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Nevanlinna classes for non radial weights in the unit disc.
Applications.

Eric Amar

Abstract

We introduce Nevanlinna classes associated to non radial weights in the unit disc in the com-
plex plane and we get Blaschke type theorems relative to these classes by use of several complex
variables methods. This gives alternative proofs and improve some results of Boritchev, Golin-
ski and Kupin useful, in particular, for the study of eigenvalues of non self adjoint Schrodinger

operators.
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We shall work with classes of holomorphic functions whose zeroes may appear as eigenvalues of
Schrodinger operators with complex valued potential. So having information on these zeroes gives
information on the operator.

Boritchev, Golinski and Kupin, in [3|, got information on the distribution of the zeroes of functions
in these classes to get interesting counterparts of famous Lieb-Thirring inequalities for complex
Jacobi matrices. To get other motivations for this, see the nice introduction in [3].

This work is directly inspired by their papers and gives alternative proofs and improve some of
their results.

The only measures we shall deal with are the Lebesgue measures: of the plane when we integrate

in D or of the torus when we integrate on T. So usually I shall not write it.
n

Let D be the unit disc in the complex plane C. For ¢(z) = |R(z)| with R(z H (z—m;)%, n; €
7=1
T, g; € R, or p(z) = d(z, E)? where E is a any closed set in T = 0D and d(z,E) is the euclidean
distance from z to E, or a mix ¢(2) = |R(2)|d(z, £)? provided that Vj = 1,....,n, n; ¢ E, we set:

Definition 1.1 We say that an holomorphic function f in the unit disc D, such that |f(0)| =1 is
in the generalised Nevanlinna class N, ,(D) for p >0, if 30 > 0, 6 <1 such that

7l = sup [ (1= [P p(s2) 105" [ £(s2)| < oo
—0<s< D

To explicit the results we get, we set:
o for p(z) = |R(2)|, if ¢ > —p/2, §; := g; else choose any ¢; > —p/2 and set P(z) :=

’H (z — m‘)%| ;

o for ¢(2) = d(z, E), we set Ve > 0, ¢(2) := d(a, E)9+1+9 where (¢); := max(q,0) ;

I~ m)‘%i d(a, E)D+159),

J=1
With these definitions we get a Blaschke type condition, with Z(f) the set of zeroes of f :

o for p(z) = |R(2)|d(z, E), we set Ve > 0, ¢(z) :=

Theorem 1.2 Suppose p > 0, and [ € N, ,(D) with |f(0)| =1, then

2 ~
> (=l P@(a) < (@) fllw,,
ac€Z(f)
the constant c(p) depending only on .

For the case p = 0 we have to define:

o for p(2) = [R(2)[, we set 7(z Z gl 12 —m] ™"

o for (z) = d(z, E)?, we set v(z) :=d(z E) L.

o for p(2) = |R(2)|d(z, E)", we set 5(2) Z lgjl |2 =

Definition 1.3 We say that an holomorphic function f such that |f(0)| =1 is in the generalised
Nevanlinna class Ny o(D) if 36 >0, § <1 such that



£y = sup [ oo log® [fse)] 4+ sup [ a(s2)p(s2)log" £(s2)] < o
1-6<s<1JT D

1-d<s<1
with v(z) depending on the choice of ¢ as above.

Again we have to define the ¢ associated to .

o for o(z) = |R(2)|, we set @(z) = [ (z = n,)*] ;

j=1

o for p(z) = d(z, E)?, we set Ye > 0, ¢(z2) := d(z, E)D+1+9)

o for ¢(z) = |R(2)| d(z, E)?, we set Ve > 0, ¢(z) = |[ ] (z —n)' "

s

With these definitions we get a Blaschke type conditio

Theorem 1.4 Suppose f € N,o(D) with |f(0)| = 1, then there exists a constant c(y) depending
only on ¢ such that

Y (A—=la*)@(a) < e(@)lfll,,-

acZ(f)

All these results are new and generalise the usual Nevanlinna classes associated to radial weights.

We can apply these theorems to the case of L™ estimates.
n n

With R(z) := H(z —n;)¥, n; € T, ¢; € R, we set Ve > 0, R.(z) := H(z—nj)(qfl“)*. We
j=1 J=1

define, Vj = 1,...,n, if ¢; — 1 > —p/2, ¢; = g; else we choose ¢; > 1 —p/2, and we set Ry(z) :=

[T

j=1

Then we have as a first application (see the next section for other ones):

D

Theorem 1.5 Suppose the holomorphic function f in D verifies |f(z)| < exp 5
(1= [z]")P|R(2)|

with R(z) = H (z—mn;)¥, n; €T, qj €R, then we have:

j=1
Jorp =0,
> (1—la]) |Re(a)| < De(R).
a€Z(f)
Forp >0
Ve>0, Y (1 la)tre éo(a)’ < Dele, R).
a€Z(f)

Remark 1.6 When we compare the results of Boritchev, Golinski and Kupin [3] we find that, for
p >0 and q; < —p/2 their result is better and for q¢; > —p/2, theorem 1.5 is better, because their
threshold is —p and mine is —p/2.



As we shall see our results are based only on:

e the green formula ;

e the "zeroes" formula (see the next section) ;
which are the tools we use in several complex variables when dealing with problems on zeroes of
holomorphic functions.

The methods used in several complex variables already proved their usefulness in the one variable
case. For instance:
e the corona theorem of Carleson [5] is easier to prove and to understand thanks to the proof of T.
Wolff based on L. Hérmander [7] ;
e the characterization of interpolating sequences by Carleson for H* and by Shapiro & Shields
for H? are also easier to prove by these methods (see [1], last section, where they allow to get the
bounded linear extension property for the case H? ; the H> case being done by Pehr Beurling [2]).

So it is not surprising that in the case of zero set, they can also be useful.

In this paper all the computations are completely elementary: derivations of usual functions and
straightforward estimates. Because we have to be careful with signs and constants, I explicit the
computations, so the paper is (too !) long.

This work was already presented in an international workshop in November 2016 in Toulouse,
France.

2 Basic notations and results.

Let f be an holomorphic function in the unit disk I of the complex plane, C*(D), and g a C*®
smooth function in the closed unit disk D such that ¢ =0 on T.
The Green formula gives:

[ (a5 108171 = 108171 59) = [ (90108151~ 0g]710,9) (2.1)

D T

where 0, is the normal derivative. With the "zero" formula: Alog|f| = 3",c ;) da We get

> gla)= [ toglf| g+ [ (90u1o5]f1 - log f109).
acZ(f) v ’
Because g =0 on T,
> gfa) = [ 10817189~ [ t01f10us. 2.2
D T

acZ(f)

So, in order to get estimates on Z g(a), we have to compute 0,9 and Ag. In this work, g will

a€Z(f)
always be of the form

g5(2) = (L= [2")*Pp(s2),
where (z) will be smooth and positive in D.
We get a Blaschke type theorem if we can control



[ os15129 ~ [ tog1 10,9 < el
D T
because then we get

2
> (1 —=lay e(sa) < ¢l f],
a€Z(f)
where || f|| is a "norm" linked to the function f. To get an idea of what happens here, suppose first

that p > 0, and we set fs(2) := f(s2) ; so the equation (2.2) simplifies to

> aula) = [ log1f(s2)] Bgul) = [ 10" 7(2) g.(2) — [ log I£(52)] Bgilo)
acZ(f:) v & v
The strategy is quite obvious: we compute Ag, and we estimate the two quantities

A(s) = / log* | f(52)] Ags(2) and A_(s) = — / log™ | (s2)] Aga(2).

Because log™ | f(sz)] is directly related to the size of f, we just take the sum of the absolute value
of the terms in Ag, to estimate A,.

For A_ we have to be more careful because we want to control terms containing log™ | f(sz)| by
terms containing only log™® |f(s2)].

The case of a closed set £ C T is more delicate than the case of the rational function and we
build and use a smooth function h(z) = h.(z) in D such that:
Ve >0, Vz €D, d(z, E)Y'** < he(z2) S d(z, E).
With this function we get precise results which give also results for the function d(z, E).

Remark 2.1 In fact the only property we use about u = log|f(sz)| is that u is a sub harmonic
function such that w(0) = 0. So we can replace log | f| by a sub harmonic function u and the "zero"
formula: Alog|f| = Zan(f) 04 by the Riesz measure p associated to w, p:= Au which is a positive
measure in . This way we can retrieve some results of Favorov & Golinskii [6] by a different
approach.

To keep the fact that we are mainly interested in zeroes of holomorphic functions, we continue
with log | f].
Let E = E C T ; recall its Ahern-Clark type a(E) :
a(E) :=sup{la e R: [{t e T::d(t,E) < x}| = O(x%), © — +0},
where |A| denotes the Lebesgue measure of the set A.
We get, denoting by H (D) the space of holomorphic functions in the disc:

Theorem 2.2 Suppose that f € H(D), |f(0)] =1, ¢ >0 and
1
Vz €D, logt |f(2)] <

(1= 2))pd(z, E)7
then we have, Ye > 0,
> (1= la)*Pd(a, B) 9 < c(p, g, E, ) K.
a€Z(f)

We get also the mixed case:

Theorem 2.3 Suppose that f € H(D), |f(0)| =1 and



K 1
(1= [=[*) [R(z)] d(z, E)*

with p > 0 and R(z H (z—m;)%, ¢ >1-p/2, n; ¢ E,

7=1
then we have, with € > 0,

Y (= la)" P Ro(a)| d(a, B) N < (p, g, R, B, €) K.

acZ(f)

Vz eD, logh|f(z)] <

And

Theorem 2.4 Suppose that f € H(D), |f(0)] =1 with R(z H (z—m;)%, n; ¢ E, and

7=1
1
D, log™® <K
then, with € > 0,

S (1= [af*) |Re(a)] d(a, B)TP* < c(q, R, E, e)K.

acZ(f)

We use the same method for the two cases : the case of the rational function R(z) and the case
of the distance to a closed set E in the torus T, in contrast to the works of Boritchev, Golinski &
Kupin [3] for the rational function R(z) and of Favorov & Golinskii [6] for the distance to a closed
set F in the torus T.

This work is presented the following way.

e In the next section we study the case of p(z) = |R(2)|* with R(z) = H (z—mj)¥, n; €T, q; €
=1

R and p > 0. This is the easiest case but the problematic is already heré.

e In section 4 we study, with the same ¢, the case p = 0.

e In section 5 we study, for any closed set £ C T, the case p > 0.

e In section 6 we study the same case with p = 0.

e In section 7 we study the mixed case for the Nevanlinna classes.

e In section 8 we apply what precede to L™ estimates in the case of rational function and in the
case of the distance to a closed set in T.

e In section 9 we get the mixed case for the L™ estimates and we retrieve some results of Boritchev,
Golinski and Kupin [3].

e Finally in the appendix we prove technical, but important, lemmas.

3 Case F finite with p > 0.

Let E := {n,...,n,} C T be a finite sequence of points on T. We shall work with the rational

function R(z) = H(z —n;)%, ¢; € R and we set ¢(z) := |R(z)”. In order to have a smooth
j=1



function in the disc we set gy(z) := (1 — |2|*)"*?|R(s2)|*, with 0 < 1 — 6 < s < 1, where § > 0 is
fixed, and:
Ag, = 400g, = 490[(1~|=|")*? |R(s2)[*] = A[(1—|=[* )P |R(s2) "+ (1= |2")" T Al R(s2) ']+
+8RIO((1 — 2" O(|R(s2)["))-
Straightforward computations give the lemma, which separate the positive term, the negative term
and the term with no fixed sign:

Lemma 3.1 We have
Ags(z) = Ay — AL+ Ag
with )

Ay =401 = |2 p(p + 1) |27 + s2(1 — |2[*)? " TIR(s2)[?

Zq] (sz—m;)~

A_=4(p+1)(1— |2 |R(s2)|” i
Ag i+ =8sR[(—(r+ 1)1 — |2z )(Z gi(sz — ;) ]| R(s2)|*.

