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Nevanlinna classes for non radial weights in the unit disc.
Applications.

Eric Amar

Abstract

We introduce Nevanlinna classes associated to non radial weights in the unit disc in the com-
plex plane and we get Blaschke type theorems relative to these classes by use of several complex
variables methods. This gives alternative proofs and improve some results of Boritchev, Golin-
skii and Kupin useful, in particular, for the study of eigenvalues of non self adjoint Schrodinger
operators.
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1 Introduction.

We shall work with classes of holomorphic functions whose zeroes may appear as eigenvalues of
Schrodinger operators with complex valued potential. So having information on these zeroes gives
information on the operator.



Let F':={n;, j =1,..,n} C T ; we associate to F' the rational function with ¢; € R, R(z) :=

(z —n;)% and we set, as a clearly non radial weight, ¢(2) = |R(2)]> ; we also need to set

1
> gz—n)7.
j=1

Definition 1.1 We shall say that the holomorphic function f is in the generalised Nevanlinna class
with weight o, N, ,(D), if there is 0 < § < 1 such that, forp>0:

£, == sup / (1= [2*)P " p(s2) log™ | f(s2)| < o0.
1-0<s<1JD
Forp=20 :

Ifllai= s [ plsc®)log? [se)] b+
T

1-6<s<1

n
J]=

() =

+ sup /Dap(sz)v(sz) log™ | f(s2)] < 0.

1-6<s<1

In order to state the results we get, we set, for p > 0 :
if ¢; > —p/2, §; = q; ; else we choose any ¢; > —p/2 ; for p=0: §; := (¢;)+ ; then we set

n

B(z) = 'H (= - m)‘?f'.
j=1
We get the following Blaschke type theorem:

Theorem 1.2 Suppose f € N,,(D) is such that |f(0)| = 1, then we have:
Y (E=lafye(a) < (@) fln,,»

a€Z(f)
the constant c¢(@) depending only on .

We can apply these theorems to the case of L* bounds.

With R(z) := H(z —n;)%, n; € T, g € R, we set Ve > 0, R.(2) = H(z—nj)(qj_lJre)*. We
j=1 j=1
define, Vj = 1,...,n,if ¢ — 1 > —p/2, ¢; = ¢; else we choose ¢; > 1 — p/2, and we set Ry(z) :=

[TG=n)""

j=1
We get as a corollary of our results:

IA

Theorem 1.3 Suppose the holomorphic function f in D wverifies |f(0)] = 1 and |f(2)]

D
exp with R(z) .= || (z —=n;)¥, n; € T, q; € R, then we have:
(1= |27 [R(2)] ]1:[1 o ’
for p =0,
> (1—lal])|Re(a)] < De(R).
a€Z(f)
Forp >0



Ve>0, > (1—a])t**

acZ(f)

fzo(a)) < De(e, R).

Now recall that Boritchev, Golinskii and Kupin [4] proved, in particular:

Theorem 1.4 Let f € H(D), |f(0)] =1 and (;, & € T, satisfy the growth condition :
K ’fL_ z — . Tj
8" |F(2)| < b

(1 —lzD)P ITizy [z = &l™
Then for every e > 0, there is a positive number Cs = Cs5(E, F,p,{qi},{r;},€) such that the following
Blaschke condition holds:

m —1+e
> (- rrseLlizile Gk
Tl - gy =7
Cez(f) j=1 J
If p =0, the factor (1 — [C|)*™ can be replaced by (1 — |C|).

ZEID), D, 4k, TJZO

Comparing our result with the previous one, we get:
e for p > 0 and ¢ < —p/2 their result is better ;
e for p > 0 and ¢ > —p/2 our is better ;
e for p = 0 the two results are identical.
The reason is that they have a threshold of —p and our is —p/2.

As we shall see our results are based only on:

e the green formula ;

e the "zeroes" formula (see the next section) ;
which are the tools we use in several complex variables when dealing with problems on zeroes of
holomorphic functions.

The methods used in several complex variables already proved their usefulness in the one variable
case. For instance:
e the corona theorem of Carleson [6] is easier to prove and to understand thanks to the proof of T.
Wolff based on L. Hérmander [7] ;
e the characterization of interpolating sequences by Carleson for H* and by Shapiro & Shields for
H? are also easier to prove by these methods (see [1], last section, where they allow me to get the
bounded linear extension property for the case H? ; the H> case being done by Pehr Beurling [3]).

So it is not surprising that in the case of zero set, they can also be useful.

In this paper all the computations are completely elementary: derivations of usual functions and
straightforward estimates.

This work was already presented in an international workshop in November 2016 in Toulouse,
France and in May 2017 in Bedlewo, Poland, during the conference on : "Hilbert spaces of entire
functions and their applications".

2 Basic notations and results.

Let f be an holomorphic function in the unit disk D of the complex plane, C>*°(D), and g a C™
smooth function in the closed unit disk D such that ¢ =0 on T.



The only measures we shall deal with are the Lebesgue measures: of the plane when we integrate
in the unit disc D or of the torus when we integrate on T := O0D. So usually I shall not write
explicitly the measure.

The Green formula gives:

/ (92 log | f] —log | f| Ag) = / (90, 1og |f] — log || Bug) (2.1)
D T

where 0, is the normal derivative. With the "zero" formula: Alog|f| = Zan(f) ), we get

> gla) = [ loglf1 g+ [ (90u1os]f1 - log f10.9).
a€Z(f) P B
Because g =0 on T,

> gla) = [1og1f129~ [ 101110 2.2)

acZ(f)

So, in order to get estimates on Z g(a), we have to compute 0,9 and Ag. In this work, g will

a€Z(f)
always be of the form

9s(2) = (1= [2")P(s2),
where (z) will be smooth and positive in D.
We get a Blaschke type theorem if we can control

[ ros15129 = [ tog1 10,9 < el
D T
because then we get

2
> (1= la?y (sa) < cllfll,
a€Z(f)
where || f|| is a "norm" linked to the function f. To get an idea of what happens here, suppose first

that p > 0, and we set f(2) := f(sz) ; so the equation (2.2) simplifies to
s = 1 A s = log™ A s — log™ A N .
> aa) = [ 10gl7(s9)] () = [ Tog” I7(52) 80.2) — [ log” 1£(s2)] A0.(2)

aEZ(fs)
The strategy is quite obvious: we compute Ag, and we estimate the two quantities

Ai(s) = /Dlog+ |f(s2)] Ags(z) and A_(s) := —/Dlog_ |f(s2)] Ags(2).

Because log™ | f(sz)] is directly related to the size of f, we just take the sum of the absolute value
of the terms in Ag, to estimate A,.

For A_ we have to be more careful because we want to control terms containing log™ | f(sz)| by
terms containing only log™ | f(sz2)].

