−
ss, I) in (33) w.r.t. c−ss and c+ss at equilibrium con-

ditions, for currents ranging from -5C to +5C. In general,
h is non-decreasing w.r.t. c−ss and is non-increasing w.r.t.
c+ss. It is important to note that h is strictly monotonically
decreasing w.r.t. c+ss over a larger range than h is strictly
monotonically increasing w.r.t. c−ss. This property is critical,
since it demonstrates that voltage is generally more sensitive
to perturbations in cathode surface concentration than anode
surface concentration. Consequently, we opt to pursue output
function inversion w.r.t. c+ss instead of c−ss. Note ∂h/∂c+ss ≈ 0
for 0.8 ≤ θ+ ≤ 0.9. This region is a “blind spot” with respect
to output inversion, a limitation we explore by analysis in
Section IV-B and by simulation in Section V.

III. STATE OBSERVER DESIGN

The observer design process is summarized as follows:
1) Perform dimension normalization and state transforma-

tion on cathode dynamics.
2) Design a backstepping PDE observer for the transformed

cathode dynamics.
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3) Perform inverse state transformation and un-
normalization.

4) Design anode observer to conserve lithium in solid.
5) Design an open-loop electrolyte observer.
6) Design an output function inversion scheme.

A. Normalization and State Transformation

First we perform normalization and state transformation to
simplify the mathematical structure of the cathode observer.
The radial r and time t coordinates are scaled as follows

r̄ =
r

R+
s
, t̄ =

D+
s

(R+
s )2

t. (38)

Henceforth we will drop the bars over the space and time
coordinates to simplify notation. Next we perform a state
transformation to eliminate the first spatial derivative in the
spherical diffusion equation (23). Namely, let

c(r, t) = rc+s (r, t). (39)

This normalization and state transformation produces the fol-
lowing PDE with Dirichlet and Robin boundary conditions

∂c

∂t
(r, t) =

∂2c

∂r2
(r, t), (40)

c(0, t) = 0, (41)
∂c

∂r
(1, t)− c(1, t) = ρI(t). (42)

The parameter ρ = R+
s /(D

+
s Fa

+L+) groups together known
parameters.

B. Cathode Backstepping Observer

The cathode state estimator subsystem structure consists of a
copy of the plant (40)-(42) plus boundary state error injection,
as follows

∂ĉ

∂t
(r, t) =

∂2ĉ

∂r2
(r, t) + p+(r) [c(1, t)− ĉ(1, t)] ,

(43)
ĉ(0, t) = 0, (44)

∂ĉ

∂r
(1, t)− ĉ(1, t) = ρI(t) + p+

0 [c(1, t)− ĉ(1, t)] . (45)

Following the procedure in [32], [15], the observer gains are

p+(r) =
−λr
2z

[
I1(z)− 2λ

z
I2(z)

]
, (46)

where z =
√
λ(r2 − 1), (47)

p+
0 =

1

2
(3− λ) , for λ <

1

4
, (48)

and I1(z) and I2(z) are, respectively, the first and second
order modified Bessel functions of the first kind. Parameter
λ governs the error system eigenvalue locations.

C. Inverse Transformation and Un-normalization

Next we re-write the cathode observer (43)-(45) into the
original coordinates ĉ+s by inverting transformation (39) and
un-normalizing the dimensions (38). The final result is

∂ĉ+s
∂t

(r, t) = D+
s

[
2

r

∂ĉ+s
∂r

(r, t) +
∂2ĉ+s
∂r2

(r, t)

]
(49)

+ p+(r)
[
c+ss(t)− ĉ+ss(t)

]
,

∂ĉ+s
∂r

(0, t) = 0, (50)

∂ĉ+s
∂r

(R+
s , t) =

I(t)

D+
s Fa+L+

+ p+
0

[
c+ss(t)− ĉ+ss(t)

]
. (51)

where the observer gains are

p+(r) =
−λD+

s

2R+
s z

[
I1(z)− 2λ

z
I2(z)

]
, (52)

where z =

√
λ

(
r2

(R+
s )2
− 1

)
, (53)

p+
0 =

1

2R+
s

(3− λ) , for λ <
1

4
. (54)

D. Anode Observer

Now we focus on an observer for the anode subsystem.
Our objective is to design the observer gains such that the
total moles of solid-phase lithium are conserved. The anode
state estimator subsystem structure consists of a copy of the
plant (23) plus cathode surface concentration error injection,
as follows

∂ĉ−s
∂t

(r, t) = D−s

[
2

r

∂ĉ−s
∂r

(r, t) +
∂2ĉ−s
∂r2

(r, t)

]
(55)

+ p−(r)
[
c+ss(t)− ĉ+ss(t)

]
,

∂ĉ−s
∂r

(0, t) = 0, (56)

∂ĉ−s
∂r

(R−s , t) =
I(t)

D−s Fa−L−
+ p−0

[
c+ss(t)− ĉ+ss(t)

]
. (57)

We seek to design p−(r), p−0 such that d
dt (n̂Li,s(t)) = 0. This

property holds true under the following relations between the
estimation gains

a+L+D+
s p+

0 + a−L−D−s p−0 = 0,

(58)

a+L+

(R+
s )2

∫ R+
s

0

r2p+(r)dr +
a−L−

(R−s )2

∫ R−
s

0

r2p−(r)dr = 0.