Because p > 0 = 0,9s = 0 on T, formula (2.2), with fs(z) := f(sz), reduces to:
> ala) = [ log|f(s2)] Bgila).

a€Z(fs) i

We have to estimate /log |f(s2)| Ags(z) and for it, we decompose:

D
log | f(s2)] Aga(2) =1log™ |f(s2)| Aga(2) —log™ |f(s2)] Aga(2).
We shall first group the terms containing log™® |f(s2)|. We set

Ai(s) = Ay log" | f(s2)] — A log" |£(s2)| + A log” |£(s2)] .

And Ty (s) := /DAJr(s)dm(z). We set also Pp (s) := /D (1 —|2|*)P7 [R(s2)|* log™ | f(s2)].

Proposition 3.2 We have, with |q| := Z g;], Ty (s) < 4lp(p+ 1) |2 +41q)* + 21q]] P (5).
j=1
Proof.

We have A, < A logh |f(s2)|+ Az logt | f(sz)| because —A_ is negative. We use that (1 —|z|*) <
2 |sz — nj| then elementary estimates on the modulus of the reminding terms end the proof. B

We shall now group the terms containing log™ | f(sz)|. We set
A_(s,z) :=—=Atlog™ |f(s2)] + A_log™ |f(sz)] — Axlog™ |f(s2)]

and Py_(s) ::/(1— 22)71 |2 |R(s2)[Plog ™ |f(52)] and T (s) ::/A(s,z).

D D

Proposition 3.3 Suppose that Vj =1,....,n, q; > 0, then
T_(s) < (p+ Dde(L,w) + 5 || e(1/2, u)] Py (s).



Proof.
Set

Ay = A log™ [f(s2)] = 4(p + 1)(1 — |2)" |R(s2)[" log™ | f(s2)].
We apply the "substitution" lemma 10.1 from the appendix with 6 = 1, to get

[ A2 <464 10 =) 5o (6) 4+ el ) P (),

Now set
Bj = 8q;(p+ 1)(1 — |2I")PR[z ) (2 — 7)) '] |R(s2) " log™ | f(s2)],
and
Az = —Axlog™ | f(s2)| = —8R[(—(p+1) (1|2 qu 2 =) ] IR(s2)[ log™ | f(s2)] 5
- 1
we get Az = ZBJ" But R[z(sz — ;)] = ﬁ%[i(sz — n;)] hence by lemma 10.2 from the
: sz —1;
1 1
appendix, we have ®(z(z —n)) < 0iff z € ]D)OD(%, 5) So, with ¢; > 0, the part in ]DﬂD(%, 5)

is negative and can be ignored So it remains

B < (p+ 1)s(L — 2"V [R(s2) "1 1) (2)RIg;RIZ(Z — 1) "] log™ | f(s2)].

1
But for z € D(?;] 2)6, (1 —|2*) < 2|z — n;|° hence,
e (IRIEGE = 7)1 < 200 = o)™, () < 201 — [£7) 72
So we get

B; < sq;(p+ 1)(1 — [2[)P/2 |R(s2)[*log™ | f(s2)|
and, provided that ¢; > 0,

Ay =) By <slal(p+ (1~ |2y~ |R(s2) log™ |f(s2)]. (3.3)

j=1
We can again apply the "substitution" lemma 10.1 with § = 1/2, this time and we get
s (1= 2172 |R(s2)[*log™ | f(2)] < (1 = UQ)I/Q%PD,(S) +¢(1/2,u) Pp 4 (s).
So finally
[ As < slal o+ D0 =) o (5)+ 5l (0 Del1/2,0)Pos(5)
Integrating A_(s, z) over D and adding, we get, with A; := —A_ log™ |f(sz)],
1-(5) < [ (v Aat Ad) S ~aplp-+ DPo(s) + Alp-+ (1~ )5 Po(9)+

1
A+ el 0)Poc () + slal (p-+ DL~ )Py _(s)+
+slql (p+ 1)e(1/2,u) Pp o (s).
The key point here is that the "bad terms" in log™ |f(z)| can be controlled by the "good" one:
Ay =~ A, log |f(52)]
We can choose 0 < v < 1 such that

1 1
—4p(p+1) +4(p+1)(1 — ug)— +s IQI (p+1)(1— UQ)WE <0

just taking, because p > 0, V1 —u?2 <
4+ s |q\

Hence we get, provided that



Vi=1,.,nq >0, T_(s) < (p+1)[4ec(l,u) + s|qlc(1/2,u)]|Pp +(s). A
We can also get results for ¢; < 0 the following way.

Proposition 3.4 Set |¢| = nax \qk| and suppose |q|. < p/4, then there existu < 1, v <1
such that: o

T_(s) <4(p+ 1De(1,u) + 2%0(1 u) +21gl (1 =) e(1,7)] Py (s).
Proof.
We have

|—Az] = ‘—889‘3[( (p+1)(1 = |o*)? qu (52 —1;) D[ |R(s2)|” <

<8(p+1)(1- |2|2)pz a1 |52 — s~ [R(s2) .
=1

n
We cut the disc in disjoint sectors around the points n; : D = I'g U U I'; with
j=1

<6}, To=D\ T

j=1
This is possible because the points 7; are disjoint and in finite number so § > 0 exists.
Now we set

Ay 1= |~Aglog™ [f(s2)]] < 8(p+ 1)(1— |2P) Z|q] 52— ;| |R(s2) P log™ |f(s2)]

ijl’...,n, F] = {zeD:: '%_Tb

and
n

Vk = 0,1, fu(2) =8+ 11—z D lgllsz =yl [R(s2)[*log™ | f(s2)]
J=1j#k
and on I'y, including k£ = 0, we get

q _
o € T 1l2) < 800+ /(1= 5 (52 Pl (59
Hence we have "
V= 0,.n, ¥z € D A < 8o 1) D (1o 1) (1= =) lag]Is2 — el [R(s2) *log™ |/ (52)]
Now we integrate in the disc and we get

/ A, <8(p+1 ‘q'z / P [ R(s2)[*log™ | (s2) |+

> la / B sz — el |R(s2) P log™ | f(s2)| = By + Ba.
But
/F (1 |22 [R(s2)[*log™ | f(s2)] < / (1= 227 |R(s2) [ log™ | £(5)

and we can apply the "substitution" lemma 10.1, with 6 = 1, to get

/D(l— |27 | R(s2)" log™ | f(s2)] < (1 — o’ )%va—(8)+0(1,U)PD7+(S)-



So the first term in / Aj is controlled by

1
B <8+ D0 - Lr () 80+ D up (9
For the second one we ﬁrst locahse near the boundary:

By :=8(p+1) |qk|/ (1= 217 sz = mel " | R(s2)|*log™ | f(s2)] =

8(p+ 1) Zm\ / (1= |22 |52 — ]~ |R(s2) [ log™ | (s2) [+

0 'y)ﬂFk

8(p+ 1) Z|qk| / (1= |22 |52 — | | R(s2) P log™ |f(s2)] =

I'\D(0,7)
=:C) + Cs.
For the first term we get

Cr<8(p+1) gl (1= /D(O | (1= [2[*)? [R(s2)|"log™ | f(s2)].

The proof of the "substitution" lemma 10.1, gives with v in place of u,

Cy < 8(p+1) lgly (1 =) e(1,7) Py (5).
Now for the second term we have

Cy e 8(p+ 1) Zm\ / (1= |22 |52 — ml ™" [R(s2) P log™ [f(s2)] <

L'\D(0,7)

8(p+1) Z || ?/ \ (L= |2 |2 sz — ml " |R(s2)[*log™ | f(s2)].
We use (1 — |z]%) < 2]sz ;kmj to get
Co < 16+1)75 3 land | (L= [P |2 R(s)hog |F(52)] < 16(+1) bl 55 P-().
We have, with the notat];grols of prgposition 3.3, replacing Az by Aj,
1-(5) < [ (Ai+ Aot ) <

~ap(p+ 1)Po(5) + 4(p+ V1~ u)5 Po,_(5) + 4(p + Des(Lu) o, (5)+

4] lal ,
5 5

+8(p+ 1) lalo (1 =) e(1,7) Pos(s) +16(p + 1) gl %PD,—(S)-

Let us see the terms containing log™ |f(sz)|, we set:

+8(p+1)=(1 — uQ)%PD, (5) +8(p+1)=c3(1,u)Pp(s)+

q 1 1

Do) = [dplp+ 1)+ 86+ DI a2 L 41660+ 1)l 1P ().
So

D(s,~ u):16(—]—7+ 4l +M )(p+1)PD_(s).

n 4 A2 20 wu? ’
Now suppose that |¢|. < p/4 and first choose v < 1 big enough to have —g + % = —e<0
Y
1— 2
which is clearly possible, then choose u < 1 such that |2i§| 2u — ¢ < 0 which is also clearly
u

10



possible because € > 0. So we get with these choices of u and ,

T_(s) < [4(p+ 1)e(1,u) +8(p + 1)|g—|0(1 w) +8(p + 1) gl (1 =) e(1,7)] Po+(s). W

As a corollary of these two propositions, we get

Corollary 3.5 Suppose Vj, q; > —p/4, then there is a constant c¢(p, R) such that:
T_(s) < c(p, R) P +(s).

Proof.
As above we can separate the points 1; where —p/4 < ¢; < 0 from the points n; with ¢; > 0. Then
we apply the relevant proof to each case. Bl

We are lead to the following definition:

n

Definition 3.6 Let R(z) = H (z—=mn;)¥, ¢; € R. We say that an holomorphic function f such
j=1

that |f(0)] =1 is in the generalised Nevanlinna class N g2 (D) for p >0, if 36 > 0, 0 < 1 such

that

11l sup /D(l — |21 [R(s2)[*log" | f(s2)] < oo

2
IRI%, 1—d<s<1

And we get the Blaschke type condition:

Theorem 3.7 Let R(z H z—n;)%, ¢; € R. Suppose p > 0, j =1,...n, ¢ > —p/4 and
]:1

f EA/IR\27p(D) with |f(0)] =1, then
Y (=) |R(a)]* < e(p, R)| fne

IRIZ,p
acZ(f)

Proof.
We apply the formula (2.2), to get, with g,(z) = (1 — |2|*)*™? |R(s2)|*,

V<l 3 (1= o) RG] = [ log|f(s2)| Agu(2)
acZ(fs) D
because with p > 0, 9,95 =0 on T.

Now we use Proposition 3.2 to get that
[ 108 1£(52)1 89,2) < o+ Do+ 4lal* + 2 a1 Po.s(5),
D)
and corollary 3.5 to get

~ [ 1087 1762 29.(2) < el B)Poo(5)
So adding ui)ive get
Vs<1, S (1= a2 |R(sa)l’ < e(p, R)Pos(s).
acZ(fs)
We are in position to apply lemma 10.6 from the appendix, with ¢(z) = |R(2)|*, to get

> (=) P|R(@)* < c(p,R) sup Poi(s),
acZ(f) 1-0<s<1
because |R(z)[* is positive. W

11



Corollary 3.8 Let R(z H z—n;)", q; € R. Supposep > 0 and f € Ng,(D) with |f(0)] =1,
7=1

and letVj = 1,...,n, if ¢; > —p/2, §; = q; else choose §; > —p/2, and set R(z H z —77] 7,
7j=1
then )
> (1= lal) 7 |R(@)] < e, R Ly,
a€Z(f)
Proof.

In order to apply theorem 3.7 to R we have to show that f € Njg (D)= f € A/|R|7p<]D))-

But . . .
R(s2) := H (sz2 —m;)% = H sz —mn;) x H sz —1n;) "9
=1 j=1

and the only point is for the j such that ¢; < —p/2 So set rj :=q; —q; > 0, we have |sz —n;| <2

hence ‘32; — T]j‘rj < AERES) R(SZ)’ < 2‘71\ ‘R<32>‘ with |T‘ = er'
j=1

Putting it ”f”f\/\mp we get

2N m—
1l = sup / (1— [Py
|R|.p 1-6<s<1JD

<2 sup /< [2")7 " [R(s2)|log™ |f (s2)] = 2" fll s, -
1-0<s<1 JD
So we are done. B

R(sz)|log" |f(s2)] <

4 Case FE finite with p = 0.

Now we set: gs(z) = (1 — |z| ) |R(s2)|* and we have that
095(2) = =2 2| [R(s2)|" + (1 = [2")9u(| R(52)[)
which is not 0 on T, so we have to add the boundary term:

B(s) = / log |/(52)| Ougs = 2 / R(s2)P log" |f(s2)] — 2 / IR(s2)?log™ | f(s2)] =

=: B, (s) — B_(s).
This time we shall use, for ¢, € [1 — 4, 1],
Pr_(to) == sup [ |R(s¢?)|"log™ |f(se”)]
1-0<s<to JT
and
i0 |2 i
Pr . (ty) == sup / |R(se 9)‘ log™ | f(se 9)‘.
1-0<s<to JT
Now we set )
Ai(s) = 4s(1 = ) Z% ' 1IR(s2)[*log™ | f(s2)] — 4|R(s2)|" log™ | f(s2)| +

+8sR[(— Z ¢;(sZ — ;)] |R(s2)|* log™ | f(s2)] + By (s).
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Set also T, (s) ::/A+( ), and with ~ Z lg;l |1z = ;7"
D

Pros) = [ 2(52) [R(s2) o ).