This work is presented the following way:.

e In the next section we study the case of ¢(z) = |R(z)|* with R(z H (z—mn;)% n; €T, g; €
7j=1
R and p > 0. This is the easiest case but the problematic is already here.
e In section M we study, with the same ¢, the case p = 0.



e In section Bl we get the L™ bounds and we retrieve some results of Boritchev, Golinskii and
Kupin [4].

e In section [0l we recall the case of a weight which is a power of the distance to a closed set F in
T.

e in section [7l we study the mixed case associated to a closed set F in T and a finite set F.

e Finally in the appendix we prove technical, but important, lemmas.

3 Case p> 0.

Let F' := {m,...,n,} C T be a finite sequence of points on T. We shall work with the rational

function R(z) = H (z—n;)%, ¢; € R and we set (2) := |R(2)]>. In order to have a smooth
j=1
function in the disc we set g,(z) := (1 — |2|*)* ™ |R(s2)|*, with 0 < s < 1, and:
Ags = 4909, = 490[(1-|z| )1“’ |[R(s2)|°] = Al(L—|=*) 7] |R(s2) [ +(1=| =) A R(s2) "]+
+8RIO((1 — [=[)")D(| R(s2)["))-
Straightforward computations give the following lemma, which separates the positive terms, the
negative terms and the terms with no fixed sign:

Lemma 3.1 We have
Ags(z) = Ay — A+ Ag

with
Ap =41 PP oo+ D)o + 851 = [2P)F |3 gi(s2 =) 7| T1R(s2)P
A =d(p+1)(1— |2 IR(sz)l2
Az = 8sR[(—(r +1)(1 — |2*)" Zq] )] |R(s2)]?.

Because p > 0 = 0,9s = 0 on T, and formula (22)), with fs(2) := f(sz), reduces to:
> aula) = [ log|f(s2)] Bgilo)
a€Z(fs) v
We have to estimate / log|f(sz)| Ags(z) and for it, we decompose:
log | (s2)] 5,(2) = log™ | £(52)] £9.(2) — log™ | F(s2)] Aga(2).

We shall first group the terms containing log™® |f(s2)|. We set
Ai(s):= Ay log® |f(sz)] — A_log™ |f(sz)| + A log™ | f(s2)].

And T (s) := /DAJF(S)dm(z). We set also Pp (s) = /D (1 —|2|*)P7 [R(s2)|* log" | f(s2)].

Proposition 3.2 We have, with |q| := Z g;], Ti(s) < 4lp(p+ 1) |2 +41q)* + 2] Por(s).

=1



Proof.
We have A, < A logh |f(s2)|+ Ay logt | f(sz)| because —A_ is negative. We use that (1 —|z|*) <
2|sz — n;| then elementary estimates on the modulus of the reminding terms end the proof. [ |

We shall now group the terms containing log™ | f(sz)|. We set
A_(s,2) = —Aylog™ |f(sz)| + A_log™ [f(s2)| — Az log™ [ f(s2)|
and Pp _(s) := / (1— [P~ 2] |R(s2)|* log™ | f(sz)] and T_(s) == / A_(s,2).
D D

Proposition 3.3 Suppose that Vj =1,...,n, q; > 0, then
T (s) < (p+ 1)[4e(1,u) + 5| e(1/2, ) P+ (s).

Proof.

Set

Ay = A log™ |f(s2)] = 4(p + 1)(1 — [2[*)P | R(s2)[* log™ | f(s2)] .
We apply the "substitution" lemma from the appendix with § = 1, to get

1
/ Ay < A(p+ (1= w2) P, () + 4(p+ De(L,u)Po.. (5).
D

Now set

By = 8g;(p+ 1)(1 — [s[*V"RIz(z — 7)) |R(s2) " log™ | £(s)] .
and

Az = —-Arlog™ |f(s2)| =

= =8R[(—(p + (1 = 21"z )(D_ 4;(z — ) )] |R(s2)|*log™ | f(s2)] ;

j=1
we get Az = ZBj. But
j=1
1 _
s R[Z(sz — )],

|52 = 1]

1
hence by lemma from the appendix, we have R(Z(z — 7)) < 0iff z € DN D(%, 5) So, with

R[z(sz — ;)]

1
g; > 0, the part in DN D(&, 5) is negative and can be ignored. It remains

2
By < (p+ 1)s(1 — [z [R(s2) "1y 1) (2)RMg;2(2 — )~ log™ | f(s2)].
1
But for z € D(%, 5)0, (1—|2]*) < 2|z — n;|* hence,
e (IRIEGE = 7)) < 201 = o) 21
So we get
B; < sq;(p+1)(1 — |2[*)P~/?|R(s2)|" log™ | f(s2)|
and, provided that ¢; > 0,

W) <201 [

[NIE

As =) By <slal(p+1)(1 = |2)P~?|R(s2)[ log™ | f(52)]. (3-3)

j=1

We can again apply the "substitution" lemma with § = 1/2, this time and we get



1
s (1= 2"V |R(s2)[*log™ | £(2)] < (1 - U2)1/2@PD,—(8) +c(1/2,u) Pp+(s).
So finally
1
[ A5 < slal (p 000 = 2B (6) sl -+ )e1/2,0) ),
D
Integrating A_(s, z) over D and adding, we get, with A; := —A_ log™ |f(s2)],

T (s) < /D (Ar+ Ay + A3) < —Ap(p-+ 1)Po,_(s) + 4(p+ 1)(1 — )5 Po_(s)+

FA(p + 1)e(1, 1) Py (s) + 5 gl (p 4+ 1) (1 — u2)1/2%PD,_(8)+

+slql (p+ 1)e(1/2,u) Pp i (s).
The key point here is that the "bad terms" in log™ |f(z)| can be controlled by the "good" one:
A= —=ALlog™ |f(s2)].
We can choose 0 < u < 1 such that

1 1
—4p(p+1) +4(p+1)(1 — uz)— +s |C.I| (p+1)(1— UQ)WE <0

just taking, because p > 0, V1 —u? < e | i Hence we get, provided that Vj =1,...,n, ¢; >0,
s

T (s) < (p+1)[4e(1,u) + s gl c(1/2,u)] Pp 4+ (5). =

We can also get results for g; < 0 the following way. We cut the disc in disjoint sectors around
the points n; : D =T U U I'; with
j=1
. z "
\V/] = 1,...,n, F] = {ZED 'm—’r/] <a}, FQ :D\UF]

j=1
This is possible because the points 7; are in finite number so o > 0 exists.

Proposition 3.4 Set |¢| = max \qk| and suppose |q|. < p/4, then there existu < 1, v <1
such that: "
q _
T_(s) < 4(p + Dle(1, w) + 27 (1, u) + 2gloe (1 =) fe(1,7)] Po,+(5).

.....

