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ABSTRACT

The goal of tone mapping operators (TMOs) has traditionally been
to display high dynamic range (HDR) pictures in a perceptually fa-
vorable way. However, when tone-mapped images are to be used
for computer vision tasks such as keypoint detection, these de-
sign approaches are suboptimal. In this paper, we propose a new
learning-based adaptive tone mapping framework which aims at en-
hancing keypoint stability under drastic illumination variations. To
this end, we design a pixel-wise adaptive TMO which is modulated
based on a model derived by Support Vector Regression (SVR) us-
ing local higher order characteristics. To circumvent the difficulty
to train SVR in this context, we further propose a simple detection-
similarity-maximization model to generate appropriate training sam-
ples using multiple images undergoing illumination transformations.
We evaluate the performance of our proposed framework in terms
of keypoint repeatability for state-of-the-art keypoint detectors. Ex-
perimental results show that our proposed learning-based adaptive
TMO yields higher keypoint stability when compared to existing
perceptually-driven state-of-the-art TMOs.

Index Terms— High dynamic range, tone mapping operator,
keypoint detection, stochastic gradient descent, machine learning.

1. INTRODUCTION

High Dynamic Range (HDR) imaging enables to capture and repro-
duce a wide range of radiance and luminance of the real world en-
vironments [1]. Such extended capability of HDR to store high con-
trast information from the very dark and bright regions of a scene
has raised potential interest in solving challenging computer vision
problems such as keypoint detection [2,3].

Keypoint detection is the primary and crucial stage of sev-
eral computer vision algorithms e.g., image retrieval, reconstruction,
tracking, etc. Conventionally, keypoint detection algorithms [4] have
been designed and optimized with respect to low dynamic range
(LDR) imagery which is represented using gamma-corrected 8-bit
integer representation and is approximately linear to human percep-
tion. Conversely, the real-valued HDR pixels are proportional to
the physical luminance of the scene which is expressed in cd/m2.
As a result, HDR linear values are not appropriate when used with
LDR-optimized keypoint detection algorithms. In such a scenario, a
plausible solution investigated by recent studies [2,3,5] is to convert
HDR into an LDR representation using a Tone Mapping Operator
(TMO) [1].

TMOs have been traditionally designed to compress HDR con-
tent in a suitable 8-bit LDR representation with the aim of displaying
HDR images on standard screens [6,7]. Consequently, their design
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has been tuned to preserve human-vision attributes, e.g., image aes-
thetics, perceptual contrast, etc. However, differently from visual
perception, keypoint detection is a computer vision algorithm de-
signed for a machine, and thus follows different optimization cri-
teria. It looks for stable locations (e.g., corners, blobs etc.) in an
image that can be repeatedly detected when the same scene is cap-
tured under different transformations such as illumination variations.
Therefore, existing TMOs may be sub-optimal for keypoint depen-
dent applications such as tracking or panorama stitching and need to
be re-calibrated. Similar conclusions are drawn from the experimen-
tal validations of several recent studies [2,3,8].

In our recent work [9], we investigate the strategies for design-
ing a keypoint-optimal TMO. To that end, we compare the optimiza-
tion of existing TMO parameters with respect to: a) Repeatability
Rate (performance measure criterion of keypoint detection) and b)
correlation score between tone mapped images of the same scene
with lighting variations. Our experimental study concludes that op-
timizing TMO parameters with respect to Repeatability Rate (RR)
leads to higher keypoint stability over the per-pixel similarity be-
tween the tone-mapped images. Though this study points to the
parametric sensitivity in TMOs, it does not provide any keypoint-
detection-optimized TMO model. Therefore, the problem of design-
ing an optimal TMO for the keypoint detection task remains open.

In this paper, we address this problem and develop a novel
learning-based adaptive tone mapping operator (AdTMO). Our pro-
posed framework aims at enhancing the repeated detection of sparse
keypoint locations (e.g., corners) in high-contrast areas of scenes
undergoing complex real-world illumination transitions such as
day/night change. To this end, we initially introduce an adaptive
TMO which can be locally modulated, i.e., its parameters can vary
pixel-wise. We then propose to derive the per pixel modulation by
means of a learned illumination invariant model. In this context, we
train a Support Vector Regressor (SVR) to predict the desired pixel-
wise modulation maps by using the linear HDR content from scenes
captured with varying lighting conditions.