Proposition 4.1 We have
T (s) < 8(lg| + 1) Py 4(s) + By(s).

Proof.

Set
Ay =ds / (1—1z%)

Using (1 — |2°) < 2]sz — 77j| , we get Ay <8lg| Py +(s).
Set Ay := — / 4|R(s2)|*log" | f(s2)|. Then A, < 0 and it can be forgotten.
D

2

Y] |R(s2) P log* | £(s2)].

(52— m;)”

Finally set
As :_/83§R ~z) Zq] sz — ;) )] |R(s2)[* log™ | f(s2)].

Again we get A3 < 8sP, (s )
Summing the A; we get
T, () < 8(lal + 1)Py4(5) + By (s). W

We shall now group the terms containing log™ | f(sz)|. We set
—A_(s,2) := —4|R(s2)|" log™ | f(s2)| + (1 — 2)A(R(s2)|") (s2) log™ | f(s2)] +
+8sR[(— Z q;(sz —7;) D] |R(s2)|* log™ | f(s2)| + B_(s).

and T_(s) := /DA<s,z).

Proposition 4.2 We have
T-(s) < 202¢;(1,u) + 2 || (12, )| Pr.y (t0) +

+2(1 = V) 12(1 = V)2 + 2]q|) Pr.— (to) — B-(s).

Proof.
We have A[(1 — |2|*)] = —4 so

M) i= = [ A1~ =) Ris2)Plog (5] =4 [ |R(s2) g |52
D D
We can apply the second part of the substitution lemma 10.1 with § = 1, we get for any u < 1,
1
Vit < to, / |R(s2)[*log™ | f(t2)| < (0, w)Pr 4 (to) + 5(1 — Vu)Pr _(tg).
D

So we get
Ai(s) < 4e(0,u)Pr o (to) + 2(1 — Vu) Pr_(to).

For
Ay i=— [, (1= |2)A(|R(s2)[*)(s2) log™ | f(s2)| = —4s? [, (1 = |2[*) |[R/(s2)[* (s2) log™ | f(s2)| <
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so we can forget it.
Now we arrive at the "bad term"

Ag = —/89‘3[8((1 = |21")a(| R(s2)|*)(s2)] log™ | f(s2)].
Copying the proom% done in the case p > 0, we use again lemma 10.2 and we integrate inequality (3.3)
with p=0:

As<slal [ (1= |22 REs2)
Now we are in pos]Ii»tion to apply the second part of lemma 10.1 with § = 1/2, so we get

vt < o, / (1= |22 | R(s2) log™ |£(t2)] < 26(0,u)Pr4 (to) + (1 = Vi) /2Pr (o),
D
and

As < 2s]q] e(0,u) Pr i (to) + 2s]al (1 — vu) /> Py (to).
Summing all, we get

T (s) < 40(0,u) Pr. 1 (to) + 2(1 — V) Pr._ (to) + 25q| (0, u) Py 1 (to)+
25 lql (1 = va) /2Py, (o) — B_(s).

T_(s) < 2(2¢(0,u) +2 |q] (0, )] Pr, (to) +2(1 — V) *[2(1 — vu) /2 + 2|]) Pr_ (t0) — B_(s).

Hence

n

Definition 4.3 Let R(z) = H (z—=mn;)¥, ¢; € R. We say that an holomorphic function f such
j=1
that |f(0)| =1 is in the generalised Nevanlinna class N g2 o(D) if 36 > 0, 6 < 1 such that

0|2 i
||f||/\/‘m2’0 = 121<1p<1/T ’R(se 9)’ log™ }f(se 9)}+

T+ osup / +(52) |R(s2) log™ |f(s2)] < oo,

1-d<s<1

with (2 Zlqgllz i

We get the Blaschke type condition:

Theorem 4.4 Let R(z) = H (z =m)", ¢; € R. Suppose Vj =1,...n, ¢; >0 and f € N2 1(D)
j=1
with |f(0)] =1, then there exists a constant ¢(R) depending only on R such that

Yo (—=la*) [R(a)]* < e(R)| fllne

R0
a€Z(f)
Proof.
Fix tg € [1 — ¢, 1] and recall that
Pr_(ty) == sup /’R se’ ’ log™ } 566};
1-6<s<to

and

Protto) = sup [ [Rse)*log” | (se)]

1-6<s<to JT
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by lemma 10.3 in the appendix, we have that
i0Y|2 15— i
h(s) := / |R(se”)| log™ | f(se™)]
T

is a continuous function of s € [1 — ¢, ¢y] hence its supremum is achieved at sy = s(to) € [1 — 0, to],
ie.

Pr_(ty) = —B_(sp) = / ‘R(soew)‘ log™ | f(soe 9)‘.

T

Let us consider, for t € [to, 1],

S(ts0):= Y wla)+ Y gwla).

a€Z(f1) 07 (Fap)
We have, by (2.2),

E(t, S()) S T+(t) + T+(So) —+ T (t) —+ T (80).
By use of proposition 4.1 we get

Ty (s) < 8(lq| + 1)/7(2) |R(s2)[*log™ | f(s2)| + By.(s),
and by use of proposition £I1)).2 we get

T_(s) < 2[2¢(0,u) +2]q| c(0, w)] Pr.+ (to) +2(1 = Vu)' 2 [2(1 = v/u) * + 2|q} P, (t0) — B-(s).
Hence

St 80) < Ty (£) + T (s0) + T-(£) + T (s0) < 8(lal + 1) / V(=) [R(t2) [ log™ |£(£2)] + By (£)+

+8(|gl +1)/ (2) [R(s02)[" log ™" [ f (s02)| + B (s0)+
+4[2¢(0,w) + 25 |q| ¢(0, w)] Pr1.(t0)+
FA(1— V) (1 - Vi) T 2]l Pr—(to) — B_(t) ~ B_(s0).

We forget the negative term —B_(t) := — [ 2|R(tz)|*log™ |f| < 0 and we recall that
T

Pe_(to) = B_(s0) = /T 2| R(s02)* log" |f].

1
Now choose u < 1 such that 4(1 —v/u)2[2(1 —vu)Y?+2|¢|] =1 <0ie. (1—-vu)'? < S+ 1)
q
which is independent of ¢y. It remains

%(t,50) < 8(gl +1) /DV(Z) |[R(tz)[*log" | f(t2)] + B (t)+

+8(lql + 1)/@7(2‘) | R(s02)|"log™ | f(s02)| + Bx(s0)+
+4[2¢(0,u) + 25 |q| ¢(0, u)] Pr 4 (to)-
Then, because t € [1 — d,%o], so € [1 —0,%o], we get By (t) < Pr(to) ; Bi+(so) < Pr+(to) ; hence
L Sltn) < 16+ DPef0) 2P 0) 4200 + ST e P,
o finally
2, s0) < 16(|q| + 1) Py 1. (o) + 2[1 + 2(2¢(0, u) + 2 q| ¢(0, u))] Pr 1 (to)-
We get, taking t =ty < 1,
S @) < St s0) < 16(1g] + 1) Py 4 o) + 201+ 2(26(0, ) + 2 ] (0, )] Pr, ().

aEZ(ftO)
Setting

e(R) = max(16(]q] + 1), 2[1 +2(2¢(0,u) + 2|q| (0, u)))).
which is independent of ¢y, we get
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Vig € 1 =61, Y (1—la)|R(toa)]* < e(R)[If ]

IRI2,0
aEZ(ftO)
hence using the second part of lemma 10.6 from the appendix, with ¢(2) = v(2) |R(2)|*, ¥(z) =
[R(2)[*, we get
Y A—la’) [R(@)]* < e(R)| flln

acZ(f)

|RI2,0

Corollary 4.5 Let R(z H z—mn;)¥, q; € R. Suppose f € Njgo(D) with |f(0)] =1, and set

J=1
n

R(z) := H (z — nj)(Qj)+, then there ezists a constant ¢(R) depending only on R such that
j=1

> (1—lal’)

acZ(f)

R(@)| < (B f iy,

Proof.
We have to prove that f € Ngo= f € MR\ o- But if ¢ < 0 then:

=l 2= [z —p' 220 = 1= |2 — |t <277z —y|".
Putting it the definition of ||f||MR\ , we are done. H

5 Case E infinite and p > 0.

Let E = E C T be a closed set ; we have T = U (o, Bj) UE where the (o, ;) are the contiguous
jeN

intervals to E. !

Let T; := {z = re" € D : ¢ € (a;, B;)} the conical set based on Fj := (o, 8;) and I'g := {z =
re¥ €Dy € E}.

We fix an arc Fj := (o, 5;) = (0 € T =2 |6 — 4] < §;), with ; the midpoint of (e, ;) on T and
20, is the length of the arc (o, 5;).

By rotation we shall suppose that v; = 0 and we set § := J;. So we start with the arc (—d,d) we
fix an € > 0 and we associate to it the function

h(=) = hlpe) = 1= p X(—L)0H(0/6),
with

x#) >0, x(t)=1fort <1land x(t)=0fort >k+1, x € C°(R") ;
we can manage Y to have x'(t) <0, |x/'(t)] < 1/k. And

H(t) € C*([-1,1]), H(t) > 0, H is zero up to infinite order at t = —1 and t = 1,
with H(0) =1, H'(0) = H"(0) = 0, and we can manage to have |H'| <1+~ for any v > 0.

The values k and v > 0 are fixed the following way: if dy := supd; then &5° < (1_—7)2(1 — l),
jEN 1 + v k

which is possible because, for £ with more than 2 points, we have 6;° < 1. (For E a singleton this
was done with R(z) = (2 —n)?, n € T, in the previous section.) This implies

| o o1- 1
VjeN, 67 < (ﬁ)Z(l - E)' (5.4)
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Moreover we set x = x' = 0 for p < 1/2.
We shall also use the notations:
I(p) ={jeNz06;>(1—p)/(k+1)} and F(s,p) = U F;.

JEI(sp)
This means that Vi ¢ I(p), h(pe®®) := 1 — p, and also Vp < 1/2, h(pe”®) :=1—p.

Lemma 5.1 We have: o o o
Veels:={z=re¥ eDuc (e, )}, cd(z, {7, °}) > h(z) > dd(z, {e?, e},
with ¢ and ¢ are 2 absolute constants, and h(z) coincides up to infinite order with (1 — p) on the
boundary z = re ", z = re®.
Proof. ' ' ) '
If |z| <1/2, we have h(pe”) :=1 — p and d(z,e”°) = pe’ — “5‘ <2so
- 11 1 1 .
h(pe) > 5 2 1><2 > Zd(z,e ) = d(z e0)te < d(z ) < h(z) < d(z,€?).
We have ‘ - '
d(z,€?)? = |pe® — €°|" >~ (1 —p)* + |6 — 0 = d(z,e°) ~ (1 —p)+ (6 — 0),
the ~ meaning that there are 2 absolute constants c, ¢’ such that
(1 =p)+ (6 —0)] < d(z,e) <[(1—p)+ (5 -0)).
Now for |z]| > 1/2 we always have, by definition of H,

Vo € (0,9), h(pe )—1—p+x(1gp)51+6H(«9/5):

~ (1= p) +x0(0 = 0) < (1= p) + (6 = 0) Sd(z,e”).