(59)

Imposing the structure p−(r) = p− for r ∈ [0, R+
s ], we obtain

the anode gains in terms of the cathode gains,

p−0 = −a
+L+D+

s

a−L−D−s
p+

0 , (60)

p− = − a+L+

(R+
s )2ε−s L−

∫ R+
s

0

r2p+(r)dr, (61)

where ε−s = 3/(a−R−s ).
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E. Solid Phase Initial Estimate

The observer is initialized according to the assumption:
• [A7]: The total moles of lithium in the solid phase, nLi,s

in (34), is known beforehand.
Therefore, the initial conditions for the composite observer
(55)-(57), (49)-(51) must verify

nLi,s =
∑

j∈{+,−}

εjsL
j

4
3π(Rjs)3

∫ Rjs

0

4πr2ĉjs(r, 0)dr, (62)

which has the physical interpretation that the observer and
plant have identical total moles of lithium in the solid, uni-
formly in time. If we further consider initial estimates cor-
responding to a steady-state condition, i.e. the concentrations
are uniform in r, then (62) simplifies to

nLi,s = ε+
s L

+ ĉ+s,0 + ε−s L
− ĉ−s,0. (63)

where ĉ+s,0, ĉ
−
s,0 are the initial estimates corresponding to

steady-state. In practice, the value of nLi,s might be provided
by the cell maker, or identified via offline model parameteri-
zation schemes (e.g. [33], [34]), or online capacity estimators
(e.g. [15], [35]). We examine relaxing [A7] in Section V-C.

F. Electrolyte Observer

For the electrolyte subsystems, we apply an open-loop
observer of the form,

∂ĉ−e
∂t

(x, t) =
∂

∂x

[
De

∂ĉ−e
∂x

(x, t)

]
+

1− t0c
ε−e FL−

I(t), (64)

∂ĉsep
e

∂t
(x, t) =

∂

∂x

[
De

∂ĉsep
e

∂x
(x, t)

]
, (65)

∂ĉ+e
∂t

(x, t) =
∂

∂x

[
De

∂ĉ+e
∂x

(x, t)

]
− 1− t0c
ε+
e FL+

I(t), (66)

with boundary conditions

∂ĉ−e
∂x

(0−, t) =
∂ĉ+e
∂x

(0+, t) = 0, (67)

ε−e De(L
−)
∂ĉ−e
∂x

(L−, t) = εsep
e De(0

sep)
∂ĉsep
e

∂x
(0sep, t), (68)

εsep
e De(L

sep)
∂ĉsep
e

∂x
(Lsep, t) = ε+

e De(L
+)
∂ĉ+e
∂x

(L+, t), (69)

ĉ−e (L−, t) = ĉsep
e (0sep, t), (70)

ĉsep
e (Lsep, t) = ĉ+e (L+, t). (71)

The observer is initialized according to the following assump-
tion.
• [A8]: The total moles of lithium in the electrolyte, nLi,e

in (35), is known beforehand.
Therefore, the initial conditions for the electrolyte observer
(64)-(71) must verify

nLi,e =
∑

j∈{−,sep,+}

εje

∫ Lj

0j
ĉje(x, 0)dx, (72)

which has the physical interpretation that the observer and
plant have identical total moles of lithium in the electrolyte,

uniformly in time. If we further consider initial estimates cor-
responding to a steady-state condition, i.e. the concentrations
are uniform in x, then (72) simplifies to

ĉje(x, 0) =
nLi,e

ε−e L− + εsep
e Lsep + ε+

e L+
, j ∈ {−, sep,+}.

(73)
In practice, the value of nLi,e might be provided by the
cell maker, or identified via offline model parameterization
schemes, e.g. [33], [34]. We examine relaxing [A8] in Section
V-D.

G. Output Function Inversion

In Sections III-A to III-D, we designed linear state observers
assuming access to surface concentration (i.e. boundary value)
c+ss(t). In this subsection we develop a nonlinear gradient
algorithm to compute c+ss(t) from measurements I(t), V (t) by
inverting the nonlinear output function (32).