Proof.
We have

[=As] = | =8sR[(—(p+ 1)(1 — |2[*)" qu DI IR(s2)|” <

<8(p+1)(1— |2 Zlqjllsz—m |7 [ R(s2) .
Now we set .
Ay = |=Azlog™ [f(s2)]] < 8(p+ 1)(L— 2P ) lgjl sz — ny| 7" |R(s2)*log™ | f(s2)]

and
n

Vk=0,1,.n, fi(2) =8+ 11— 2" Y lgllsz — |7 [R(s2)[" log™ |f(s2)]

J=1,j#k



and on Iy, including £ = 0, we get

Ve € Do fu(2) < 80+ 01— 22 |R(s2) Plog | £(s2)].
Hence we have

Vk=0,..,n, Vz€ T}, A<
<8+ D01 PP 800+ 1)1 2 ] 52— md ™ 1R Tox |(52)]

Now we integrate in the disc and we get

[ 4 <56+ lal 5 9 / ? [R(s2) [ log™ |£(s2)|+

S(p+1) Z|qk| / (1= [2P)7 Isz — mel ™ [R(s2)log™ |f(s2)| = By + B,
But
[ =y RGP0 £(52) < [ (1= 16 [Rs2) 1o 1£(52)
and Werkcan apply the "substitution" lemma 0.1 Wlth 0 =1, to get
(= P 1RG5 P o™ 11(62)] < (1= )5 Po(8) + (L) P ().

So the first term in / Ay is controlled by

B <8+ 001w Lp (9 48+ D1 0s),

For the second one we first localise near the boundary:

32_8p+12|qk|/ (1= 22|52 — el ™ |R(s2)[*log™ |f(s2)] =

8(p+ 1) Z|qk| / (1= |22 |52 — el ™ [R(s2) log™ | f(s2)|+

O’Y ﬂl"k

a0l [0 Bl G o (e =

\D(0,7)
=: Cy + Cs.
We get

Cr<8(p+1)lal (1—7)7" /D(O | (1= |2I*)" [R(s2)[*log™ | f(s2)].

ol
The proof of the "substitution" lemma [0.1], gives with ~ in place of u,

Cy <8(p+1) gl (1 =) e(1,7) Py ().
Now for Cy we have

Cy e 8(p+ 1) Zm\ / (1= |22 |52 — ml ™" [R(s2)Plog™ [f(s2)] <

L'\D(0,7)

<8(p+1) Z |g| —2/ (1= [2[)7 |2 |sz — mel 7 [R(s2) [P log™ | f(s2)].
k=0 v \

Fk D(Ovﬁf)
We use (1 — |2]%) < 2]sz — m| to get
1 O _ _ 1
Cy < 16(p+1)¥z il [ (1= [y 2* |R(s2)|" log™ | f(s2)] < 16(p+1) lal. 2 b(3).
k=0 Tk



We have, with the notations of proposition 3.3}, replacing Az by Aj,
1-(5) < [ (At dak 2) <
D

~Ap(p+ )P, (s) + 4p+ 1)1~ 1) Po,_(5) +4p + Des(1, ) P, (5)+

91— o () 480+ DDy (1) s ()4

_ 1
+8(p +1) |q|oo (1 =27 el ) B e(s) +16(p + 1) alog 5 Po~(5).
Let us see the terms containing log™ | f(sz)|, we set:

Dlsvin) = Loty )+ 86+ 100 )L 1 16+ 1ol P (s

+8(p + 1)

So
9l lal 1
D =16 — )Py _(s).
(s =162+ e 1 L=y, (s
Now suppose that |¢|. < p/4 and first choose v < 1 big enough to have —Z + m = —e<0
v?
1 — 2
which is clearly possible, then choose u < 1 such that ‘;L‘ 5— — € < 0 which is also clearly
a U
possible because € > 0. So we get with these choices of u and -,
q _
T_(s) < [4(p+1)e(d,u) +8(p + 1)|a—|6(1 u) +8(p + 1) gl (1= 7) 7 e(1,7)] Py, (5). u

As a corollary of these two propositions, we get

Corollary 3.5 Suppose Vj, q; > —p/4, then there is a constant c¢(p, R) such that:
T_(s) < c(p, R) P+ ().

Proof.
As above we can separate the points 7; where —p/4 < ¢; < 0 from the points 7; with ¢; > 0. Then
we apply the relevant proof to each case. [ |

We are lead to the following definition:

n

Definition 3.6 Let R(z) = H (z —n;)%, q; € R. We say that an holomorphic function f is in the

j=1
generalised Nevanlinna class MR|2,p(D) forp>0,if 36 >0, 6 <1 such that
1 flly o = sup / (1= |21 [R(s2)|*log™ | f(s2)] < oe.
IRI%p 1-d<s<1JD

And we get the Blaschke type condition:

Theorem 3.7 Let R(z) = H (z—=n;)", ¢; € R. Suppose p >0, j =1,...n, ¢ > —p/4 and

f € Nigs (D) with |£(0) =1, then
S (1= ) R@P < o, RIS

IRI2,p
acZ(f)



Proof.
We apply the formula (2.2), to get, with g,(z) = (1 — |2|*)"*?|R(sz2)|*,

vs<1, S (1—laP)*?|R(sa)l? = / log |£(s2)] Agal2)
a€Z(fs) D
because with p > 0, 9,95 =0 on T.

Now we use Proposition to get that

[ 108 1£(52)1 £9,(2) < o+ D |2 +41al* + 2 a1 Po.s (),
)
and corollary to get

- / log™ |£(52)] As(2) < ¢(p. R) oy (5).
D
So adding we get

Vs<1 Y (1-[af) |Risa)? < clp, B)P.(s).
aEZ(fs)
We are in position to apply lemma from the appendix, with ¢(z) = |R(z)|2, to get

Y (=P R(@) < c(p,R) sup Poy(s),
acZ(f) 1-6<s<1
because |R(z)|” is positive. [ |

Corollary 3.8 Let R(z H z—n;)¥, q; € R. Supposep > 0 and f € Ng,(D) with |f(0)| =1,

j=1
and letVj = 1,...,n, if ¢; > —p/2, §; = q; else choose §; > —p/2, and set R(z H z —77] 7,
j=1
then )
> (1= 1aP) 7| R(0)| < cp. @, R)fllx,,,
a€Z(f)
Proof.
In order to apply theorem B7lto R we have to show that f € N (D) = f € MR| (D).
But . . .
~sz)::l_[ sz —1;)" Hsz— XH sz —n;) 079
j=1 = j=1
and the only point is for the j suc hat ¢; < —p/2. So set rj :=G; —q; > 0, we have [sz —n;| <2

n

R(s2)

hence [sz —n;|"7 < 2" so

< 2" |R(sz)| with |r| =) r;.