Our idea is mainly motivated by the conclusions of our previous
study [9] where optimizing tone mapping parameters for keypoint
detection is shown to yield significant gains in RR. However, in that
work optimal TMO parameters are computed globally on the whole
image using grid search and, more importantly, for a given scene.
In this work, instead, we propose to learn TMO parameters based

on the local features of the scene. Specifically, since keypoints are
sparsely detected and depend on their neighborhood properties, we
argue that local parametric modulations in TMOs can enhance the
keypoint detection probability by adaptively mapping pixels based
on their local higher-order characteristics. Moreover, to predict such
optimal modulations in this context, we are inspired by the success
of regression-based “task-optimization” models. In the literature,
regression-based models have been explored for several image pro-
cessing problems [10–12]. In this work, we employ SVR, which
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Fig. 1: Learning based AdTMO.

has been successfully used, e.g., in image super-resolution [10], and
which enables to cope with large variability in the input training sam-
ples compared with low-dimensionality approaches using explicit
functions such as polynomial regression.

Learning-based models have been seldom pursued for designing
keypoint-optimized TMOs. As a consequence, there is no standard
dataset to train or test any model in this context. In this paper, we
overcome this difficulty by proposing a simple detection-similarity-
maximization model to generate appropriate training samples. We
initially consider several HDR image pairs which are taken with
the same viewpoint with different lighting variations. Then, we de-
fine our objective function to find optimal modulation maps for such
scenes so that the similarity of the detector response maps is maxi-
mized. For the defined objectives, the optimization is carried out us-
ing stochastic gradient descent (SGD) [13] by deriving the required
partial derivative architecture.

In this paper, we additionally propose an HDR dataset of 8
image scenes taken in indoor and outdoor locations with different
lighting variations. We finally present the comparison of our ap-
proach with state-of-the-art TMOs using different keypoint detection
schemes. Our results show consistent gains in term of overall key-
point stability across different illumination conditions with respect
to popular tone mapping approaches proposed in the literature.

The paper is organized as follows. In Section 2, we provide
the details of our learning-based adaptive TMO approach, similarity
maximization model, the SVR training and proposed dataset. We
present the experimental results and analysis in Section 3. Finally,
the conclusions are drawn in Section 4, along with future research
directions.

2. PROPOSED TONE MAPPING MODEL

2.1. General Framework

Let ϕ be a tone mapping function which maps the linear-valued HDR
content of an image I to an output LDR I ′. In general, for a pixel x
TMO operates as: I ′(x) = ϕ(I(x),θ), where I(x) ∈ ℜ, I ′(x) ∈
[0, 255] and θ represents a vector of parameters.

For several existing TMOs [6,7,14,15], parameters θ serves di-
verse objective such as filter shape and size, brightness control, but
all motivated for visual perception. Such parameters are often set
as globally for an image and further chosen by trial and test proce-
dures. For example, θ serves as variance in ChiuTMO [15], sharp-
ening constant in ReinhardTMO [6] and range and spatial variance
in bilateral filtering based TMO [9].

Based on these observations, we assume function ϕ as an ex-
tension of existing tone mapping functions which can be modulated

spatially by adapting their vector of parameters. The idea here is
to facilitate the local adaption of function ϕ at sparse keypoint lo-
cations to further ease their identification and detection. In this
paper, we call the corresponding parameter vectors as modulation

maps so as to distinguish their purpose of modulating the TMO lo-
cally from global parametric tuning. The modulation maps are given
as θ(x) = {θ1(x), θ2(x).., } and our proposed TMO operates as:
I ′(x) = ϕ(I(x),θ(x)).

To predict the modulations maps, we propose to learn a model
by employing SVR [16] while complying with the following two
constraints: (a) To distinguish the keypoint and its neighborhood
locations, (b) To bring invariance (as much as possible) to the non-
affine lighting variations in the physical world scenes.

By using the radial basis kernel mapping, our SVR minimizes
the non-linear problem of predicting modulation maps θ by linearly
separating the input samples in high-dimensional space. We refer the
reader to [16] for more details about kernel-based SVR optimization
model. Fig. 1 outlines the general framework of our proposed key-
point optimal TMO.