For the other direction, we have

V0 € (0,), hipe”) =1 p+ x(+"

PASYFH(0)8) ~ (1 — p) + x0°(5 — 0).
So two cases: 1 ]

o 1—p >4 hence (-0) <3 < (1=p) = hipe”) = (1=p) = 5(1=p)+ 5((0-0)) 2 d(=,€") >
d(z,e?)re.

el—p<d=x=1and h(pe?) > (1 —p)+6(0 —0) > (1 —p)"+ (6 —0)' > d(z,e?),
because 1 —p < 1 and |0 — 0] <.

The fact that h(z) coincides up to infinite order with (1 — p) on the boundary z = re ™, z = re
is because H (t) is zero up to infinite order for t = F1. B

Back to the I'; we set, still with z = peA
1 - 0 —
Vz €Ty, hi(2) = 1 — p+ x(—L)oHH(*—1), and Vz € T, hp(2) =1 — p.

0j
Now we consider
Vz €Ty, go(2) == (1 — p)PTh;(sz2)"

0;

and
¥z € Tp, gs(2) i= (1= p)"hp(sz)? = (1 - p)" (1 = sp)?,
because these functions coincide up to infinite order on the boundary of their domain of definition,
they define a unique function in D, g,(z), and Vs < 1, g,(2) € C*°(D), so we can apply the Green
formula to it. Recall that f(z) := f(sz).
With the "zero" formula: Alog|fs| = 3", s.) 0o we get
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> aa) = [ 10gl7(9)] a2 + [ 0.0nTog 1 F(52)] =105 (52)| Dug)

ac€Z(fs)
So. because g, =0 on T, 3 g.(a) = [ 1og (52)] 59.(2) — [ log | F(se")| ,9.(c"),
a€Z(fs) v '
If, moreover p > 0, 0,95 = 0 on T, hence Z gs(a) = / log | f(s2)| Ags(z).
D

a€Z(fs)
So we have to compute Ags(z). We set

VzeTly, pz) =hj(z)!=[1-p+ X(l )51+6H(9 %)]

J; §;
0 — ~.
Then we have, setting x' := X’(lg—;p) and H' := H(T%),
J
VzeTy, aap (sz) = —sqh(sz)" '[L+ x'05H] ;
and o2 1
Vzely, apgw(sz) = s%q(q — V)h(s2)*[L + X0 H]* + 82qh(82)q71[x"51_6H]-

J
The same way

9 - ey’
V2 €T, 550(2) = ¢h(2)" "YOSH'
and o .
Vz ey, @go(z) = q(q — Dh(z)"*(x8H")* + qh(z)q_lxékeH”.

J

Proposition 5.2 We have
1
Ags(2) = alg = 1)(1 = p)P ' h(s2)"*{s*(1 + X6 H)* + ?(X5§H/)2}+

+q(1L = p)Ph(sz)"{—s"(1 - p)

1 €
S XH o+ 25(p+ 1)(1 4+ X0 H)—
J
1

1 . 1
—S;(l —p)(L+x'05H) + ;(1 - p)F

J

(CH") )+
o+ )= h(s2) o= (1= )

Proof.
We shall use the expression of the laplacian in polar coordinates:

Of 10f 10%°f
A =or oo T e

and a straightforward computation gives the proposition.

Now we set, taking the terms with log™ | f(s2)|, AL (s, z) 1= Ag.(2)log™ |f(sz)| and
1
To(s.0) = [ Avs,pe”) and To(s) 1= / T (s, p)pip.

Set also
Py(s,2) = (1 — p)"plspe”) log" | f(spc”)| amd Py, y(s) == / Py(s, ).
D
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Proposition 5.3 We have
T (s) < cPp+(s).

Proof.
We fix p < 1 ; for Vz = pe € T'; and §; < (1 — sp)/k + 1, then y = x’ = 0 hence h(sz) =1 — sp
and we set

T!(s,p) = / A+ [ At
—51<

Judi<(1— sp)/k-i—l

T2(s,p) = / (5, pe™).
—751<0;

judi>(1— sp)/k+1
Set, for §; > (1 — sp) — szely,

. 1
Vz=pe? €Ty, A;i=q(q—1)(1 - p)P T h(s2)"2{s*(1 + X' H)* + ;(XH')Q} logt |f(s2)].
This can be written 1
Ay =10, 52)ala = DL = pIP " b h(s2) P (404 V) + 5 (o 1152

Because

h(s2) =1 = sp+ xs,(5p)0, H((0 = 73)/0;) = (1 = 5p)
we have h(sz)™? < (1 — sp) and

_ 1
|A;] <, (s2)qlqg — 1| (1—p)P™ (1—=sp) 2p(s2)Ix [{s*(1+ X' H)* + ;(XH’V} log™ | f(s2)].
But, for p < 1/2, we have set y = X, =0, so
1
(U SO < [P0+ P+ AOH < o

and

and

1Al < qlg =1 er(1 = p)"" (1 = sp) *p(s2)" log™ | f(s2)].
Now because s < 1 we have (1 — p) < (1 — sp) hence

A < 1Al < qlg =1 er(1 = p)"~ p(s2) g™ |f(s2)| =1r,(s2)q|q — 1] cL Py (s, 2).
Adding over all j’s because this is also trivially true in case h(sz) = (1 — sp), we get

To(s.p)i= [ Aslspe) <ala=1ler [ Puls.pe)
, T T
Set for Vz = pe® € T, and &; > (1 — sp),
1
Bj = q(1 = p)'h(s2)" {=s*(1 = p)=x"H + 2s(p + 1) (1 + X'H)—
J
1 1 1,
—S;(l —p)(1+X'H) + ;(1 = )5 (XH")}log™ | f(s2)].

(L-p) _ (=30 _ .
o 0
1Bj| < q(1—p)h(s2) {2 [" HI+2s(p+1) (1 + X H)|+25(1—p) |1 + X H|+4 [ H" |} log* | £(52)].

< 1 hence, because here p > 1/2,

Because 0; > (1 — sp) =

So

B; < |Bj| < q(1 = p)P p(s2){s*ca + 2s(p + 1)c1 + 2s(1 — p)cy + 4ea} log™ | f(s2)],
i.e.

Bj < qes(1 — p)P~lo(s2) log™ | f(s2)| < qeslr, (s2) Pi(s, 2),
with

g = {5%co +25(p + 1)ey 4+ 25(1 — p)ey + 4ey ).
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Finally set .

C(s,2) = (p+ 1) (1 = p)""h(sz)"{p — S1=0)) log™ [ f(s2)],
then

c<lp-2a-n|wr e

Integrating all these terms in D we get

T, (s) <c(s)Pp+(s). W
We set, taking the terms with log™ |f(s2)]|,

1
A_(s,2) = Ags(z)log™ | f(sz)] and T_(s, p) := / A_(s, pe®) and T_(s) ::/ T (s, p)pdp.
We set also : ’

s) = U F; CT.

JEI(sp)

‘ 1 —
We fix p < 1; for Vz = pe’ € T'; and §; < ﬁpls, then x = x’ = 0 hence h(sz) = 1— sp and we set

T (s,p) == / A_(s, pe'?), and T2 (s, p) ::/ A_(s, pe™).
T\F(p,s) F(p,s)
Recall that I(p) := {j eN:ud; >(1—sp)/(k+1)} and for j € I(p),
1

Vz=pe? €Ty, A;j = —q(g—1)(1 - p)P T h(s2)T2{s*(1 + X'65H)? + /)—()((5E N2} log™ |f(s2)].
This can be written

Aj = —qlqg = 1)(1 = p)"" h(s2)" Th(sz) "' x 05 {s* (1 + X H)* + %(XH’V} log™ | f(s2)].

Now we have two cases.

5.1 Case q < 1.

1—
Then, because h(sz) :=1— sp+ x(——— )51+5H > (1 — sp) we have h(sz)™* < (1 —sp)~* and

5]
Aj=q(1 = )1 = p)P"H (1 = sp) 'h(s2) " x & s’ (1 + X' H)* + %(XH/)Q} log™ | f(sz)].
Set .
5]1_6X”H —2s(p+ 1)(1 + X'0;H)+
s (L= )1+ XSH) = (1= )
This can be written:
Bj = q(1 = p)’h(s2)"{s*(1 = p) S~ 8%(1 —p)(L+X'05H)}log™ | f(sz)| —

By = q(1 - plPh(s2) " {s*(1 — p)

- (") Hlog™ |f(s2)].

J

5116 (xH")}log™ | f(s2)].

a1 = pPh(s2)" 2500+ 1)1+ O H) + (1= )
Group A; with a negative term in B, :
Cy = a1 = a)(1 = 97" (1 = ) h{s2)" A2+ P S P g |7 (52)] =
—2sq(p+ 1)(1 = p)"h(s2)"" (1 + xX'05H) log™ | f(s2)] .
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The aim is to show that, for p > 1 — v we have that C; <0, i.e.
(1= (1= 71 (1 = ) ()" (14 X HR 5 (TP} <
< 2s(p+1)(1 — p)’h(s2)" (1 + X'6:H)).
Because everything is continuous in s, we can make directly s = 1. So it suffices to show
(1- p)ph(sz)qflxéf-e{(l +XY'H)* + %(XH’)Q} < 2(1 — p)Ph(sz) (1 + X'5§-H)).
We have to prove
5]26{(1 +YxYH)*+ %(XH')Q} <2(1+ X'5§-H).

1
But recall that 1> (14 x'05H) > (1 - E) then (14 x'05H)* < (14 x'65H) so it remains to show

1
2e AV !/ c€
5O < (14 X5 H).
If p>1—~ and because |H'| <1+~ we get

1 1—7
§F = (xH')? < (——)*5%.
SO < (L

1-— 1 1-—
Now we use inequality (5.4): 67 < (ﬁ)%l - E) to get <ﬁ)25]26 < (1+ x/05H), and we are

done.
So we proved

Lemma 5.4 We have, for p >1—~ and q¢ <1,

A B; < Dy(2) = q(1—p)Ph(s2)T {2(1— p)

1—e¢
5j

a1 = ()" {5 (1 = p) i () og 1 (52).

x”H+S%(1—p)(1+X’5§H)} log™ | f(s2)| —

Now we have

1 " ]' /! S€ —
Dl < a(1 = p)Ph(s2)" H{s*(1 = p) = X"H] + 8;(1 —p)(L+X05H)}log™ | f(s2)| +
J
1 L
+q(1 —p)ph(SZ)q’l{;(l — P)5i=e IXH|}Hog™ [ /(s2)]
1—p 1—p ’

5 < k+ 1, we have ( 5,

|Dj| < (1= p)Ph(s2) {s*(1 = p)*(k + DXl + 8%(1 —p)tog™ [f(s2)[ +

1 ¢ _
+q(1 = p)"h(sz)? 1{;(1 —p) (k+ 1| H"|  log™ [ f(sz)]-
Recall we impose that for p < 1/2, x =0, so,
1D < q(1=p)"h(s2)” {1 = p)(k+ DIIX"llc +2(1 = p) +4(1 = p) (k + DI H"|| o} log™ |f(s2)] -
Which gives
Vj € I(p), |D;] < q(1 = p)"h(s2)"" (1 = p)(k + D{IIX"[| +2 + 4| H"[| }log™ | f(s2)] <
< coq(1 — p)"**h(s2)" " log™ | f(s2)].
We use again that (1 — p) < h(sz) = h(sz)™' < (1 —p)~! to get
D < coq(1 — p)*~**h(s2)"log™ | f(s2)] .
So we can apply the "substitution" lemma 10.4 in the appendix, and we get

and, because )< (k+ 1) and (1+ ¥'65H) <1, so

<
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¥ € (0.1, [ hlspe)log |f(spe)| <
T
Now we group the D; hence

> / |D;(pe”)| < csq(1 = p)P~ ”E/ h(spe’®) log™ | f(spe”)| <

]e[ F(S,p)

(1—p)

coa(l — p) e / h(spe?)log™ | f(spe’®)|.

So we proved

Lemma 5.5 We have forp>1—~ and ¢ < 1,
> / | D;(pe™)| < coq(1 — p)P~ 1+e/h(spew)qlog‘ | f(spe™)).