To focus on the task at hand, we re-write the output function
as

V (t) = h(c+ss, t), (74)

where the dependence on c−ss(t), c
−
e (0−, t), c+e (0+, t) has been

suppressed into a singular dependence on t. Denote č+ss(t)
as the “processed” cathode surface concentration resulting
from this output function inversion procedure. Then the error
between the true and processed values is θ̃ = c+ss − č+ss. Now
re-write (74) as

V (t) = h(θ̃ + č+ss, t). (75)

Next, we approximate the right-hand side of (75) using a first-
order Taylor series with respect to θ̃ about θ̃ = 0,

V (t) ≈ h(č+ss, t) +
∂h

∂c+ss
(č+ss, t) · θ̃. (76)

Define inversion error and regressor signals enl(t) and φ(t),
respectively, as

enl(t) = V (t)− h(č+ss, t), φ(t) =
∂h

∂c+ss
(č+ss, t). (77)

The approximated output function can now be written in
regressor form as enl(t) = φ(t)θ̃. A gradient update law for
č+ss(t) that minimizes 1

2γe
2
nl(t) is given by [36]:

d

dt
č+ss(t) = γφenl. (78)

Note that gain γ is a user-selected parameter to trade-off
convergence speed and sensitivity to noise.

Remark 3. The update law (78) can be embellished in two
practically useful ways. First, a nonlinear least squares update
can be applied to dynamically determine the gain parameter
(see §4.3 of [36]). Second, the projection operator can be
applied to constrain č+ss(t) within the set [c+s,min, c

+
s,max] (see

§4.4 of [36]).
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H. Summary of Observer Design

The complete SPMe observer design is summarized in Table
II. It summarizes each subsystem with a reference to the
appropriate differential equations. Note the observer has only
two scalar design parameters, λ and γ. Parameter λ governs
the eigenvalues of the cathode observer subsystem, and γ
governs the output inversion convergence speed. Kalman filter
(KF) based observers, in contrast, typically have much more
than 2 parameters, depending on the discretization method.
Specifically, KFs have up to (n2

x + nx)/2 + (n2
y + ny)/2

tuning parameters, where nx and ny are the number of states
and measurements, respectively. The small number of tuning
parameters is an additional benefit of the proposed observer
design, in addition to provable stability properties.

TABLE II
SUMMARY OF SPME OBSERVER EQUATIONS

Subsystem State Vars. Diff. Eqns. Design Params.
Cathode,
solid phase

ĉ+ss(r, t) (49)-(54)

λ in (52)-(54)
Anode,
solid phase

ĉ−ss(r, t) (55)-(57),(60)-(61)

Electrolyte
ĉ−e (x, t)
ĉsepe (x, t) (64)-(71) none
ĉ+e (x, t)

Output Fcn.
Inversion

č+ss(t) (77)-(78) γ in (78)

IV. STABILITY ANALYSIS

In this section, we prove stability of the composite observer,
comprised of the solid phase and electrolyte phase subsys-
tems, assuming measurements of cathode surface concentra-
tion c+ss(t). We also prove convergence of the output inversion
scheme under an appropriate monotonicity assumption.

A. Solid + Electrolyte Phase Estimation Error Stability

Consider the cathode (c̃+s ) and anode (c̃−s ) estimation error
subsystems, where c̃+s = c+s − ĉ+s and c̃−s = c−s − ĉ−s ,

∂c̃+s
∂t

(r, t) = D+
s

[
2

r

∂c̃+s
∂r

(r, t) +
∂2c̃+s
∂r2

(r, t)

]
− p+(r)c̃+ss(t),

(79)
∂c̃+s
∂r

(0, t) = 0,
∂c̃+s
∂r

(R+
s , t) = −p+

0 c̃
+
ss(t), (80)

c̃+ss(r, 0) = c+ss(r, 0)− ĉ+ss(r, 0), (81)
∂c̃−s
∂t

(r, t) = D−s

[
2

r

∂c̃−s
∂r

(r, t) +
∂2c̃−s
∂r2

(r, t)

]
− p−(r)c̃+ss(t),

(82)
∂c̃−s
∂r

(0, t) = 0,
∂c̃−s
∂r

(R−s , t) = −p−0 c̃+ss(t), (83)

c̃−ss(r, 0) = c−ss(r, 0)− ĉ−ss(r, 0). (84)

To derive the electrolyte estimation error system, c̃je = cje− ĉje,
j ∈ {−, sep,+}, we assume:
• [A9]: The electrolyte diffusivity is approximately con-

stant in ce, i.e. D̄e ≈ De(ce).

Under [A9], the electrolyte estimation error subsystem is

∂c̃−e
∂t

(x, t) = D̄e
∂2c̃−e
∂x2

(x, t), (85)

∂c̃sep
e

∂t
(x, t) = D̄e

∂2c̃sep
e

∂x2
(x, t), (86)

∂c̃+e
∂t

(x, t) = D̄e
∂2c̃+e
∂x2

(x, t), (87)

with boundary conditions

∂c̃−e
∂x

(0−, t) =
∂c̃+e
∂x

(0+, t) = 0, (88)

ε−e D̄e
∂c̃−e
∂x

(L−, t) = εsep
e D̄e

∂c̃sep
e

∂x
(0sep, t), (89)

εsep
e D̄e

∂c̃sep
e

∂x
(Lsep, t) = ε+

e D̄e
∂c̃+e
∂x

(L+, t), (90)

c̃−e (L−, t) = c̃sep
e (0sep, t), (91)

c̃sep
e (Lsep, t) = c̃+e (L+, t), (92)

and initial condition

c̃je(x, 0) = cje(x, 0)− ĉje(x, 0), j ∈ {−, sep,+}. (93)

We are now positioned to state stability of the combined
estimation error systems.