2.1.1. Adaptive Tone Mapping Operator

Many tone mapping approaches aim at separating scene illumina-
tion, which can display large dynamic range variations, from the
reflectance of objects, which instead has lower dynamic range char-
acteristics [9,15]. Following this idea, our tone mapping function ϕ
is expressed as: ϕ = I · L−1, where the illumination component L
is estimated by an adaptive version of bilateral filtering [17] and is
given as:

L(x,θ) =
1

W
·
∑

y∈Ω

Gθ1(x)(‖x−y‖) ·Gθ2(x)(‖I(x)−I(y)‖)I(y),

(1)
where G is a Gaussian kernel. Here, modulation vector θ has two
components: θ1 and θ2, also known as spatial and range variance.
For each pixel location x, y is a pixel in neighborhood set Ω and the
normalization factor W =

∑

y∈Ω Gθ1(x)(‖x−y‖)·Gθ2(x)(‖I(x)−

I(y)‖).
It is important to note that we have built our model using the

bilateral filtering, mainly because its proposed adaptive formulation
facilitates the integration of local modulation in the proposed TMO.
Moreover, it has been previously studied in the context of keypoint
detection in HDR imaging in varying lighting conditions [9]. How-
ever, any other tone mapping techniques with parametric formula-
tions such as [6,15] could be used as well with our proposed frame-
work.

2.2. Generation of Training Set: Detection Similarity Maxi-

mization Model

Suppose we are given a set of HDR scenes where each scene has
images captured from the same viewpoint but with different light-
ing condition. To train the SVR for our proposed model, we need
to compute the “ideal” modulation maps (θ1, θ2 in our case) for a
scene which ensures high keypoint stability. In other words, for a
scene undergoing lighting variations, we need to estimate the mod-
ulations ensuring maximum keypoint repeatability. To this end, one
solution is to design an optimization model which maximizes the RR
of multiple images of a given sequence.

RR is a measure of detector efficiency, defined as
rref

min(nref ,ntest)
, where rref is the number of keypoints de-

tected in the reference image which are repeated in the test image,



(a) HDR Images (b) Modulation (θ1) (c) Modulation (θ2)

Fig. 2: Generation of training set. The samples images undergoing
different lighting variations shown in (a) are used to generate the
θ1 and θ2 modulation maps in (b) and (c) respectively, using the
detection similarity maximization model.

and nref and ntest are the number of detected keypoints in
reference and test image, respectively. Since RR is a non-smooth
and non-differentiable function, it cannot be directly used to define
the similarity objective of our optimization model. Therefore, we
instead propose an alternative solution to use differentiable detector
response maps R and design a model that maximizes the similarity
between these response maps of image pairs drawn from a given
sequence. R is a score map which determines a pixel’s strength
to be a keypoint and it mainly depends on the choice of keypoint
detection algorithm.

Our response map R is generated by a Harris corner detec-
tor [18]. It is based on the autocorrelation scores computed per pixel
using the second-order moment matrix, and is given as:

R
(

ϕ(x,θ)
)

= det{M
(

ϕ(x,θ)
)

} − k · tr{M
(

ϕ(x,θ)
)

}2 (2)

where M is the second order moment matrix as detailed in [18]. k
is the sensitivity factor (k = 0.04). In this work, we have focused on
the corner-based detectors as they are computationally inexpensive
and highly used for real time applications, e.g., tracking, wide-view
panorama creations, etc. However, the model could be extended to
region or blob-based detectors as well.

Objective: Let S be a scene consisting of N HDR im-
ages with lighting variations as shown in Fig. 2 (a). Let P =
{

(1, 2), (2, 3)..,
}

be the set of K =
(

N

2

)

pair combinations of N
images. Our aim is to maximize the response similarity by minimiz-
ing the following objective function:

F(θ) =
1

K

∑

{i,j}∈P

Φ(Ri(θ),Rj(θ)), (3)

and obtain the resulting modulation maps θ = {θ1, θ2} as shown
in Fig. 2 (b) and (c). Inspired by max-margin formulations for image
retrieval tasks [19], we define function Φ using the logistic penalty

Φ(Ri,Rj) = log(1 + exp(ǫ−
〈

Ri · Rj

〉

). (4)

where ǫ is the penalty control factor, Ri and Rj are the response
maps corresponding to the images i, j ∈ S, and 〈·〉 denotes the
scalar product.

Optimization using SGD. We optimize the objective function
in Eq. (3) using Stochastic Gradient Descent (SGD) [13]. To do
so, we build the partial derivative architecture required for the SGD
implementation as follows.

To estimate θ maps at each iteration t, SGD update rule is given
as:

θt+1 = θt − γt · ∇Φ{i,j}t(θt), (5)

Fig. 3: Training an SVR. The sample pixel (red) with s×s neighbor-
hood (blue) is chosen to extract the features maps (F1, F2, F3) using
response scores, gradients and intensity patterns respectively.

where γt is a learning rate that can be made to decay with t as γt =
γ0/(t + 1) and the gradient for the objective function in Eq. (3) is
replaced (as detailed in [13]) with the gradient of a randomly chosen
sample pair {i, j} at time t, i.e.,

∇Φ{i,j}(θt) ,
∂Φ(Ri,Rj)

∂θ

∣

∣

∣

∣

θt

. (6)

We computed the gradient required in Eq. (5) using the chain
rule as follows,

∇Φ{i,j}(θ) =
{ ∂Φ

∂Ri

·
∂R

∂ϕi

·
∂ϕi

∂θ
,
∂Φ

∂Rj

·
∂R

∂ϕj

·
∂ϕj

∂θ

}

(7)

The simplified implementation procedure is summarized in Al-
gorithm 1.