Jj=1

Putting it in HfHN\m o we get

1l = sup / (1= 2P | R(s2)| 1og™ | £(s2)] <
|&.p 1-6<s<1JD
<2 sup [ (1= P RGs2)log" £ (s2)] = 2l
1-6<s<1 JD
So we are done. [ |

10



4 Case p=0.

Now we set: g5(z) = (1 — |2|*) |R(s2)|* and we have that
0ngs(2) = =22 |R(s2)” + (1 = |20 (| R(s2)[*)
which is not 0 on T, so we have to add the boundary term:
B(s) = / g (52) 9. =2 [ [R(s2) *1og™ 1 (52)| =2 [ |”(s2)*log [ (52)] =
=: Bi(s) = B_(s).
We shall use as above, for ¢, € [0, 1],

Pr_(ty) := sup /}R(seie)}Qlog_ ‘f(sew)‘

0<s<to JT
and
Pr . (ty) := sup /}R(seie)}2log+‘f(sei9)‘.
0<s<to JT
Now we set )
Ai(s) = 45"(1— |2 Y TIR(s2)Plog? | f(s2)| — 4| R(s2)|*log™ | f(s2)] +
+8sR[(—2 Zq] (sz — ;) )] |R(s2)|*log" | f(s2)| + By (s).
Set also T(s) ::/A+( ), and with ~ Z|q]\|z nil
D

P, (s) = / 2(s2) | R(52) [ log* \f(SZ)\-

Proposition 4.1 We have
Ty (s) < 8(lgl + 1) Py1.(s) + Bi(s).

Proof.

Set
Al = 48 / |Z|

Using (1 — |2|?) < 2|sz — 77j| , we get Ay <8lg| Py +(s).
Set Ay 1= — / 4|R(s2)|*log" | f(s2)|. Then A, < 0 and it can be forgotten.

2

(52— ;)" J|R(s2)|"log™ | f(s2)].

D
Finally set
Avi= [ sl qu (52 = 1) ] 1R(s2)] log™ |1 (s2)]

Again we get A3 < 8sP, (s )
Summing the A; we get
Ty (s) < 8(lgl + 1) Py,1.(s) + Bi(s).

|. We set
JA(|R(52)[*)(s2) log™ | f(s2)| +

We shall now group the terms containing log™ | f(sz)
—A_(s,2) = —4[R(sz)|"log™ |f(s2)| + (1 — [2"

11



+8sR[(— Zq] )] |R(s2)|* log™ | f(s2)| + B_(s).

and T_(s) := /DA(S,Z).

Proposition 4.2 We have
T (s) < 2[2¢5(1,u) + 2q| ¢5(1/2, w)] Pr.+ (to)+
+2(1 = w?)212(1 = w*)"/? 4 2|g] Pr,— (to) — B~ (5).

Proof.
We have A[(1 — |2[*)] = —4 so
M) i= = [ A1~ o) Rls2)Plog™ £(52)] =4 [ |G log |F(52)|.
D D
We can apply the second part of the substitution lemma with § = 1, we get for any u < 1,
1
Vs < to, / |R(sz)|2 log™ | f(s2)| < e(1,u)Pr(to) + 5(1 —u?)Pr_(to).
D
So we get
Al(S) S 40(1, u)P']T,-‘,-(tO) + 2(1 - uz)P']L_(tQ).
For
Ay = — [y (1= 21 A(|R(s2)[*)(s2) log™ | f(s2)] =
= —as? [ (L e IR (52) (52) og” |1 (s9)] < 0
so we can forget it. g
Now we arrive at the "bad term"

Ag = /89‘3[ (1= 21")A(|R(s2)[*)]log™ | f(s2)]:

Copying the proof done in the case p > 0, we use again lemma [0.21 and we integrate inequality (3.3))
with p=0:

A3 <s \q\/ ~Y2|R(s2)]%.
Now we are in position to apply the second part of lemma with 6 = 1/2, so we get

%Sm,/O—VW*QW@MH%Wﬂ%NS%ﬂﬂwVMﬁw+ﬂ—uwﬂ%;%%

and ?

Ay < 2s|q] ¢(1/2,u) Pr i (to) + 25 |q| (1 — u?)"/* Pr_(to).
Summing all, we get

T (s) < de(1,u)Pry(to) + 2(1 — u?)Pr_(to) + 25 |q| ¢(1/2,w) Py (to)+

+25|q| (1 = u*)Y?Pr_(to) — B_(s).

Hence

T_(s) < 2[2¢(1,u) +2|q| c(1/2,u)] P (to) +2(1 —u?)Y?[2(1 — u?)Y? + 2 |q|) Pr._ (to) — B_(s).
|

Definition 4.3 Let R(z H z—m;)%, q; € R. We say that an holomorphic function f is in the

generalised Nevanlinna class /_\/R| o(D) if 36 >0, 6 <1 such that

12



N i
Il , = sup / IR(se)| log " | f(se) |+
12170 1-6<s<1JT
s [ 902 [R(s2) P log" 1(52)] < .
1-6<s<1 JD
with (2 E PR

We get the Blaschke type condition:

Theorem 4.4 Let R(z H (z—=n;)", q; € R. Suppose Vj =1,...,n, ¢ >0 and f € /\/'|R|270(]D>)

]_
with |f(0)| =1, then there exists a constant ¢(R) depending only on R such that

> (=laP)[R(@)” < e(B)|flly

a€Z(f)

R|2,0

Proof.
Fix ¢y € [0, 1], by lemma in the appendix, we have that

0\ 10— i
h(s) := / |R(se 9)‘ log™ | f(se 9)‘
T
is a continuous function of s € [0, #y] hence its supremum is achieved at sy = s(tg) € [0, to], i.e
Pr_(to) = B_(s0) : /‘R soe’e ‘ log™ }f soe’e ‘
Let us consider, for any ¢ € [0, to],

Stso) = Y gla)+ Y gula).

a€Z(fy) a€Z(fsy)

We have, by (2.2),
5(t,s0) < T(t) + T (so) + T-(t) + T-(s0)-
By use of proposition 1] we get

Ty (s) S8(|q\+1)/7(2)IR(SZ)|210g+|f(SZ)|+B+(8),

)
and by use of proposition we get for s € [0, o],

T_(5) < 202¢(1, u) +2 gl e(1/2,10)| Pr (o) + 2(1 — ) 22(1 — )12 + 2 gl Pr,_(t6) — B_(5).
Hence

N(t, s0) < Ty (t) + T (s0) + T- (1) +T-(s0) < 8(J¢| +1) /DV(Z) |R(t2)[*log" | f(t2)] + B+ (t)+

+8(lql + 1)/7(2) |[R(s02)|" log™ | f(s02)| + Bx(s0)+

42e(1, 1)+ 25 gl e(1/2, 1) Po+ (ts)+
+4(1 — u®)V2[2(1 — u®)Y? 4+ 2 |¢|) Pr._(to) — B_(t) — B_(s0).

We forget the negative term —B_(t) := — / 2|R(tz)[*log™ | f| < 0 and we recall that
T

Pr_(ty) = B_(so) := / |R(s02)|*log™ | f].