JEL(p)

It remains to control when p <1 —+, but we have
4,1 < ey (e7)q(1 — @) (1 — p)P h(spe™) T log™ | f(spe”)]
and from (1 — p) < h(sz), we get (1 — PP h(s2)7% < (1 — p)p 1h(sz)q SO
1451 < ey (e7)q(1 — @) (1 = p)P "' h(spe”) log™ | f(spe”)]
and, for p <1 — 7,
S [l eat ==t [ nlepeios |f(spe)].
jetp) 7 F Flee)
where h(sz) is the (smooth) extension of h = h; to the disc.
Now we use the "substitution" lemma 10.4 and we get

> / A< er2a(t = )= o0 [ hlope)rlog” | (spe),
]e[ F(S,p)
We proceed exactly the same way with

B, = q(1— p)Ph(s2)" {s(1 - p) =

X"H —2s(p+1)(1+ X'65H)+

51 e
(1= )1+ B ) - ;u = g O g 1752

So because (14 x'05H) > 0, we ignore the negative term:

a(1 = p)h(sz) ™ {=2s(p + 1)(1 + X5 H)},
and we get

1
By < Bl = q(1 — pPh(s2)t {521 — p) <" H+
1 (I
+5 ;(1—P)(1+X'5€- ) = (= p) = (XH")} log™ | f(s2)]
J
So still with (1 — p) < h(sz), we have
1B)| < caq(1 — ppP~Heh(sz2)7log” | (s2).
And we get
> / B < Z/ |Bj| < (1—p)"~ ”6/ h(spe’)?log™ |
F(s,p)

J€I(p) J€I(p)

So we have
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Proposition 5.6 We have, for ¢ < 1, for any v <u <1, and p < u,
S [ 4 B) < coes0.)1 = 9P [ hlspe)og” |F(spe)]
T

jelp) " F
And for q <1 and p > u > 7,

> [ B et - [  blape®)Tlog | £(spe)|.
F(s,p

. .
JEL(p) "

Proof.
We get the second assertion directly from (5.5). For the first one we use the "substitution'
lemma 10.4. W

!

5.2 Case q > 1.
Then A; <0 and can be ignored and it remains

B = (1 = p)Ph(s2)7 (1~ p) ok + s%u — o)L+ X'H)}log™ |f(s2)| -

—a(1 = pPh(s2)" 2500+ 11+ H) + (1= p) 5= (T o™ |/ (52)]

which, ignoring the negative term:
—q(1 = p)’h(sz)* " 2s(p+ 1)(1+ x'H)log™ | f(s2)|,
because (1 + x'H) > 0, leads to
Bj < q(k+ L)es(1— p)" h(sz)" " log™ | f(s2)],
1 1
with again ¢ := sup(|x"(¢)| + ~ + — [H"(t)]).
t p P
Using again (1 — p) < h(sz) we get
B; < q(k+1)es(1 — p)P~'h(sz)?1og™ | f(s2)].

Proposition 5.7 We have, for ¢ > 1, for any u < 1, and for any p > u,

> | Bj<eo(l- p)p”e/ h(spe’)'log™ | f(spe™)|.
jel(p)” i E(sp)

And for ¢ > 1 and p < u,
S [ B < e - e [ RGspetylog? | f(spe)],

jel(p) i T

Proof.
We have for any p < 1,
S [ By esatbr - [ hspet)og | f(spe)
jel(p) i E(sp)
which gives the first assertion.
We use the "substitution" lemma 10.4 to get

/Th(spew)qlog‘ | f(spe”)| < ((lip)
2

> B < el (1= Py [ Hopeiog” | spe)

JEL(p)

9

9

) /T h(spe”)log* | f(spe™)

hence

9
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SO

S [ < et 00— [ e yriog | oo
jel(p) i T
which proves the proposition. l

Finally set .
C(s,2) == =(p+ 1)(L = p)""h(s2)"{p - ;(1 —p)tlog™ |f(sz)].

2 11—
Proposition 5.8 We set p(p) := —— <= (1=p)

=p/2. Now fix u :: <wu <1, then
2o p p/ fixw: p(p) <

for any p > u > p(p),

C(Sapew) < -
F(s,p)
And for p < u,

C(s,pe) < (p+1)29(1 — p)p—l—th(sz)q log™ ‘f(spew)‘ .

N3

1) [ = e o | (ape")|

F(s,p)

Proof.
Because p > 0, the condition is valid and we have the first assertion.
For the second one we apply the "substitution" lemma 10.4 as we already did. B

Proposition 5.9 We have with T?(s,p) = / A_(s, pe®) that it exists u = u(p,q) < 1 such

F(p,s)
that:
o forp<u
72(5.9) < ol = " [ (spe)Tlog" | (5o
T
o forp>wu
T2 (s,p) <0.

Proof.

In the case ¢ < 1, we fix v < u < 1 and we have by proposition 5.6 for p < u,
> | (A +By) < coes(0,7)(1 = pp / h(spe)log™ | f(spe™)).
T

jel(p) 71
By proposition 5.8 we have for p < u with u > p(p)

/ C(spe”®) < (p+1)27(1 = p) ' / h(spe®)Tog* |f(spe™)|
F(s,p) T
So for p < u, with u > max(p(p), 7),

T2(s, p) == /F( )A_(s, pe®)df < cocs(0,7)(1 — p)P=a7! /T h(spe'?)1log™ ’f(spew)’+
0,8

o+ 1210 = 0 [ Bspeylog | f(spe)] <

< (1= p)Pt / h(spe”) log™ | f(spe”)|.
T
For p > u, still with u > max(p(p), ), we have by proposition 5.6
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2 / (4 + B;) < eaq(l = p)p_ﬁg/ h(spe’) log™ | f(spe™)],
J€l(p) Ei F(s,p)
By proposition 5.8 we have

Clope) < =B+ 1) [ (1 o Mhlspe)log” | lape™).

F(s,p) F(s,p)

Hence adding we get
12(5,p) < a1~ o) [ h(spe)log” |(spe)] -
F(s,p)

L0t [ hlspeyriog” | lepe).
F(s,p)

Now we choose 1 —u so small than cgq(1—u) — g(p+ 1) < 0 which is possible because € > 0, p > 0,

then we get
Vp >u >max(p(p), 7), T2(s,p) <O0.

Now if ¢ > 1 we have by proposition 5.7 because there A; <0, for p < u,

S [ (B < esttalh+ 10— g [ e Tiog? [ o)
jel(p)” ti T
and again by proposition 5.8 for p < u,

Clspe) < (p-+ 121(1 = o [ lspeylog™ | (spe”)].
F(s,p) T
Hence adding for p < u, with u > p(p),
T2(5.0) < (1= 9" [ (spe®yt1og” |7 (spe”)].
T
For p > u, by proposition 5.7 because there A; <0,
Yo (A4 +B) < el p)pm/ h(spe”)"log™ | f(spe)|.
jer(p) ’ i F(sp)
By proposition 5.8 we have for p > u > p(p),
C(spe”) < —g(p +1)(1 - p)’”/ h(spe”)tlog™ | f(spe)| .

F(s,p) F(s,p)
Hence adding we get

T%(s,p) < co(1 — P)pHe/ h(spe’) log™ | f(spe')|—

F(s,p)
p . Wt i
B 0= pr [ hspeyriog” | lepe).
F(s,p)
Now we choose 1 —u so small than coq(1 —u)— g(p+ 1) < 0 which is possible because € > 0, p > 0,

)

then we get
Vp >u > p(p), T%(s,p) <0,
This ends the proof, with suitable constants. B

Now we have to deal with

T (s, p) == A (s, pe).
T\F(p,s)
Here we have g,(z) = (1 — p)’™(1 — sp)? so

25



Agy(z) = (g — 1)(1 = p)" (1 = 5p)"2 + q(1 — p)"(1 — sp)T{2s(p + 1) — s%a — o)+

_ 1
+p+ 1)1 —p)P (1 —sp)"{p - S=0)}
So we have |
A_(s,pe”) = =B(s, p)log™ [ f(s2)| + {g(1 = p)’(1 - 5,0)"‘18;(1 —p)+
_ 1 _ ;
Hp+ DL =) (1= sp)"{ (1= p) = p}log |f(spe)]
where —B(s, p) log™ ‘ f (spew)‘ is negative so it can be ignored. For the positive ones, because of

the s—(1 — p) we can proceed as above using the fact that p > 0 and we have

T(s,p) = / A_(s,pe?) < ca(1 — p)P? / o(spe) logt }f(spew)’.
T\F(p,s) T

So we proved

Proposition 5.10 We have
T'(s,p) < cua(1 = p)" / p(spe’)log™ | f(spe”)|.
T

And the proposition

Proposition 5.11 We have:

/D A(s,2) < c(s) / (1 2P o(s2) log* | f(s2)].

Proof.
We have just to add and integrate 7! and 72. B
Now grouping all the terms, we proved

Theorem 5.12 We have
Vs < 1, Z gs(a) = / log | f(s2)| Ags(z) < 015/ (1 — |z])P" h(sz)?log™ |f(s2)].
D D

a€Z(fs)

so we are lead to

Definition 5.13 Let E = E C T. Set o(z) = h(2)?. We say that an holomorphic function f such
that |f(0)| =1 is in the generalised Nevanlinna class N, ,(D) for p >0 if 36 > 0, § <1 such that

£y = s [ (1= (s og" 7 (s2)] < .
—0<s<1lJD

And we proved the Blaschke type condition, using lemma 10.6 with ¢(z) = h(2)? :

Theorem 5.14 Let E = E C T. Suppose ¢ > 0 and f € N, ,(D) with |f(0)| =1, then
S (1= [a?)*Pp(a) < (@) flLx....

acZ(f)
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Corollary 5.15 Let E = E C T. Suppose ¢ € R and f € Ny gyap(D) with |f(0)] = 1, then,
Ve > 0,
Z (1 — |a*)"Pd(a, B)@+0+9) < ¢(qp, €)||f||Nd(.,E>q,p'
acZ(f)

Proof.
By lemma 5.1 we have d(z, E)'*¢ < h(z) < d(z, E), so we get for ¢ > 0, Hf”/\/h(,)qp < ”fHNd(, .
and d(a, E)'*¢ < h(a).

For ¢ <0 = (¢)+ =0 and we have to see that [[fly, < Hf”/\/d(. oy _which is given by the same
proof as for corollary 4.5. B

6 Case E infinite and p = 0.

This time we have g,(pe) = (1 — p)h(s2)?. So, because g, = 0 on T,
> aua) = [ oglf(s2)| 20u(2) — [ log 7 (se™)] Qugu(e).
D T

acZ(fs)
Here we have 0,,g5(2) = —h(s2)? + (1 — p)0,(h(sz)?), hence, on T, 0,9s(z) = —h(sz)?. So

Vs < 1, Z gs(a) = /Dlog\f(sz)\ Ags(z) +/Th(sew)qlog | f(se™)].

acZ(fs)
With the definition of h(z) and with I(p) := {j € N:: §; > (1—p)/(k+1)}, we have, for z = ¢ € T,
Vi€ I(s), V0 € Fy, h(se®) =1— s+ X(%S)a;ﬂﬂ(e/aj) :
J

and
Vi ¢ I(s), V0 € Fj, h(se”) =1—sand V0 € E, h(se?) =1 — s.

So we set

T(s):= /Th(sew)qlog | f(se™)] =
= /Th(seie)qlogJr }f(sew)} - /Th(sew)qlog_ }f(sew)} =T (s) —T_(s). (6.6)

We shall proceed the same way as in section 4. We shall set
Prolto) = sup [ h(se"y"log” [1(se™)]
1-6<s<to JT
and

Pr_(ty) == sup /Th(sew)qlog ‘f(seie)‘.

1-6<s<to
Because ~(s) := /h(sew)qlog_ ’f(sew)’ is continuous for s € (1 — §,¢y) by lemma 10.3 in the
appendix, the sup iq; achieved for a sy € [1 — 9, o] and we have
Pr_(ty) = / h(soew)qlog* }f(soew)} do.
T
The proposition 5.2 gives, with p = 0,
Agu(2) = ala = (1 = ph(s2)" 1+ HP + S (001 +
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+qh(sz)" {=s*(1 - p)

5176)(”H + 2s(1+ X'5§H)—
J

1 1 1
—S;(l —p)(L+X'05H) + ;(1 — P

We set, taking the terms with log™ | f(s2)],
A4(5,2) = Dga(2)Tog™ [f(52)] < [erglg — 1) (1=p)(52)7 >+ eagh(s2)T +2h(52)7 log™ | F(57)]

my 1 52)?
(xH")} ph( ).

with

= (A A 5 e im [+ 200+ WD + (U I + 4IE]).
But using (1 — p) < (1 — sp) < h(sz), we get

A3(5,2) < [ g — 1 (s2) 1 + eagh(s2)7™ + h(s2)7]log™ |f(s2)] <

< csh(sz)T M logh | f(s2)| + h(sz)log™ | f(s2)],

with ¢3 := ¢1q|q — 1| 4+ c2q. Then we get

Ay (s,2) < (c3+ h(s2))h(s2)? log™ | f(s2)].
We set also

Pousls)i= [ hs2) log" [ (s2)] dm().
So we proved .