Theorem 1. Consider the combined estimation error dynamics
(79)-(93) for c̃+s (r, t), c̃−s (r, t), c̃je(x, t).

1) The solid phase estimation error subsystem (79)-(84)
converges asymptotically to the zero equilibrium if
ĉ±s (r, 0) verifies (63). That is limt→∞ c̃+s (r, t) =
limt→∞ c̃−s (r, t) = 0, uniformly in r.

2) The electrolyte phase estimation error system (85)-
(93) converges asymptotically to the zero equilibrium
if ĉje(x, 0) verifies (73).

Proof: The solid phase error subsystem c̃±s and electrolyte
phase error subsystem c̃je are decoupled. Therefore we can
prove statements 1 and 2 separately.

Solid Phase Error System: Note the error subsystems
form a cascade. Upstream subsystem c̃+s is autonomous and
downstream subsystem c̃−s evolves with c̃+ss(t) as an input.
The upstream subsystem c̃+s is exponentially stable by con-
struction of the backstepping observer (Theorem 2 of [32]).
Consequently, we focus on stability of downstream subsystem
c̃−s with zero input, i.e. c̃+ss(t) = 0,

∂c̃−s
∂t

(r, t) = D−s

[
2

r

∂c̃−s
∂r

(r, t) +
∂2c̃−s
∂r2

(r, t)

]
, (94)

∂c̃−s
∂r

(0, t) =
∂c̃−s
∂r

(R−s , t) = 0. (95)

It is straightforward to show this system has infinite equilibria,
since it contains one eigenvalue at the origin and the remaining
eigenvalues exist on the negative real axis. Consequently, the
anode error dynamics are marginally stable.

Not coincidentally, the structure and initialization of the ob-
server ensure the anode error system converges asymptotically
to the zero equilibrium. Consider the error between the total
moles of lithium in the plant and observer

nLi,s(t)− n̂Li,s(t) = nLi,s − nLi,s = 0 ∀ t ∈ R+, (96)
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by assumption [A7], Proposition 2, and construction of the
estimator initial condition. Rewriting the equation above in
terms of the error states,

0 =
∑

j∈{+,−}

εjsL
j

4
3π(Rjs)3

∫ Rjs

0

4πr2c̃js(r, t)dr, ∀ t ∈ R+.

(97)
Consider the limit as time approaches infinity

0 = lim
t→∞

 ∑
j∈{+,−}

εjsL
j

4
3π(Rjs)3

∫ Rjs

0

4πr2c̃js(r, t)dr

 ,

0 =
∑

j∈{+,−}

εjsL
j

4
3π(Rjs)3

∫ Rjs

0

4πr2 · lim
t→∞

c̃js(r, t)dr. (98)

Now apply the following two properties,
1) limt→∞ c̃+s (r, t) = 0 uniformly in r, due to the expo-

nential stability of (79)-(80) [32].
2) The equilibrium structure of (94)-(95) implies

limt→∞ c̃−s (r, t) = c̃−s,eq is uniform in r ∈ [0, R−s ]

Then (98) reduces to

0 =
ε−s L

−

4
3π(R−s )3

∫ R−
s

0

4πr2 · c̃−s,eq dr, (99)

0 = ε−s L
− · c̃−s,eq, (100)

0 = c̃−s,eq. (101)

Therefore the subsystem (94)-(95) converges asymptotically
to the zero equilibrium, that is limt→∞ c̃−s (r, t) = 0 ∀r ∈
[0, R−s ]. Since the error subsystems form a cascade, the
composite error system is asymptotically stable.

Electrolyte Phase Error System: The proof of statement 2
consists of three main steps. First, apply coordinate scaling and
composition to transform (85)-(93) into a heat equation with
homogeneous Neumann boundary conditions. Second, com-
pute the solution using separation of variables. Third, show
the solution converges asymptotically to the zero equilibrium
if (73) is verified.

Step 1: For notational simplicity, denote δ1 = ε−e D̄e, δ2 =
εsep
e D̄e, δ3 = ε+

e D̄e. Next, decompose and transform the x-
coordinate as follows,

ξ1 =
x

δ1
, ξ2 =

x

δ2
+

(
L−

δ1
− L−

δ2

)
, (102)

ξ3 =
x

δ3
+

(
Lsep − L−

δ2
+
L−

δ1
− Lsep

δ3

)
.

which yields

∂c̃−e
∂t

(ξ1, t) =
D̄e

δ2
1

∂2c̃−e
∂ξ2

1

(ξ1, t), (103)

∂c̃sep
e

∂t
(ξ2, t) =

D̄e

δ2
2

∂2c̃sep
e

∂ξ2
2

(ξ2, t), (104)

∂c̃+e
∂t

(ξ3, t) =
D̄e

δ2
3

∂2c̃+e
∂ξ2

3

(ξ3, t), (105)

with boundary conditions

∂c̃−e
∂ξ1

(l01, t) =
∂c̃+e
∂ξ3

(l30, t) = 0, (106)