T
Now choose a suitable © < 1 such that
41 —uHY22(1 —uP)Y2 +2]q]) —1<0

13



e (12 &
te. (=)™ < gDy

%(t,50) < 8(lgl +1) /DV(Z) |[R(tz)[*log" | f(t2)] + B (t)+

which is independent of tq. It remains

+8(ICJ|+1)/7(2)|R(802)|210g+|f s02)| + By (s0)+

(
D
+4[2¢(1,u) + 2s|q| c¢(1/2,uw)] Pr 4 (to).
Then, because t € [0, %], so € [0,%], we get B, (t) < Pr,
N(t, s0) < 16(|g| + 1) Py, 1. (fo) + 2Pr4-(fo) + 4[2¢(1
So finally
N(t, s0) < 16(|g| + 1) Py 1. (fo) + 2[1 + 2(2¢(1, u) + 2g[ e(1/2, u))] Pr,4. (o).
We get, taking ¢t =ty < 1 and the suitable u, independent of t,
Y Guwla) < 5t s0) < 16(g] + 1) Py (to) + 2[1+2(2¢(1, ) + 2]q| e(1/2, u))] Pr, (to).
aEZ(ftO)
Setting

c(R) := max(16(|g| 4+ 1), 2[1 +2(2c(1,u) + 2 |q[ (1/2,u))]),
which is still independent of ¢y, we get
Vo e 011 S (1-[aP)Rta)f < (B,
a’eZ(fto)
hence using the second part of lemma from the appendix, with ¢(z) = v(2) |R(2)]*>, ¥(z) =
[R(2)[*, we get
Y. =l [R@F < By, .- o

|RI2,0
a€Z(f)

+(to) ; By(s0) < Pr(to) ; hence
yu) + 2 gl e(1/2,u)] Pr.4(to)-

Corollary 4.5 Let R(z H z—n;)¥, q; € R. Suppose f € Njgo(D) with |f(0)] =1, and set

Jj=1
n

R(z) := H (z — nj)(qj)+, then there ezists a constant ¢(R) depending only on R such that
> (1= 1aP) |R@)| < (Rl

Proof.
We have to prove that f € Ngo= f € /\/'|R‘70. But if ¢ < 0 then:

=l 2= |z —n! 220 = 1= | — | <277z —y|".
Putting it in the definition of ||f||/\f‘m , we are done. [

5 Application : L bounds.

We shall retrieve some of the results of Boritchev, Golinskii and Kupin [4], [5].

D . — Y )
el with R(z) := Jl;[l( n;)¥.

We deduce that |R(z)|log|f(2)| is in L'(T) with a better exponent of almost 1 over the rational
function R. Precisely set

Suppose the function f verifies |f(z)| < exp

14



n

Ve Z 0, RE(Z) = H (Z _ nj)qj_1+6,

j=1
we have:
: : D -
Lemma 5.1 If the function f verifies |f(2)| < exp —— R0 with R(z H z—n;)¥, we have
2
7=1
Ve >0, / |Re(e”)|log™ | f(e)| < DC(6, ¢).
T
Proof.
The hypothesis gives |R(z)|log™ |f(2)| < D and
Re(2) ﬁ (2 = m) ﬁ -1
Sy | FE
R ey~ U
S0
R.(z - e
Ru(2)log" 17(2)) < 2D < DI (o = mp
j=1

Because the points {7} are separated on the torus T by a > 0 say and |z —n;| "'

for the Lebesgue measure on the torus T because e > 0, we get:

is integrable

‘R 0 } 26 + 26 0 _1+5
‘ ‘ . D
Theorem 5.2 Suppose the holomorphic function f verifies |f(0)] =1 and |f(2)| < exp 5
) ) (1 s IR(:)
with R(z H z—n))%, ¢; €R. Forp=0, we set R( H 9+ and we get:
7j=1 7j=1
S (1 la]) ’Re a ‘ < De(e, p, R).

a€Z(f)
Forp>0,Vj=1,..,n,ifqg —1> —p/2 set §; = q; else choose §; > 1 —p/2, and set Ry(z) :=

H (z—n)%7", then:

j=1
Ve>0, > (1—la])"™"|Ry(a)| < De(e, R).
a€Z(f)
Proof.
e Case p = 0.

We shall apply the corollary with R, instead of R.
To apply corollary we have to show that

sup [ R.(s2)] s[> gy =)
s<1 JD j=1

log™ | f(sz)| < o0

and

15



sup/‘R se’ ‘logJ"f (se™) ‘ < 0.
The hypothesis gives |R(z)|log™ | f(2)| < D so we get

|Re(s2)|log™ | f(sz)| < D] It — sz 717,

i=1

=[] - smz)~"
j=1

because, as already seen,

so we get:

|[Re(s2) > 1= simz| " log™ | £(2)] <2D gl Y T (11— smizl ™) |1 — sz
k=1 k=1 j#k
Because the points {7} are separated by an @ > 0 and |1 — 77]-,z|_2+e is integrable for the Lebesgue
measure on the disc D because e > 0, we get:

o [ 152113l 20 08" |1l am(:) < 2Dl o).

7=1
Now to apply corollary 4.5 we need also to compute

/T ‘Re(s€i6)} log™ ‘f(sew)‘ < }fR(STe;}

< D/T'lj(l —sme”)‘”e'.

Again the points {7} are separated by a and ‘1 — ﬁjew ‘ g integrable for the Lebesgue measure
on the torus T because € > 0. So we get:

sup/ ‘R (se') ‘long ‘f (se') ‘ < c(a,€),
which ends the proof of the case p = 0.

—2+€

|R(se”)|log™ | f(se”)| <

e Case p > 0.

We shall show that Ve > 0, f € Ng, (D). For this we have to prove:
g = sup( | (0= 1= [Rafs)log” £(52)]) < .

D
Because sz)| < ex we get
= o0 Gy R ™ ¢

.0 = [ (= Py Rusalog" (s < [ 1= et D] B og 1] <

|[Ro(s2)] D -
= /D(l i [R(s2)| (1 [s2P)

Now, as already seen, ];0((82)) = H (1 — s7;2) 7", so we get, because Vs < 1, (1—|2*) < (1—|sz[*),
=

I(s,€ <D/ (1— |z 1H(1—sﬁjz)_1.
Jj=

Now we apply lemma 0.4 with p = ¢ to get

16



n

sup [ (1) L0 sm2) " < el
s<1 JD j=1
Hence

7l py e < Dele,8) = f € Ny pue(D).