Proposition 6.1 We have
[ 108 1£52)1 804(2) < CPos(5)
D
with C' = c3 + 4.

We set, taking the terms with log™ |f(sz)|, A_(s,z) = Ags(z)log™ |f(sz)| and T_(s,p) =
1
/A_(s,pew) and T_(s) ::/ T (s, p)pdp.
T

0

1—
We fix p < 1; for Vz = pe’ € T'; and §; < ——
e fix p or Vz = pe’ an l{:—i—l

)= [ Al and g = [ A,
T\F(p,s) F(p,s)
Recall that I(p) :={j € N §; > (1 —p)/(k+1)} and for j € I(sp),
_ . 1 . _
e = pet €1, Ay = =gl = (1= ph(s2)" s+ OH) + S (00 log (2]

This can be written |

A; = —alg = (1= ()" h(s2) X0 {5H(1 + ) HP + () log | (52)]
Now we have two cases.

e Case ¢ < 1.
Using proposition 10.4 with p = 0, we get, for ¢ < 1, for any v < u < 1, and p < u,

, then x = X" = 0 hence h(sz) = 1—sp and we set

Z / (A; + Bj) < coc3(0, )(1—p)ql/h(spew)qlong’f(spew)’. (6.7)

]EI T

And for ¢ < 1 and p > u > 7,

3 / (A; + B;) < ceq(1—p)~ ”6/ h(spe’®) log™ | f(spe™)]. (6.8)

jel(p) E(s:p)
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e Case ¢ > 1.
By proposition 5.7 we get for ¢ > 1, for any v < u < 1, and p < u,

S [+ B) < an@)(1- 9 [ Bpeylog” [ 1(spe)|. (6.9)
jel(p) T T
And for ¢ > 1 and p > u > v,
> [ ) <t — [ bspety o[ fspe). (6.10)
jel(sp) i E(sp)

We shall integrate in the disc for s < t¢y,. We get
e Case ¢ < 1.
We have:

J R e L O R A O}
D D(0,u) D\D(0,u)
s0, by (6.7),

u

Ai(s,z) S CGQ/'

(1= )71 Bspeytiog™ | spe) odp <
0 T

D(0,u)
< 0661/ (1= p)"""pdpPr i (to) < c6(1 — u)~"Pr i (to).
0
And, by (6.8),

1
[ At e [ @-p ) hlepeyhos [ f(spe) oo <
D\D(0,u) . u F(s,p)
< CﬁQ/ (1—p)""pdpPr,_(ty) < 06%(1 —u)Pr_(to).

u

And with C(s, 2) == h(spew)q1 log™ | f(spe”)| we have /C(s, z) = / C(s, 2)+/ C(s,2),
P D D(0,u) D\ D(0,u)

/D(o,u) Cls.2) < /Ou {/11‘ h(spe’)?log™ ’f(b“pew)’}pdp.

But by the substitution lemma 10.4, we get
[ speymiog” | spe™)| < clu) [ Blopeylog” [ F(spe)| < )Pt
T T

hence

/ C(s,z) < c(u)Pr(to) /u dp < c(u)uPr 4 (to). (6.11)
D(0,u) 0

And
1 _ ! i - i
[ ca= [ hsertos I(s2) = [ dof [ (speyriog” | spe)|} <
D\ D(0,u) D\D(0,u) P u T

< (L —u)Pr,_(to). (6.12)
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So finally for ¢ <1, we get
W_(to) S (]_ - U)Pm_(to) + Cﬁg(l - U)EPTv_(to) + 06(1 - U)_qp'm_,_(to) + C(U)P']I‘,—i—(tO)-

e Case ¢ > 1.
We have:

Aoz e[ A,
D D(0,u) D\D(0,u)
so, by (6.9)

AL(s,2) < caca(0.9) [ (1= )70 [ Blspe)1og” [ 1 (spe)| oo <

v 1
< 0903(07’7)PT,+(t0)/ (1—p)" " pdp < 0903(07’7)]311+(t0)5(1 —u)" 4.
0

D(0,u)

And, by (6.10),
1
[ atsa e [ @-p e[ nspe)ion |f(spe) oo <
D\D(0,u) u F(s,p)

Sear [ (L= p) oy (1) < 61— P (1),
And again with
C(s,2) = h(spew)ql log™ }f(s,oew)’
we have by (6.11) and by (,06.12)
C(s, z)dm(z) < c(u)uPr 4 (to) + (1 — uw)Pr _(to).
So ﬁna]]f)ly for ¢ > 1, we get
W_(ty) < (1 —u)Pr_(to) + 06%(1 —u)Pr _(to) + c(u)uPr 4+ (to) + coc3(0, v)é(l —u) "Pr (o).

Now we have to compensate the terms in Pr _ () and this can be done only by 7" in (6.6). So
recall T_(s) := / h(se”)"log™ | f(se”)| and there is a sq € [0, o] such that:
T

Pr_(ty) := sup /Th(sz)qlog_ }f(sew)} do = /h(soz)qlog_ }f(soew)’ do.

0<s<to T
As in section 4, the idea is to consider, for ¢y € [1 — 9, 1],

S(s,te) =Y (I—laph(sa)? + Y (1 —la|)h(soa)".
acZ(fs) aEZ(fso)
We get

Y(s,t0) <20Pp +(s) + 2¢6(1 —w) "Pry(to) + 20(u)%PT7+(tO)+
+2(1 — U)Pm_(to) + 206%(1 — U)EP'IR_(tQ) + T+($) + T+($0) — T_(S) — T_(So).
But
T (s0) = /T B(s0c®)log™ | f(s06”)| = Pr._(to),

so we take u < 1 such that 2(1 —u) + 20(;@(1 —u) < 1, which is possible because € > 0, so we get
€
X(s,to) < CiPr1(to) +2CPr 4 (to),
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with the constants C', C) independent of ty. So we get with s = %,
Y (1= laDhltea)” < C1Pr i (to) + CPo,(to),

a’eZ(ft())
hence, using lemma 10.6 with p(z) = h(2)97!, ¥(2) = h(2)4, we get

Y (1—la])h(a)? <

acZ(f)
<(C; sup /h(sew )9 log™ | f(se”)| + C  sup /h(sz)q1 log® |f(s2)],
T D

1-0<s<1 1-0<s<1
and the following definition and theorem.

Definition 6.2 Let E = E C T and ¢(z) = h(2)?. We say that an holomorphic function f such
that |f(0)| =1 is in the generalised Nevanlinna class N, o(D) if 36 > 0, 6 < 1 such that

o= s [ oy 1og™ [F(spe)| + sup [ pls2)n(s2) o 1 (s2).

1-6<s<1JT 1-0<s<1

We proved the Blaschke type condition.

Theorem 6.3 Let E = FE C T and suppose ¢ > 0 and f € N, (D) with |f(0)| =1, then
Y (—=la)e(a) < e(@)lfll, -

acZ(f)

Corollary 6.4 Let E=E C T and suppose ¢ € R and f € Ny pyao(D) with |f(0)| = 1, then

2 €
Y (=laP)d(a, BYD+ O < c(0, ) fllnry pyan:
acZ(f)

Proof.
This is the same proof as for corollary 5.15. B

7 The mixed case.

We shall combine the case of the rational function R(z H z—m;)%, ¢; € R with the case of
7=1

the closed set £ C T to which is associated the function h(z).

For this we shall consider ¢(z) := |R(sz)|2 h(sz)? and g,(2) := (1 — p*)"*Pp(s2).
We make the hypothesis that Vj = 1,...,n, n; ¢ E. We set 2y := min;—y __, d(n;, E) then we have
that p > 0.

Because

Agy(z) = Al(L = [2[)" (s2) + (1 = |21)P+ Alp(s2)] + 8RIO((L — |=*)7*)D((s2))],

.....

and
A[(lp((zz)] = s2h(s2)IA[|R(s2)[*|h(s2)? + 52 |R(sz2)|” A[h(s2)1] + 85*R[0 | R(sz)|* xd(h(s2))],
we are lead to set:
Av= S R(s2)P AL — 2P (52, Ay o= (s Al — 2P R(s2) P
Al(1 = [P ]p(s2) = A1 + As.
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And
Az = (1 — [2])P1s?h(s2) A[|R(s2) ] h(s2)
Ay =82 (1= [2")P7H [R(s2)|” Alh(s2)"]
Az = 85(1 — |2]*)PFIR[D | R(s2)|* xA(h(s2))]
A = 8h(s2)"RIO((1 — [2")" ) O(|R(s2)[")]
A7 = 8|R(s2) RID((1 — |27 (h(s2)7)] ;
and we get
AgS(Z) :A1+A2+A3+A4+A5+A6+A7.
It remains to see that grouping these terms in the right way, this was already treated by the finite
case or by the infinite one.
As usual now we group the terms containing log™ | f(sz)| and we set

7
Ay(s,z) = ZAj log® |f(s2)].
j=1

Set
Py(s,z) = (1= |2)P"" [R(s2)[” h(s2)?log™ | f(s2)],

and

Pp 4 (s) ::/DPJr(s,z)dm(z).

Proposition 7.1 We have:
/A+(Sa z) < ey Py (s).
D

Proof.

We first group the terms
By = Aylog" | f(sz)| + Aglog™ | f(s2)| + Arlog™ |f(s2)],

these terms contain no derivatives of |R(sz)|* and so verify proposition 5.3 with P, (s, z), i.e. that
/Bl(s,z) < c1(s)Pp +(s).

D
Now we group the terms
By := A;log™ | f(s2)| + Aslog™ | f(s2)| + Aglog™ |f(sz)],

these terms contain no derivatives of h(sz) and so verify proposition 3.2
By(s,2) < coPpy(5),

D
with the same Pp 4 (s).
So it remains Aslog"t |f(sz)| but again the homogeneity is the right one and we get

[

Now we group the terms containing log™ | f(sz)| and we set

7
A_(s,z) = ZAj log™ | f(sz2)].

Proposition 7.2 We have:

/DA<572) < cePp ().
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Proof.
We first group the terms
By = Arlog™ | f(sz)| + Aslog™ | f(s2)| + Arlog™ | f(s2)|,
these terms contain no derivatives of |R(sz)|* and so verify proposition 5.11:

[ B2 < s o),

D
still with the same Pp . (s).
Now we group the terms
By = Aylog™ | f(s2)| + Aslog™ | f(s2)[ + Aglog™ | f(s2)],

these terms contain no derivatives of h(sz) and so verify proposition 3.3:

/DB2(372) < ¢oPp 4 (s).

So it remains Aslog™ |f(sz)|, and, in order to separate the points, we consider:

<0} ; G::OGj.

Jj=1

Vi=1,.,n, G;:={2€D= 'ﬁ—nj
z

Then we have

Lemma 7.3 There are two constants a(u), b(u), just depending on p, such that:
Vz € G, Oh(sz) ~ a(u).

And
Vz & G, |R(sz)|” =~ b(p).