∂c̃−e
∂ξ1

(l12, t) =
∂c̃sep
e

∂ξ2
(l12, t) , (107)

∂c̃sep
e

∂ξ2
(l23, t) =

∂c̃+e
∂ξ3

(l23, t) , (108)

c̃−e (l12, t) = c̃sep
e (l12, t) , (109)

c̃sep
e (l23, t) = c̃+e (l23, t) , (110)

where

l01 =
0−

δ1
, l12 =

L−

δ1
, l23 =

L−

δ1
+
Lsep − L−

δ2
, (111)

l30 =
L−

δ1
+
Lsep − L−

δ2
+

0+ − Lsep

δ3
.

We now concatenate the spatial coordinate, state, and diffusion
coefficient into single variables,

ξ =


ξ1 if l01 ≤ ξ ≤ l12

ξ2 if l12 < ξ < l23

ξ3 if l23 ≤ ξ ≤ l30,

(112)

w(ξ, t) =


c̃−e (ξ, t) if l01 ≤ ξ ≤ l12

c̃sep
e (ξ, t) if l12 < ξ < l23

c̃+e (ξ, t) if l23 ≤ ξ ≤ l30,

(113)

D̄(ξ) =


D̄e
δ21

if l01 ≤ ξ ≤ l12

D̄e
δ22

if l12 < ξ < l23

D̄e
δ23

if l23 ≤ ξ ≤ l30.

(114)

By continuity of ξ and c̃je(ξ, t) across the three regions in
(103)-(110), we can re-write the system into a simple heat
equation with homogeneous Neumann boundary conditions,

∂w

∂t
(ξ, t) = D̄(ξ)

∂2w

∂ξ2
(ξ, t), (115)

∂w

∂ξ
(l01, t) =

∂w

∂ξ
(l30, t) = 0, (116)

w(ξ, 0) = ce(ξ, 0)− ĉe(ξ, 0). (117)

Next we normalize the spatial variable ζ = (ξ−l01)/(l30−l01)
to obtain

∂w

∂t
(ζ, t) = ¯̄D(ζ)

∂2w

∂ζ2
(ζ, t), (118)

∂w

∂ζ
(0, t) =

∂w

∂ξ
(1, t) = 0, (119)

w(ζ, 0) = ce(ζ, 0)− ĉe(ζ, 0). (120)

where ¯̄D(ζ) = 1
(l30−l01)2 D̄ ((l30 − l01)ζ + l01). The final step

is to apply a “gauge” transformation [37] to obtain a heat
equation with a spatially invariant diffusion coefficient,

z =
√
D0

∫ ζ

0

ds√
¯̄D(s)

, where D0 =

∫ 1

0

ds√
¯̄D(s)

−2

.

(121)
This yields the heat equation

∂w

∂t
(z, t) = D0

∂2w

∂z2
(z, t), (122)

∂w

∂z
(0, t) =

∂w

∂z
(1, t) = 0, (123)
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w(z, 0) = ce(z, 0)− ĉe(z, 0). (124)

Step 2: Next we solve (122)-(124) using separation of
variables. Let us consider the solution form:

w(z, t) = Z(z) · T (t). (125)

Following the procedure in many PDE textbooks (see e.g. [37],
[38]), we obtain the solution,

w(z, t) = A0 +

∞∑
n=1

An cos(nπz) · e−D0·n2π2t, (126)

where the Fourier Sine Series coefficients are

A0 =

∫ 1

0

w(z, 0)dz, (127)

An = 2

∫ 1

0

w(z, 0) cos(nπz)dz, n = 1, 2, 3, · · · . (128)

Note the second term on the right hand side of (126) decays
to zero exponentially fast in time. Therefore, we focus on
showing A0 = 0.

Step 3: Next we show A0 = 0 in (127). To prove this,
we perform the reverse coordinate transformation procedure
from Step 1, namely z 7→ ζ 7→ ξ 7→ (ξ1, ξ2, ξ3) 7→ x. This
ultimately results in,

A0 =

∫ 1

0

w(z, 0)dz =
√
D0D̄e

∑
j∈{−,sep,+}

εje

∫ Lj

0j
c̃je(x, 0)dx,

(129)
Using the definition of nLi,e in (35) and applying initial
condition constraint (73) yields

A0 =

∫ 1

0

w(z, 0)dz =
√
D0D̄e(nLi,e − nLi,e) = 0. (130)

As a result, w(z, t) converges asymptotically (exponentially, in
fact) to zero. Since all transformations are invertible, (79)-(83)
converges asymptotically to the zero equilibrium.

Remark 4. The solution for w(x, t) in (126) exposes the
dynamical structure for the electrolyte’s estimation error dy-
namics. Namely, the solution is characterized by a constant
A0 determined by the error in the initial estimation of the
total amount of lithium in the electrolyte, plus exponentially
decaying terms with eigenvalues λn = −D0 · n2π2 on
the negative real axis of the complex plane that increase
quadratically toward −∞ as n increases.