But then corollary 3.8 gives that

> (1= [a) "7 | Ro(@)] < Clfll g < CDeles ),
acZ(f)
which ends the proof of the theorem. |

6 Case of a closed set in T.

Let £ = E C T be a closed set in T ; in [2], we associate to it a C**(ID) function h(z) (called ¢(z)
in [2]) such that h(z) ~ d(z, E) and setting g,(z) := (1 — |2|>)P"h(s2)? € C®(D), with 0 < s < 1
and ¢ > 0, we proved there:

Theorem 6.1 We have:
/ Dgy(2)log |f(s2)] < / (1= |27 h(s2) log* | fs2].
D D

This lead to the definition:

Definition 6.2 Let E = E C T. We say that an holomorphic function f is in the generalised
Nevanlinna class Npap(D) forp >0 if 36 >0, § <1 such that

L, o= 30 [ (= P (s 1o (5] < .

And we proved the Blaschke type condition:

Theorem 6.3 Let E = E C T. Suppose ¢ > 0 and f € Ny (D) with |f(0)| =1, then
S (=) Phia) < cl|flly,, -

a€Z(f)

Corollary 6.4 Let E = E C T. Suppose ¢ € R and f € Ny g)ap(D) with |f(0)] =1, then

Z (1 — |a|2)1+pd(&, E)q < CH.fHNd(.,E)q,p'
acZ(f)

7 The mixed case.

We shall combine the case of the rational function R(z) = H (z—n;)%, g; € R with the case
j=1
of the closed set E C T treated in [2]. For this we shall consider op(z) := |R(s2)|*h(s2)? and
95(2) = (1 = |2*)*Pp(s2).
We make the hypothesis that Vj = 1,...,n, n; ¢ E. We set 2y := min;_; _,d(n;, E) then we have
that p© > 0.

17



Because

Agy(2) = Al(1 = |27 ls2) + (L= 21T Alip(s2)] + 8R[A((L — [=*)7+)(p(s2))],

and
Alp(sz)] = s2h(s2)1A[|R(s2)[)|h(s2)? + s |R(s2)|” A[h(s2)1] + 85*R[D | R(sz)|* xd(h(s2))],

we are lead to1 set: ]

Av= 5 1R2) A0 = [P (52, s = gh(s2)' A0~ [P [R(s2)
SO

Al(1 = [P ]p(s2) = A+ As.
And

Az = (1 — |2 s?h(s2)IA | R(s2)*]h(s2)

Ag:= 81— |2 [R(s2) | Alh(sz)1]

Az = 85%(1 — |2])PFIR[O | R(s2)|* xA(h(s2))]

A = 8h(s2)"RIO((1 — [2")" ) O(|R(s2)[")]

A7 = 8| R(s2)|" RIO((1 — [2*)"")d(h(s2)")] ;
and we get

AgS(Z) :A1+A2+A3—|—A4+A5—|—A6—|—A7.
It remains to see that grouping these terms in the right way, this was already treated by the F' case
or by the F one.

Theorem 7.1 We have, for p > 0 :
/AQS(Z) log | f(s2)] 5/(1— 277" [R(s2)[* h(s2) o™ | fs2].
D D

Proof.
We first group the terms
By = Ay log|f(sz)| + Aslog|f(sz)| + Az log|f(s2)],
these terms contain no derivatives of |R(sz)|” and so verify theorem with h? replaced by
|R(s2)|* h(sz)? i.e.
[Bits.2) s [ = R hise)tog” |52l
D

D
Now we group the terms

By := Azlog | f(s2)| + Aslog | f(s2)| + Aslog | f(s2)],
these terms contain no derivatives of h(sz) and so verify also

[ Balsia) s [ =Py IR b2 og” |52l
D D
It remains Aslog|f(sz)| but again the homogeneity is the right one and we get
[ Asts. 210" 75 S [ (=[P IR (527 log” | 2.
D D

So it remains Aslog™ |f(sz)|, and, in order to separate the points, we consider:

<(5}, GZOGJ

Jj=1

Vj:l,...,n, Gj = {ZG]DIZ 'i_,rb

2]

Then we need:

Lemma 7.2 There are two constants a(u), b(u), just depending on p, such that:
Vz € G, Oh(sz) ~ a(p).

18



And B
Vz ¢ G,0 \R(sz)\z ~ b(p).

Proof.
Recall that we have T\ E = U (o, B;) where the F; := (aj, 3;) are the contiguous intervals to £
jeN

and I'; := {z =re € D :: ¢ € (a, 3;)}. We set:

Ve € Ty, h(z) = my(2)is(2)1 4 (L |, ¥z € T, hs(z) o= (1 — [2f2)
with x € C*(R), t <2 = x(t) =0, t >3 = x(t) =1 and

Vz e T, ’QD(Z) — ‘Z — aj‘z |Z - BJE n(z) — X( ‘Z — O‘j‘z )X( |Z - ﬁj|2 )

Y 05 Y (1= 1227 (1 = |o*)?

An easy computation using the first lemma in the appendix of [2] gives Vz € G, 0h(sz) ~ a(u)
because z is far frorlgn E.

And with R(z) = H (z —n;)%, again an easy computation gives Vz ¢ G, 0 |R(sz)|? ~ b(u) because
j=1

z is far from U {n;} |
j=1
We can treat the Aslog™ | f(sz)| term easily now ; recall
Aslog™ |f(s2)] := 8% (1 — |2[*)P* 'R |R(s2)|” x(h(sz)")]log™ |f(s2)] ;
cut the disc D = G U (D\G), so
[ Avtog 15662 = [ Astog” 172l + [ Astog” £(s2))
D € D\G
On G we have, by lemma [7.2, dh(sz) ~ a(y) and we win a (1 — |z|*) so we can apply the
substitution lemma [@.1] to get

[ Aslog” 1£(52)| < cxPos ).

a _
On D\G we have, by lemma 72, 0 |R(sz)|” ~ b(x) and we win again a (1 —|z|*) so we can apply
the substitution lemma to get

[ Astog™|(52)] < Pos (o),
D\G
so finally we get

A—(Sa Z) S CGPD,+(S)>

D
which ends the proof of the theorem. |
So we are lead to
Definition 7.3 Let E = E C T and R(z) = [[(z = n))%, ¢ € R withVj = 1,...,n, 0; ¢ E. Set
j=1
©(z) = |R(2)|* h(2)?. We say that an holomorphic function f is in the generalised Nevanlinna class
Nop(D) if 30 > 0, 6 <1 such that

Il = sup / (1= o) p(s2) log™ [f(s2)].