Proof.
Recall that

, 1—
hlpe”) i= 1= p o+ x(=5 )3 H(6)9).
then an easy computation gives Vz € G, 0h(sz) ~ a(p) because z is far from E.
And with R(z) = H (2 — ;)% again an easy computation gives Vz ¢ G, |R(sz)|” =~ b(u) because
j=1
z is far from U {n;}. A
j=1
We can treat the Aslog™ |f(sz)| term easily now ; recall
Aslog™ | f(s2)] = 85*(1 — |o[")""'RIO | R(s2)|” x(h(sz)")]log™ | f(s2)] ;
cut the disc D = G U (D\G), so

[ Avtog 17662 = [ Astog” Ip(s2)| + [ Astog” £(s2)]
D a D\G
On G we have, by lemma 7.3, Oh(sz) ~ a(p) and we win a (1 — |2|*) so we can apply the

substitution lemma 10.4 to get
[ Aslog” 1£(52)| < s ().
el

On D\G we have, by lemma 7.3, & |R(s2)|* ~ b(u) and we win again a (1 —|z|*) so we can apply
the substitution lemma 10.1 to get

[ Astog1(s2)] < P (o),
D\G

33



so finally we get
A_(s,2) < cPp+(s),
)
which ends the proof of the proposition. B
So we are lead to

Definition 7.4 Let E = E C T and R(z) = H(z—nj)qf, ¢ € RwithVj =1,..n, n ¢ E.
j=1

Set o(z) = |R(2)|” h(2)7. We say that an holomorphic function f such that |f(0)] = 1 is in the

generalised Nevanlinna class N, ,(D) if 30 > 0, § <1 such that

1 fllnz,, = sup /(1—|Z|)p1@(82)10g+|f(52)|-

1-d<s<1 JD

And we have the Blaschke type condition, still using lemma 10.6 from the appendix, with p(z) =

[R(2)|” h(2)" -

Theorem 7.5 Let E = E C T and R(z :H (z—m;)%, g €R, ¢; >p/4, withVj=1,..n, n; ¢
7j=1

E. Suppose ¢ > 0 and f € N, ,(D) with |f(0)] =1, then
Y. (1 =la)"*e(@) |R(@)* < (@)l £l

a€Z(f)
As for the case of the rational function R only, we get the
Corollary 7.6 Let E = E C T and R(z H —n;)¥, ¢ € R, withVj =1,..,n, n; ¢ E.
7j=1

LetVj =1,..,n, if ¢; > —p/2, §; = q; else choose §; > —p/2 and set R(z) == H(z — nj)qj, and
j=1

©(2) = |R(2)| h(2)7, ¢(z) = |R(2)| h(2). Suppose ¢ > 0 and f € Ny p(D) with |f(0)] =1, then
> (=l *@(a) < (@ flly,,-
a€Z(f)
Corollary 7.7 Let E = E C T and R(z H nj)%, ¢ € R, withVj =1,..,n, n; ¢ E.
7j=1
LetVj =1,..,n, if ¢ > —p/2, §; = q; else choose §; > —p/2 and set R H zZ— ;) j, and
o(z) = |R(2)]d(z, E)Y, ’R ’ (z, E)9+09 Suppose f € N, (D) wzth |£(0)] =1, then
> (1—la )1“’906( ) < el Ol fllw,,
ac€Z(f)
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Proof.
Still using that d(z, E)'*° < h(z) < d(z, E) by lemma 5.1, and copying the proof of corollary 6.4
we are done. W

We proceed exactly the same way for the case p = 0 to set, with ~ Z lg;] |2 — nj] -1

Definition 7.8 Let E = E C T and R(z) = H(z—nj)qf, ¢ € RwithVj =1,...n, n; ¢ E.
j=1

Set o(z) = |R(2)| h(2)?. We say that an holomorphic function f such that |f(0)| = 1 is in the

generalised Nevanlinna class Ny o(D) if 30 > 0, 0 < 1 such that

1Fllx, o = sup /T%"<S€w>10g+\f (se)[ + sup /Dw(Z)v(z)h(z)llogﬂf(z)\-

1-d<s<1 1-d<s<1

And we have the Blaschke type condition, still using lemma 10.6 from the appendix, with ¢(z) =
[R(2)|” h(2)7(2)h(2) " and ¢ (2) = |R(2)|" h(2)" :

Theorem 7.9 Let E = E C T and ¢ as above. Suppose ¢ > 0 and f € N, (D) with |f(0)] =1,

then
> (1= laP)e(a) [R(@)]* < (@) flly,,-

acZ(f)

Corollary 7.10 Let E = E C T and R(z) = H(z —n)%, ¢ € R, withVj =1,...n, n; ¢ E.

j=1
Suppose p(z) := |R(2)| d(z, E)? and f € N,o(D) with |f(0)| = 1, and set R(z H (z—mn;) )@+
7=1
then )
Z (1 _ |a|2)d(a, E)(Q)+(1+E) R((J,)‘ S C(QO, E)HfHanO
aeZ(f)
Proof.

Again using that d(z, E)'™ < h(z) < d(z, E) by lemma 5.1, and copying the proof of corollary 4.5
we are done. H

8 Application : L estimates.

8.1 Case E finite.
We shall retrieve some of the results of Boritchev, Golinski and Kupin 3], [4]-

D
Suppose the function f verifies |f(z)| < m with R(z) := H (z —m;)¥.
7=1

We deduce that |R(z)|log|f(2)| is in L'(T) with a better exponent of almost 1 over the rational
function R. Precisely set
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Ve >0, R( ﬁ )BT

7=1
we have:
: : D : - .
Lemma 8.1 [f the function f verifies |f(z)| < exp R0 with R(z) = H (z —n)%, we have
z
j=1
Ve > 0, / ’Re(ew)} log™® ’f(ew)’ < DC(6,¢).
T
Proof.
The hypothesis gives |R(z)|log™ |f(2)| < D and
Re(2) ﬁ (2 = m) ﬁ -1
| =y
IS S PR TR §
S0
R(z & e
B2 log" 17(2)) < TS D < DT (2 = m)
j=1

Because the points {7;} are separated on the torus T by § > 0 say and |z —n;| '™

for the Lebesgue measure on the torus T because € > 0, we get:

“]; Y “R 5 ‘log*‘f & <D/H‘ew—nj‘ 1JFE<DC’(<5 ). &

Then we have:

is integrable

D
Theorem 8.2 Suppose the holomorphic function f wverifies |f(2)] < exp with

(1= |2l |R()]

H z—n;)¥, q; € R, then we have:
7j=1

(z =) % and we get:

=

forp=0, we set R(z) ==

> (1= la) |Re(@)

a€Z(f)
Forp>0, Vj=1,...n,if ¢y — 1 > —p/2 set §; = q; else choose §; > 1 — p/2, and set Ry(z) :=

H (z—n,)%", then:

j=1
Ve>0, > (1—|a])tr*e
acZ(f)

<.
I
—

IA

Dc(e,p, R).

E’o(a)‘ < De(e, R).

We shall cut the proof in two cases.
e Case p = 0.

We shall apply the corollary 4.5 with R, instead of R.
To apply corollary 4.5 we have to show that
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sup/ |R(s2)| s log* | f(s2)] <
s<1 JD

sup/}R se’ ’log’L}f se’ } < 00.
The hypothesis gives |R(2)|log™ |f(2)] < D so we get

|Re(sz)|log™ | f(s2)| < D] It — sz,

j=1

SZ)) _ H (1 - SﬁjZ)_H_E,

> gz —m)!
j=1

and

because, as already seen,

so we get:

[Re(s2)| Y |1 = stz log™ [£(2)] < 2D Jq] > T (11 = smyz| ™) |1 — stz
k=1 k=1 j#k
Because the points {7} are separated by 6 and |1 — 77jz|72Jre is integrable for the Lebesgue measure
on the disc D because € > 0, we get:
SUP/ [Re(s2)] 5> lg;| [T — 5752 log ™" | fo| dm(z) < 2D |g| (6, €).

s<1

—24€

Now to apply corollary 4 5 we need also to compute

‘ . R.(se)
/1r ‘Re(sew)‘ log™ ‘f(se“g)‘ < ‘|R(7“"‘

SD/ ‘H(l_sﬁjeie)lJre‘.
T |55
_ ig‘flJr

Again the points {7} are separated by § and ‘1 — n;e
on the torus T because € > 0. So we get:

sup [ [Ru(se”)|log" [ £(s¢)] < c(6. )
s<1 JT
which ends the proof of the case p = 0.

‘Rse ‘log*‘f se' \g

© is integrable for the Lebesgue measure

e Case p > 0.

We shall show that Ve > 0, f € Ng, (D). For this we have to prove:

1 e = 5000 [ (0= P4 ot g 1£(s2)) < o
s<1 D

D
< ex we get
=P U s P Ry

I(s,€) = / (1= |27+ |Ros2) log" [ f(s2)]) < / (1 o2y

et pre1|Bo(52)] D
s/Du P (1_‘842)1,.

H (1 — s7;2) 7%, s0 we get, because Vs < 1, (1—|z]%) < (1—|sz|*),
7j=1

Because |f(sz)]

| Ro(s2)]|
| R(s2)]

| R(s2)|log™ | f] <

Now, as already seen,
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[(s,e)gD/(l—M 61H1—s77] )L
D =1

ji
Now we apply lemma 10.5 with p = € to get

sgg)/ (1 —|sz]?) " H (1 —si;2)"" < cfe,6).
s<1Jp

j=1
Hence

”fHRo,ere < DC<€7 5) = f S NRo,p+6<D>'
But then corollary 3.8 gives that

> (1= 1a)" 7 [Ro(0)] < Clfllgy e < CDele,0),

a€Z(f)
which ends the proof of the theorem. W

8.2 Case F infinite.

Again we shall examine two cases.
e Case p > 0.

Let E = E C T ; we define its Ahern-Clark type a(FE) the following way:
a(E) :=supla e R: |{t e T::d(t,E) < x}| = O(x%), © — +0},
where |A| denotes the Lebesgue measure of the set A.
Our hypothesis is
K 1

1 <
e = G at By
We want to apply corollary 5.15 so we have, with ¢(z) 1= d(z, E)?F)+<
Z (1- |a|2)1+pd(a, E)(q—a(E)+e/)+(1+e) < ¢(p, q, G)Hf”/\/w

acZ(f)
and we shall compute |[|f|. , ie.

il = sup [ (1= oo B dog* |£(s2)

1-6<s<1
The hypothesis gives

VzeD, log" |f(2)| <

z€D, p,g=0.

K 1
(1= |2/ d(z E)i(z)’

so we have

/( |z| Y ld(sz, E)4™ AE)+e log® |f(s2)] < K/ (1-— |z\ ) Yd(sz, E)~ a(B)

We set I'), := E, x(1—=27", 1) and 7,, := I',\[';,11. Then we get
/<1 — |Z|2)6/*1d(827 E)~® = Z/ (1= |2 d(sz, B)™®) <
D

neN v In

Z 9= (¢ 1)n2na(E)/ (Z) < Z 2—(5’—1)n2na(E) |En‘ 9 _ Z 2—e’n — (¢

neN neN neN
because € > 0.

So corollary 5.15 gives
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2 —« € €
Z (1—|al )de(a, E)(q (E)+e)+(1+e) < c(p, q, E)HfHNW’

a€Z(f)
hence we get

Z (1- |a|2)1+pd(a’ E)(q—a(E)+e/)+(1+€) < ¢(p, q, G)HfHN(p,p < Ke(é)e(p, g, €).

acZ(f)
So we proved:

Theorem 8.3 Suppose that f € H(D), |f(0)| =1 and
1
Vz e D, logh |f(2)] <

(1—[z*)pd(z E)T
then we have, with €' := € + €(q¢ — a(E) + €') which can be chosen as small as we wish,
> (1=laf)"*7d(a, B) T < o(p,q, e)e(¢) K.
a€Z(f)
e Case p > 0.

For this case we want to apply corollary 6.4 So let
VzeD, log"|f(2)| < K
We have

d(z, E)?

Theorem 8.4 Suppose that f € H(D), |f(0)| =1 and
D, log™® < K——F7-+-—
Ve €D, log” ()] < Ko

>- (1= laP)d(a, Y@ < (g, K.
acZ(f)

then

Proof.
We have to verify
sup /d(seie, B)1Et 10g™ | f(se')| df < oo
1-0<s<1JT
and

sup /d(sz, BB+ 60 | f(52)| < 0.
D

1-0<s<1
For the first one, we have

/d(sezg E)q a(E)+€ 10g+ ‘f 8620 < K/ 8620 E)e oz(E)
Set B, :={zx € T:d(zx,F)>2"}and F, := E,\E,+1. we have
/d(se”,E)E —B)gp = Z/ d(se’e )e e d9<Z/ ——a®)gg <

T neN Fy neN

Z 2—n(e/—a(E))/ do < Z 9= ne’

neN neN
by the very definition of a(E) and because € > 0.