B. Output Function Inversion Convergence

In the following analysis, we prove convergence of the
output inversion scheme over a compact set of surface con-
centration, which satisfies the following assumption:
• [A10]: The output function (74) has negative and

bounded gradient:

−M2 ≤
∂h

∂c+ss
(c+ss, t) ≤ −M1 < 0, ∀c+ss ∈ D, t ∈ R+,

(131)
where 0 < M1 < M2. For example, we can pick D =
[0.1c+s,max, 0.8c

+
s,max] from Fig. 6.

Theorem 2. Let the error between the true and processed
values be θ̃ = c+ss − č+ss. Furthermore, assume the dynamics
of č+ss are significantly faster than c+ss. Then θ̃(t) evolves
according to the error system,

d

dt
θ̃(t) = −γφenl, (132)

where

γ > 0, φ =
∂h

∂c+ss
(č+ss, t), enl = h(c+ss, t)−h(č+ss, t). (133)

Under [A10], θ̃ converges exponentially to the zero equilibrium
on the compact set c+ss, č

+
ss ∈ D . More specifically, for all

initial conditions c+ss(0), č+ss(0) ∈ D, the following holds:

|θ̃(0)|2·e−2γ·M2
2 ·t ≤ |θ̃(t)|2≤ |θ̃(0)|2·e−2γ·M2

1 ·t, ∀t ∈ R+,
(134)

Proof: The proof uses the Mean Value Theorem approach
for systems with monotone nonlinearities [39], [40]. Consider

enl = h(c+ss, t)− h(č+ss, t) = χ(1)− χ(0) (135)

where we define χ(α) = h(č+ss + αθ̃, t). The total derivative
of χ(α) is

dχ

dα
(α) =

∂h

∂c+ss

dc+ss
dα

=
∂h

∂c+ss
θ̃. (136)

Now we invoke the fundamental theorem of calculus

enl = χ(1)−χ(0) =

∫ 1

0

dχ

dα
(α)dα =

∫ 1

0

∂h

∂c+ss
·θ̃ ·dα. (137)

We are now positioned to propose Lyapunov function,

W (t) =
1

2γ
θ̃2(t). (138)

The derivative of W (t) along the trajectories of θ̃ is given by

d

dt
W (t) =

1

γ
θ̃(t)

˙̃
θ(t) = −θ̃ · φ · enl,

= −θ̃ · ∂h
∂c+ss

·
∫ 1

0

∂h

∂c+ss
· θ̃ · dα, (139)

where we have used (132), (133), (137). Applying (131) from
[A10] yields

−M2
2 · θ̃2(t) ≤ d

dt
W (t) ≤ −M2

1 · θ̃2(t),

−M2
2 · 2γ ·W (t) ≤ d

dt
W (t) ≤ −M2

1 · 2γ ·W (t). (140)

Therefore, we conclude the zero equilibrium of (132) is
exponentially stable [41]. Applying the comparison principle
yields

W (0) · e−2γ·M2
2 ·t ≤W (t) ≤W (0) · e−2γ·M2

1 ·t, ∀t ∈ R+.
(141)

Using the definition of W (t) in (138) yields

|θ̃(0)|2·e−2γ·M2
2 ·t ≤ |θ̃(t)|2≤ |θ̃(0)|2·e−2γ·M2

1 ·t, ∀t ∈ R+.
(142)

Remark 5 (Output Inversion Limitation). The significance of
assumption [A10] and Thm 2 is that convergence is guaranteed



12

only when h(c+ss, t) is strictly decreasing w.r.t. c+ss. If the
gradient ∂h/∂c+ss is zero, then convergence is not guaranteed,
a property we explore by simulation in Section V.A.

Remark 6 (Stability Analysis for Fully Composed Observer).
The preceding subsections analyze convergence of the in-
dividual observer systems (solid + electrolyte phase, output
inversion), assuming perfect knowledge of the corresponding
inputs. Analyzing stability of the fully composed observer
is very complex, given the interconnected structure of the
observer subsystems. Specifically, the solid phase observer and
output inversion are interconnected, whereas the electrolyte
observer is autonomous. Instead, we pursue simulations next
to obtain empirical insight into the fully composed observer’s
convergence properties.

V. SIMULATIONS

This section presents simulations that demonstrate the SPMe
observer’s performance. Ideally, we prefer experimentally
measured electrochemical state data to validate the proposed
observer. Unfortunately, in situ measurements of lithium con-
centrations are very difficult. The few successful efforts use
neutron imaging on custom-made and test-specific cells, such
as [42], [43], [44]. In this manuscript, we apply the observer
to the DFN model (1)-(21). The model parameters used in
this study originate from the publicly available DUALFOIL
simulation package [30] and correspond to a LiCoO2 cathode
/ graphite anode chemistry. The DFN model’s numerical
implementation is summarized in Section II.C of [1].