1-d<s<1

And we have the Blaschke type condition, still using lemma from the appendix, with ¢(z) =
[R(2)|" h(=2)" :
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Theorem 7.4 Let E=E C T and R(z H (z—m;)%, ¢ €R, ¢; >p/4, withVj=1,..n,n; ¢
j=1

E. Suppose ¢ > 0 and f € N, ,(D) with \f(0)| =1, then
> =1 Pe(@) [R(@)] < el fly,,-

a€Z(f)

As for the case of the rational function R only, we get the

Corollary 7.5 Let E = E C T and R(z H (z=m)%, ¢; € R, withVj =1,...n, n; ¢ E.
7j=1
LetVj =1,..,n, if ¢; > —p/2, §; = q; else choose §; > —p/2 and set R(z H z — ;) Y and
7j=1
o(2) = |R(2)| h(2)!, ¢(z) = é( )} h(z)?. Suppose ¢ >0 and f € N, ,(D) with |f(0)| =1, then
> (1= la)*3(a) < c(@)Iflly,
a€Z(f)
Corollary 7.6 Let E = E C T and R(z H z—mn)%, ¢ € R, withVj =1,..,n, n; ¢ E.
7j=1
LetVj =1,..,n, if ¢; > —p/2, §; = q; else choose §; > —p/2 and set R(z) = H(z — nj)qj, and

j=1

©(2) = |R(2)|d(z, E)1, $(z) = |R(z )‘ d(z, E)\D+. Suppose [ € N,,(D) with |f(0)| =1, then
> (=l *@(a) < (@) flly,,-

acZ(f)
Proof.
Still using that h(z) ~ d(z, F) and copying the proof of corollary we are done. [ |
We proceed exactly the same way for the case p = 0 to set, with v Z gl |z =)

Definition 7.7 Let E = E C T and R(z) = H(z —n;)%, ¢y e RwithVj=1,...n, n; ¢ E. Set
j=1

©(2) = |R(2)|* h(2)?. We say that an holomorphic function f is in the generalised Nevanlinna class

Noo(D) if 36 > 0, 0 < 1 such that

1flln,, = _sup / (se”)log™ | f(se”)|+ sup /Dap(z)v(z)h(z)—llogr|f(z)|.

—d<s<1JT 1-d<s<1

And we have the Blaschke type condition, still using lemma from the appendix,
Theorem 7.8 Let E = E C T and ¢ as above. Suppose ¢ > 0 and f € N, o(D) with |f(0)] =1,

then
> (1= laP)e(a) < ellflly,,

aeZ(f)
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Corollary 7.9 Let E = E C T and R(z H z=n;)¥, ¢ € R, withVj =1,...n, n; ¢ E.
7j=1

Suppose p(z) := |R(2)| d(z, E)* and f € N,o(D) with |f(0)] =1, and set R(z H
7j=1
then )
S (1= laP)d(a, B)9* R(a)\ <l flix.,
a€Z(f)
Proof.
Again using that h(z) ~ d(z, E') and copying the proof of corollary we are done. [

8 Mixed cases with L°° bounds.

As in section [1] we can mixed the two previous cases and we get, by a straightforward adaptation
of the previous proofs,

Theorem 8.1 Suppose that f € H(D), |f(0)] =1 and

1
Vz e D, logt |f(2)] < :
(1—1z \2)1’ |R(2)| d(z, E)9
with p > 0, and R(z H z—mn;)%, ¢ €R,if ¢ —1> —p/2 set §; = q; else choose §; > 1—p/2,
j=1
and set Ro H , then we have, with € > 0,
7j=1
Z (1~ lay 7| Rofa >) d(a, BB+ < c(p, g, R, B, K.

a€Z(f)

And

Theorem 8.2 Suppose that f € H(D), |f(0)] =1 and
VzeD, log™ |f(2)] < K

|R(2)| d(z, E)T )
with p =0, and R(z :H (z—m)%, ¢ €R, setR H (qJ 1+e)4

Jj=1 j=1
then, with € > 0,

S (1 JaP) |Rel@)| d(a, BT+ < o(g, R, B, ).
a€Z(f)
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9 Appendix.

Lemma 9.1 (Substitution) Suppose § >0, 0 <u <1 and |f(0)| =1, then

1
/ (1= |27 [ R(s2)[Flog™ [ f(52)] < (1= u?)’— Py _(s) + (0, u) P (s),
D
with ¢(6,u) == 2x411(1 —u)?=278 o .= -2 max (0,—qj), B:=2 max (g5),

i= n ji= n

goeoy =1,...,

and Py _(s) 22/(1—\z|2)p_1|Z\2|R(SZ)|210g_\f(SZ)\7 Pp i (s) 22/(1— |2[7)7~" [R(s2)| log™ | f(s2)].
We also hcwe:D o )
Us <to, [ (1= o |Rlope)[log |F(52)] < cl6,u)Prslta) + 551~ 0 Pr—(ta)

D 20
with
Pr . (to) := sup / ‘Ji’(sew)‘zlogJr ‘f(sew)‘ do
0<s<to JT
and
Pr_(tp) :== sup / }R(sew)‘zlog_ | f(se™)| db.
0<s<to JT
Proof.

Because this lemma is a key one for us, we shall give a detailed proof of it. We have

A [ Q=P R og 762 = [ (= [ ()P log )+

D(0,u)
s [ @ R oy £ = B C.
D\D(0,u)
Clearly for the second term we have
C = (1= [z[)P7 | R(s2)[ log™ | f(s2)] <

D\D(0,u)

u2

1 _ _
(1- u2)5—/ (1= |21 2] [R(s2)|" log™ | f(s2):
D\D(0,u)
For the first one, we have

Bim [ (sl y R g If(s2)
D(0,u)
and, changing to polar coordinates,

B= [ =g |Respe) log |(spe)| 0} odp.
T
We set " ,
M(p) = sup [ R(pe”)[" < 41(1 — p)72momen0mm),
0eT

because we have |z —n;| <2 and }pew — nj} > (1—p).
So we get

Closp) = [ 1R o™ 7(52)] < M) [ og™ | e

T
Because log |f(z)| is subharmonic, we get

0= log | /(0)] S/Tlog\f(spewﬂ I/Tlogﬂf(spei")\ —/Tlog_ £ (spe™®)|-

So we have
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Clsn) < M(sp) [ lo" | lspe”)|. (9.4

Now we set m(p) := (i,anr | R(pe”) }2 and the same way as for M (p), we get m(p) > (1—p)?meXi=ton(@i),
€
Putting it in (@.4)), we get

Clsp) < Mispymlsn) ™ [ [Alspe)[*1og" | 1(spe”)]. (9.5)

M(sp) M (p)

We notice that sup sup = sup ——— hence, setting
s<1 p<u M(5p) p<u M(p)
sp

M (sp) oG
c(d,u) := supsu 1— ,
( ) s<11) p<£) m(SP) ( p )

we get
(8, u) < 2x4ld(1 — y)0=2=5,
with

Now we have

hence B < ¢(0,u)Pp 4 ($).
Adding B and C gives the first part of the lemma.