For the second one we set ['), := E,x(1 —27", 1) and v, := [',\['41.
We get
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/d(SZ By gt | f(s2)] = / d(sz, B)T 0B =14 100t | f(s2)| < / d(sz, B) W1,
D

D
Z / 52, B/~ < 37 / gl =alB)-D) < 37 gonie=a(E)-D / dm(z) <
neN neN neN Tn
22 n(@=alB)-D | B x(2 22 ne
neN neN

because € > 0. We end the proof as in the case p > 0. B

9 Mixed cases.

As in section 7 we can mixed the two previous cases and we get, by a straightforward adaptation
of the previous proofs,
Theorem 9.1 Suppose that f € H(D), |f(0)| =1 and

1
Vz e D, log" |f(z
€D, log™[f(2)] < TP |2)p|R(z)|d(z,E)q’

with p > 0, and R(z H z—mn;)%, ¢ €R,if ¢ —1> —p/2 set §; = q; else choose §; > 1—p/2,
7=1
and set Ry(z) := H (z —n;))%7", then we have, with € > 0,
j=1
S (1= [aP) | Rofa) | d(a, BYO P9 < c(p,g, R, B, K,

a€Z(f)

And

Theorem 9.2 Suppose that f € H(D), [f(0)| =1 and
VzeD, log"|f(2)] < K

|R(2)]d(z, E)*

with p =0, and R(=) = [] (= = m)%, ¢ € R, set Re(z) = [ (= = my) @49+
j=1 j=1
then, with € > 0,

1%6(@)) d(a, E) B9+ < c(q R, E, K.

10 Appendix.

Lemma 10.1 (Substitution) Suppose § >0, 0 <u <1 and |f(0)] =1, then
1
/ (1= [2*)" 77 [ R(s2)Plog™ [ f(s2)] < (1= u)’ =Py _(s) + (6, u) P4 (s),
D
with c(6,u) == 2x414(1 —u)=*F .= -2 max (0,—q;), f:=2 max (g5),
j= n j= n

T Ly

and Py_(s) = / (1= |22 |22 |R(s2) P log™ | f(52)], Pos(s) == / (1~ 227 [R(s2) Plog™ |f(s2)].

D
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We also have:

vt € [to, 1], / (1= =) [Rtpe”) [ log™ |£(12)] < (0, ) P (1) + (1~ va)' o (1),

with
Pr . (ty) == sup / ‘R(sew)‘2 log™* }f(sew)} do
1-0<s<to JT
and
Pr_(ty) := sup ‘R(sew)‘z log™ }f(sew)} do.
1-0<s<to JT
Proof.

Because this lemma is a key one for us, we shall give a detailed proof of it. We have

A= [ By IR og 162 = [ (= P R g 1)+

D(0,u)
*/ (1= |22~ |R(s2) log™ | f(2)| = B + C.
D\D(0,u)
Clearly for the second term we have
C = (1= 2" [R(s2)[*log ™ | f(s2)] <
D\D(0,u)
1 _ _
(1—u”) 2/ (1= 127" |21 [R(s2)|*log™ | f(52)].
U™ JD\D(0,u)
For the first one, we have
Bim [ (el R g If(s2)

D(0,u)
and, changing to polar coordinates,

B_/ (1—p*)P~ 1”{/‘R spe’ } log™ | f(spe”)| db}pdp.
0
We set o
M(p) = sup |R(pe”)|" < 4¥(1 — p)72mmo=rn (00,
feT

because we have |z —n;| <2 and }peie — nj} > (1—p).
So we get

Clsp) = [ IR o™ 7(s2)] < M(sp) [ Tog™ |spe)| < Msp) | Tog™ | (spe)|

T
because log |f(z)| is subharmonic, we get

0 =log|f(0)] < /Tlog }f<5/)€i€)} = /TlOng ’f(spe”’)’ — /Tlog_ }f(spew)}.

So we have
C(sp) < M(sp) /TlogJr }f(spew)‘. (10.13)

Now we set m(p) := éanr ‘R(pew) }2 and the same way as for M(p), we get m(p) > (1—p)2maxi=t.n (@),
€
Putting it in (10.13), we get

C(s,p) < M(sp)m /‘R spe’ ‘ )| log™ }f spe’ } (10.14)
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We set

with
Now we have

B< / (1= p*)P=C(s, p)pdp, (10.15)
0

hence B < ¢(0,u)Pp 4 (s).
Adding B and C gives the first part of the lemma.

For the second one, from the definition of C' with p = 0,
Cim [ (el Rl o 1£(52)
D\D(0,u)

we get passing in polar coordinates and with s € [1 — 4, o],

1
_ o 2\6-1 i0\|27 . — i0
c=[a-p /Tl\pre )P log™ | £ (spe™)| ddpdp

1
< Pr(t) [ (1= pdp < 51— V)P Pr (1)
Now from (10.14) and (110.15) we get

u

B < Prol)el0.0) [ (1= 2P pdp < Pr (t0)e0,0).
0
Adding C with B we get the second part of the lemma. B
n 1

Lemma 10.2 Let n € T, then we have R(Z(z —n)) <0 iff z € DN D<§’ 5)

Proof.
We set z = nt, then we have

Z(z —n) =nt(nt —n) = t(t = 1).
Hence
R(Z(z—n)) = R(EE —1)) = R(r* —re?) = 1% — rcosh.
Hence with t = = + iy = re® = rcosf, y = rsinf, we get
REt—-1)<0 &= 2> +y* -2 <0 '
N

11
which means (z,y) € D<§’ 5) hence z € DN D<§’ 5) |

Lemma 10.3 Let ¢ be a continuous function in the unit disc D. We have that:
s <t€]0,1[— y(s) == /gp(sew) log™ | f(se")| d6

T
is a continuous function of s € [0,t].

Proof.
Because s < t < 1, the holomorphic function in the unit disc f(se) has only a finite number of
zeroes say N (t). As usual we can factor out the zeros of f to get
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N

f) =[] (== a)g(2)

j=1
where g(z) has no zeros in the disc D(0,¢). Hence we get
N
log | f(2)] = log|z — a;| +log|g()|.
j=1

Let aj = r;e*, r; > 0 because |f(0)| =1, then it suffices to show that

v(s) == /cp(sew) log™ ’seie - reio‘} do
T

is continuous in s near s = r, because /cp(se’e) log™ ’g(se’e)’ df is clearly continuous.
T

To see that y(s) is continuous at s = r, it suffices to show
v(sn) = v(r) when s, — 7.

But
VO £ 0, p(se”)log }seie - r’ — p(re”) log ’reie — r}
and log ——— < ¢ |se® rre with € > 0. So choosing € < 1, we get that log c LY(T)
|set® — 7| |set® — r|
uniformly in s. Because ¢(se”) is continuous uniformly in s € [0, t] we get also ¢(se”) log Toc? — 7] €
sew —r

L*(T) uniformly in s. So we can apply the dominated convergence theorem of Lebesgue to get the
result. W

Lemma 10.4 (Substitution) We have, provided that |f(0)| =

Vp € (0,1), /h(speze Tlog™ ‘f (spe™) ‘d@ <c(s,p / qung ‘f spe’ ‘d@
h 3
X3 =
wi C(S7p> (1 _ Sp)q
Proof.

Recall that ]
Vz = pe? € T, h(spe?) =1 —sp+ x(

5 TCH(0/6),
and Vz € I'g, h(spe®) =1 — sp, hence Vz € D, (1 — p) < h(pe?) < 2.
Using VO € T, h(spe®) < 2 we get, as in lemma 10.1,

/ hspe”’)"log™ | f(spe™)| df < 21 / log™ | F(spe”)| < 2° / log* | f(spe™)].
Now usinTg VO € T, h(spe®) > (1 — sp), we 1;et '

[ o8 7606 < = [ oo | spe)|

Vp € (0,1), /Th(spew)qlog ’f(spew)’ < ﬁ/jyh(spew) log™ ’f(spew)}. [ |

Lemma 10.5 The function (1 — |z|*)P~} H |z — | ", with p > 0, is integrable for the Lebesgue

measure in the disc D and we have the estz'n;ate
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/ e “H\z—nk\ < e(p, ) < 0,

where the constant § is thce the length of the minimal arc between the points {n;},;—1

-----

Proof.
Because the points 7, are separated on the torus T we can assume that We have disjoint sectors I';

-----

J=1
A::/D( ERis 1H|Z—n,€| Ldm(z Z/ — [y [T 1z = mel~tdm(z).
Jj=1 k=1
We set .
Agi= [ =l T = el o),
Lo k=1
and we get
n . .
VzeTly, Ve=1,...n, |z —n 25:>H|z—77k| <6
k=1
So

Ag <™ | (1— 2P dm(z) <6~ / — 2P~ tdm(z) < 2x07"
r
For computing fi we can assume that 7; = 1 by rotation and I'; based on the arc (=4, §) ; so

we have, because H |z — |t <Y1 — 2|,
k=1

Aj = / (1—|z>)P~! H |z — | Hdm(z) < 5_("_1)/ (1—[2[)P7H 1 — 2| dm(z).
Ly k=1 Ly
Set o = g > 0, then we have (1 — |2]*)® < 2|1 — z|* hence
A < 5—<"—1>2a/ (1= 222 [ — 2" dm().
r

Changing to polar coordjmates we get

A; < g~ / —pH) ] / “Ldoydp.
0
Because o > 0, we get
5
Vp <1, / 11— pew’(k1 db < c(a,d)
-5

and
1

| = pan < cla).
0
So adding the A;, we end the proof of the lemma. W

Lemma 10.6 Let p(z) be a positive function in D and f € H(D) ; set fs(z) := f(sz) and suppose
that:

vs<1, 3 (1= |a?)lg(sa) < / (1 — |2 p(s2) log™ |f(s2)],

a€Z(fs)
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then, for any 1 > 6 > 0 we have

S (-l et < sup [0 [l log |52
acZ(f) 1-6<s<1 JD
We have also:

let p(z), ¥(2) be positive continuous functions in D and f € H(D) such that:
W<l > (L-lafhelsa) < [ els2)log" [£(s2)] + [ v(se?)log” | (se)
D T

a€Z(f)ND(0,s)
then, for any 1 > 6 > 0 we have

Y. (1—la)ela) < sup /D<P(82)10g+|f(82)|+ sup | y(se”) log™ [ f(s2)].

acZ(f) 1-d<s<1 1-0<s<1JT

Proof.
We have a € Z(f;) <= f(sa) =0,1i.e. b:=sa € Z(f)N D(0,s). Hence the hypothesis is

vs<t S =2y < [ - g (o)

acZ(f)ND(0,s)
Wefix 1 -6 <r <1, r<s<1,then, because Z(f)ND(0,r) C Z(f)ND(0,s) and ¢ > 0, we have

a|? a2
1 — |2 et < _ )_) p+1 <
>ooa-Erre@s Y a- | e <
a€Z(f)ND(0,r) a€Z(f)ND(0,s)
< s [P g £
1-6<s<1JD
In D(0,r) we have a finite fixed number of zeroes of f, and, because (1 — ‘%}2)7’“ is continuous
in s <1 for a € D, we have

Va € Z(f) N D(0,7), lim(1 )%)Q)W — (1 |a]?y*.
Hence
S (-l < swp / (1= 2P p(s2) log™* | £(52).

a€Z($)ND(0,r) 1-9<s<l
Because the right hand side is independent of » < 1 and ¢ is positive in D so the sequence

Sry:= Y (1=lay"e(a)
a€Z(f)ND(0,r)
is increasing with 7, we get

> (-l ipa) < sup [ (1 () log I£(s2)
acZ(f) 1-6<s<1 JD
This proves the first part. The proof of the second one is just identical. B

Remark 10.7 (i) As can be easily seen by the change of variables u = sz, if p > 1 we have:
sup [ (U= P s o™ (53] £ [ (1= 2ol og" 1)
D D

1-d<s<1

(ii) We also have that if o(z)log™ | f(2)| is subharmonic, then:
sup / (1= [oI*)P o(s2) log™ |f(s2)| < / (1= |2*)P (=) log™ | f(2)].
D

1-d6<s<1 JD
But (ii) is not the case in general in our setting.
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