For all presented simulations the state estimates are initial-
ized at incorrect values. Namely, the true initial condition is
c−s (r, 0)/c−s,max = 0.8224 and the observer’s initial condition
is ĉ−s (r, 0)/c−s,max = 0.4. The following important parameters
are also assumed: nLi,s = 2.5 moles, nLi,e = 0.085 moles,
λ = −0.5, γ = 108, unless otherwise specified. Surface
concentrations are given by θ± = c±ss/c

±
s,max.

Ultimately, the PDE-based observer must be discretized into
ODEs for simulation. Although numerical schemes are not the
focus of this paper (see e.g. [45], [46] and references therein),
we summarize the methods applied here. The solid phase and
electrolyte observers are discretized in space via the central
finite difference method, with 2nd-order one-sided finite dif-
ferences at all boundary conditions [47]. A crucial step in the
numerical integration scheme is to supply analytic Jacobians,
which accelerates convergence and increases accuracy [1].

A. Constant 1C Discharge Cycle

First we consider a constant 1C discharge cycle in Fig.
8. Sustained C-rates are challenging since they induce non-
negligible electrolyte gradients. Despite incorrect initial con-
ditions and model mismatch (SPMe observer vs DFN truth
model), the processed cathode surface concentration θ̌+(t)
converges to the true value, followed by convergent estimates
of surface concentrations θ̂−(t), θ̂+(t). After the initial tran-
sient (∼750 sec), the estimates have RMS errors of 2.39%,
1.46%, and 8.6 mV for the anode surface concentration, cath-
ode surface concentration, and voltage, respectively. Note that
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Fig. 8. SPMe observer results for a 1C constant current discharge, using DFN
as truth model. True initial condition: c−s (r, 0)/c−s,max = 0.8224. Observer
initial condition: ĉ−s (r, 0)/c−s,max = 0.4. (a) input current; (b) surface
concentrations θ± = c±ss/c

±
s,max; (c) voltage; (d) surface concentration

estimation error; (e) voltage estimation error.

the estimates temporarily diverge in the range 0.8 < θ+ < 0.9.
In this range, the output function’s derivative w.r.t. c+ss is nearly
zero (see Fig. 6), meaning the output function is nearly non-
invertible. This feature is a fundamental limitation of battery
state estimation, as discussed previously in the literature [29]
and exposed in Thm 2. The estimates recover as θ+ enters
a more strongly invertible range. Note the SPMe observer
resolves the constant high C-rate deficiencies of previous
SPM-based observers (e.g. Section 7.2 of [15]).
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B. Electric Vehicle Charge/Discharge Cycle

Second we apply an electric vehicle charge/discharge cycle
in Fig. 9. This input signal in Fig. 9(a) is generated from
two concatenated UDDS drive cycles simulated on models
developed in [31]. Unlike the previous input, this cycle is char-
acterized by larger non-sustained C-rates. The mean square C-
rate is 1.28C and the absolute maximum C-rate is 5.43C. After
the initial transient (∼750 sec), the estimates have RMS errors
of 0.60%, 0.30%, and 6.7 mV for the anode surface concentra-
tion, cathode surface concentration, and voltage, respectively
(see Fig. 9(d)-(e)). Note the SPMe observer estimates output
voltage with significantly higher accuracy than previous SPM-
based observers (e.g. Section 7.1 of [15]). Similar estimation
results occur for various other initial conditions and drive cycle
inputs, including US06, SC04, LA92, and naturalistic micro
trip data.

C. Error in Moles of Solid Lithium nLi,s

Third, we examine robustness with respect to error in
the perceived moles of solid lithium, i.e. n̂Li,s. Recall from
Section III-E that a correct value of nLi,s is required for
stability [A7]. We now relax this assumption. This elucidates
the impact of capacity fade on the observer performance.
Again, we apply the UDDS charge/discharge cycle in Fig. 9(a),
but intentionally supply the observer with 5% more lithium
than the truth model, i.e. n̂Li,s = 1.05 × nLi,s = 2.625
moles. The simulation reported in Fig. 10 demonstrates an
estimation bias resulting from an inaccurate total amount of
solid lithium. After the initial transient (∼750 sec), the RMS
estimation errors are 5.20% and 2.87% for the anode and
cathode surface concentrations, respectively. This is roughly
a 10x error increase relative to the case with a correct nLi,s
value. Importantly, note the voltage estimation error (7.4 mV
RMS) is nearly the same as with a correct value of nLi,s,
despite biased concentration estimates. This occurs because the
observer converges on overestimated surface concentrations
that satisfy n̂Li,s = 1.05×nLi,s and produce a solid potential
difference that yields the same value as the true concentra-
tions. Therefore, the SPMe observer achieves estimated output
convergence, yet produces biased solid concentration state
estimates. This motivates (i) accurate knowledge of nLi,s for a
fresh cell, and (ii) a real-time parameter estimation algorithm
to determine how nLi,s evolves as the battery ages [15].