For the second one, from the definition of C' with p = 0,
Cim [ (el Rl o 1£(52)
D\D(0,u)

we get passing in polar coordinates and with 0 < s <ty < 1,
1
C = / (1-— p2)5_1/ ‘R(spew)‘zlog_ }f(spew)} dfpdp
U T
1

1
< Pe(t) [ (L= ) pdp < 551~ ) Pe(ta)
Now from (9.5) and Gﬁl) we get
B < PT,—!—(tO)C((Sv u)/ (1 - pz)é_lpdp < PT,+(t0)C(57 u)

0
Adding C' with B we get the second part of the lemma. |
1
Lemma 9.2 Let n € T, then we have R(Z(z —n)) <0 iff ze DN D(g, 5)

Proof.
We set z = nt, then we have

Z(z —n) =nt(nt —n) =1t —1).
Hence

23



R(z(z —n)) = R(E(t — 1)) = R(r? - re®) = r* —rcosf.
Hence with t =  + iy = e’ 2 = rcosf, y = rsinf, we get
Rt —1) <0 <= 2> +9y*—2<0
11 1
which means (z,y) € D(i’ 5) hence z € DN D(g, 5) [ |
Lemma 9.3 Let ¢ be a continuous function in the unit disc D. We have that:
s <t €], 1[— y(s) == /go(sew) log™ | f(se")| d6

T
is a continuous function of s € [0,t].

Proof.
Because s < t < 1, the holomorphic function in the unit disc f(se’) has only a finite number of
zeroes say N(t). As usual we can factor out the zeros of f to get

f(z) = H (2 — a;)g(2)

]: —
where ¢(z) has no zeros in the disc D(0,t). Hence we get
N

log | f(2)] =) log|z — a;| +log|g()|.

j=1
Let a; = r;e%, r; > 0 because |f(0)| =1, then it suffices to show that

v(s) == / o(se)log™ ‘sew - reia} de
T

is continuous in s near s = r, because /ap(sew) log™ ‘g(sew)‘ df is clearly continuous.
T

To see that 7(s) is continuous at s = r, it suffices to show
¥(sn) = v(r) when s, — 7.
But
VO # 0, ¢(se)log }sew —r| = o(re?) log ‘rew — r}

and log < ¢ € L'(T)

se'? — r‘_e with € > 0. So choosing € < 1, we get that log

|se? —r| |se?d — r|

uniformly in s. Because ¢(se™) is continuous uniformly in s € [0, ] we get also ¢(se™) log ﬁ €
sew —r

L*(T) uniformly in s. So we can apply the dominated convergence theorem of Lebesgue to get the

result. |

Lemma 9.4 The function (1 — |z|*)P~ H |z — ", with p > 0, is integrable for the Lebesgue
j=1
measure in the disc D CM;LLd we have the estimate
[t T =l < clpa) < oc,
D .
7j=1

where the constant « is twice the length of the minimal arc between the points {n;};=1

.....

Proof.
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Because the points 7, are separated on the torus T we can assume that we have disjoint sectors I';

.....

j=1
A= / A 2P [ 1 =l dmz) = 3 / (A 2Py ] 12 - el ().
D j=1 j=0 VT k=1
We set .
A= / (@ 2P [ 12 - el dimz),
Lo k=1
and we get

Vzely, VE=1,...n, |z—n| > a= H lz =] <a™

k=1
So

Ag<a™ / (1— 2P tdm(z) < o™ / (1 — |2]>)P~tdm(z) < 2ma™.
T'o D
For computing A; we can assume that n; = 1 by rotation and I'; based on the arc (—a, «) ; so

we have, because H Iz — ) Tt < ™Y1 — 2,
k=1
A= / (1= 12~ [T 1z = m| "dm(z) < o= / (1= [y~ 1= 2™ dm(2).
¥ k=1 Ly
Set £ := g > 0, then we have (1 — |z|°)® < 2% |1 — z|” hence
A; < a_("_l)Qﬁ/ (1— 2P 1 = 27 dm(z).
F.
Changing to polar coordijnates, we get
1 5
Aj < a—(n—l)Qﬁ/ (1 _ p2)6—1p{/ ‘1 _ peie}ﬁ_l d@}dp.
-5

0
Because 5 > 0, we get
(0%

Vp <1, / }1 — pew‘ﬁ_l df < c(a, B)

and
1

(1= p)P " pdp < o(B).
0
So adding the A;, we end the proof of the lemma. [ |

Lemma 9.5 Let ¢(z) be a positive function in D and f € H(D) ; set fs(z) := f(sz) and suppose
that:

vs<1, 3 (1—laP)*p(sa) < / (1= 2P (s2) log™ | £(52)],
a€Z(fs) D
then, for any 1 > 6 > 0 we have

S (1= Py i) < sup / (1= |22 p(s2) log* |f(s2)].
a€Z(f) 1-6<s<1 JD
We have also:

let p(2), ¥(2) be positive continuous functions in D and f € H(D) such that:
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W<l > (L-lafhelsa) < [ e(s2)log" [£(s2) + [ v(se)log” | (se?)
a€Z(£)ND(0,s) D T
then, for any 1 > 6 > 0 we have

S (1= JaP)ela) < sup / o(s2)log" | f(s2)| + sup / (s log™ | f(s2)].

acZ(f) 1-d<s<1 1-d<s<1

Proof.
We have a € Z(f;) <= f(sa) =0,1ie. b:=sa e Z(f)ND(0,s). Hence the hypothesis is

<l Y 0= 4@ < [0 e g 52

a€Z(f)ND(0,s)
Wefix 1 -6 <r <1, r<s<1,then, because Z(f)ND(0,r) C Z(f)ND(0,s) and ¢ > 0, we have

3 (1_)5’2)p+1¢(a)§ 3 (1_’3’2)p+1¢(a)§

a€Z(f)nND(0,r) a€Z(f)ND(0,5)
< s [P g £
1-6<s<1JD
In D(0,7) we have a finite fixed number of zeroes of f, and, because (1 — ‘%}2)7’“ is continuous
in s <1 for a € D, we have
2
Va € Z(f) N D0, ), lim(1 )9) P = (1 — |a]?)P*.
S— S
Hence
> -l < s [ (1= s s If(52)

a€Z(f)ND(0,r) 1-0<s<1JD

Because the right hand side is independent of r < 1 and ¢ is positive in D so the sequence

Sry:= Y (I=lay"e(a)
a€Z(f)ND(0,r)
is increasing with r, we get

> (-lalypta) < s [ (0 el g I£(s)
acZ(f) 1-d6<s<1 JD
This proves the first part. The proof of the second one is just identical. |

Remark 9.6 (i) As can be easily seen by the change of variables uw = sz, if p > 1 we have:

sup /D(l—|Z|2)p‘130(82)10g+|f(82)|S/D(l—\Z\z)p‘lw(z)logﬂf(z)\-

1-é<s<1
(ii) We also have that if o(2)log™ | f(2)| is subharmonic, then:

sup / (1= |22 p(s2) log™ [f(s2)] < / (1= |22 o(2) log™ £(2).

1-6<s<1 JD
But (ii) is not the case in general in our setting.
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