D. Error in Moles of Electrolyte Lithium nLi,e

Finally, we examine robustness with respect to error in
the perceived moles of electrolyte lithium, i.e. êLi,s. Recall
from Section III-F that a correct value of nLi,e is required
for stability [A8]. We now investigate the impact of relaxing
this assumption. Again, we apply the UDDS charge/discharge
cycle in Fig. 9(a), but intentionally supply the observer with
5% more lithium than the truth model, i.e. n̂Li,e = 1.05×nLi,e
= 0.0893 moles. Interestingly, the simulation reported in Fig.
11(a),(c) demonstrates no estimation bias for the surface con-
centrations. Namely, the RMS estimation errors after the initial
transient (∼750 sec) are 0.58% and 0.33% for the anode and
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Fig. 9. SPMe observer results for a UDDSx2 charge/discharge cycle, using
DFN as truth model. True initial condition: c−s (r, 0)/c−s,max = 0.8224.
Observer initial condition: ĉ−s (r, 0)/c−s,max = 0.4. (a) input current; (b) sur-
face concentrations θ± = c±ss/c

±
s,max; (c) voltage; (d) surface concentration

estimation error; (e) voltage estimation error.

cathode surface concentrations, respectively. This is similar to
the results with a correct value of nLi,e. Moreover, the voltage
estimation error remains small in Fig. 11(e), 7.5 mV RMS.
However, there is clear bias in the electrolyte concentration
estimate. Figure 11(b) plots the electrolyte concentrations
at the current collectors, c±e (0±, t) and the estimation error
c±e (0±, t)− ĉ±e (0±, t) is in Fig. 11(d). The RMS errors for the
anode and cathode are 7.1% and 6.6%, respectively. These
results can be explained by: (i) the electrolyte dynamics are
decoupled from the solid-phase dynamics (c.f. Fig. 2), and
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Fig. 10. SPMe observer results for a UDDSx2 charge/discharge cycle,
using DFN as truth model and incorrect nLi,s value. True initial con-
dition: c−s (r, 0)/c−s,max = 0.8224. Observer initial condition: n̂Li,s =
1.05 × nLi,s, ĉ−s (r, 0)/c−s,max = 0.4. (a) surface concentrations θ± =
c±ss/c

±
s,max; (b) voltage; (c) surface concentration estimation error; (d) voltage

estimation error.

(ii) the voltage output depends on the difference ln ce(0
+, t)−

ln ce(0
−, t) (see (32)). That is, the absolute values of c±e (0±, t)

can be incorrect, provided that the difference between their
natural logarithms is correct.

Here, we have examined robustness to parametric uncer-
tainty in nLi,s and nLi,e. It is also important to consider
robustness to other uncertain parameters, such as diffusivities
and conductivities. Comprehensively addressing this issue is
an open research topic. Some initial efforts have been made. A
sensitivity-based interval observer approach has been recently
proposed in [48]. Electrochemical model parameter sensitivity
is also examined in [33], [34] via Fisher information.
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Fig. 11. SPMe observer results for a UDDSx2 charge/discharge cycle,
using DFN as truth model and incorrect nLi,e value. True initial con-
dition: c−s (r, 0)/c−s,max = 0.8224. Observer initial condition: n̂Li,e =
1.05 × nLi,e, ĉ−s (r, 0)/c−s,max = 0.4. (a) surface concentrations θ± =
c±ss/c

±
s,max; (b) voltage; (c) surface concentration estimation error; (d) voltage

estimation error.

VI. CONCLUSIONS

This paper derives a reduced electrochemical battery model
called the Single Particle Model with Electrolyte (SPMe).
The proposed model is most similar to those developed in
[18], [20], [22], yet we analyze the dynamical properties that
enable a provably convergent observer design. The SPMe is
compared against the Doyle-Fuller-Newman (DFN) model [2],
[3] and single particle model (SPM) without electrolyte. We
then examine the model’s mathematical properties, including
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stability, lithium conservation, and output function invertibility.
Based on several critical features of the SPMe mathemati-
cal structure, (i.e. subsystem decoupling, marginal stability,
conservation of lithium, and local output invertibility), we
propose a state estimation scheme summarized in Table II
and prove convergence for the observer and output inversion
algorithms. The proposed SPMe observer is characterized
by only two tuning parameters - thereby making calibration
significantly simpler than Kalman filter based estimators.
Finally, we examine the performance attributes and limitations
of the SPMe observer using data generated from a DFN
model. Simulations demonstrate convergent estimates on high
C-rate cycles and transient electric vehicle charge/discharge
cycles. State estimation biases occur in the solid or electrolyte
phase if the incorrect moles of lithium in the respective
subsystem is assumed. This may be acceptable, depending on
what states the battery control engineer wishes to accurately
monitor (i.e. bulk SOC, surface concentrations, or electrolyte
concentrations). Nevertheless, the bias motivates parameter
identification algorithms to estimate moles of cyclable lithium
in each phase - a topic for further investigation. Additionally,
the proposed SPMe observer can be extended to include
temperature dynamics [21] and multi-material cathodes [29]
– topics for further study.
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