Algorithm 1 Generation of training set

Require: a scene S with N images and the set of possible image
pairs P drawn from S.
K:= number of image pairs in P .
epochs:= number of passes over the set P .

Ensure:

for iters = 1 : epochs do

Shuffle the order of n pairs in P
for pair = 1 : K do

Compute ∇Φpair (as in Eq. (7)).
Update θ (as in Eq. (5)).

end for

end for

2.3. Support Vector Regressor Training for AdTMO

An illustration for SVR training is shown in Fig 3. Let’s assume that
a scene with multiple images captured under different lighting vari-
ations is given for training. Further, assume that the optimal mod-
ulation maps for the same scene are also given as described in Sec-
tion 2.2.

To train an SVR model invariant to illumination variations, we
first select random samples from keypoint and neighborhood loca-
tions across all the given images with varying lighting conditions.
For each sample, we then consider a local patch of size s×s centered
at that pixel. Next, we compute a feature vector which includes: a)
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Fig. 4: Sample images from HDR dataset. The HDR Dataset is composed of 8 scene from different indoor/outdoor locations.

the second-order detector response scores F1, b) the gradient mag-
nitudes F2 and c) the local intensity patterns F3.

The second-order response scores are based on the choice of the
keypoint detector. Therefore, our response score feature for each
pixel x in patch s × s is given as: F1(x) = det{M(x)} − k ·
tr{M(x)}2. The gradient magnitudes for each pixel in the local

patch is computed as: F2(x) =
√

G2
x(x) +G2

y(x), where Gx and
Gy are the gradients in horizontal and vertical directions. The local
intensity patterns for each patch is recorded by subtracting the value
of centered pixel from other pixels and given as: F3(x) = I(x) −
I(c), where c is the pixel at center location.

These individual features are normalized and concatenated to
form the final feature vector {F1, F2, F3} of dimension 3s2 repre-
senting a training sample.

3. RESULTS AND DISCUSSION

3.1. Dataset

In this paper, we propose an HDR dataset with 8 different HDR
scenes as shown in Fig. 4. The Light Room, Project Room and Poster

are the publicly available datasets and have been used for evaluat-
ing HDR for keypoint detection problems [3,20]. However, these 3
scenes have been captured in indoor locations and hence, they are
less challenging in terms of physical-world illumination transforma-
tions such as day/light change. Therefore, we captured 5 additional
scenes including 1 indoor Camroom and 4 famous outdoor locations
in Paris: Notre-Dame, Louvre, Invalides and Grande Arche. The
Camroom scene is shot with a Canon Mark III camera in the pres-
ence of powerful 2K Watt reflectors. All the other outdoor HDR
scenes are captured with Canon 700D camera at different times of
the day. To create the HDR images, LDR images have been fused
using the algorithm in [21]. Note that all scenes are geometrically
calibrated.

3.2. Experimental Setup

We test our proposed model for keypoint detection task on 8 HDR
scenes. We initially compare our AdTMO with the non-adaptive
bilateral filtering based tone mappings BTMO and its globally opti-
mized version BTMO(opt) [9]. Similar to our tone mapping func-
tion, both these TMOs are based on illumination normalization
where the luminance L is estimated using bilateral filter. However,
both these TMOs use global range and spatial variances. Moreover,

BTMO(opt) [9] is a variant of BTMO with an additional step of
global parameter optimization, and approximates the maximum pos-
sible RR that can be achieved with BTMO model.

Then, we compare our model with state-of-the-art perception
based TMOs: ChiuTMO [15], DragoTMO [14], ReinhardTMO [6]
and MantiukTMO [7]. We considered these TMOs as they have been
previously applied for HDR evaluation studies [5,9] for similar key-
point detection task.

We evaluate all these TMOs using popular and widely used
corner detection schemes: Harris [18], Shi-Tom [22], FAST [23]
BRISK [24]. In addition, even if our formulation is optimized for
corner detection, we also test our TMO with respect to blob detec-
tors such as SURF [25] and SIFT [26]. Since our model is designed
for one image scale, we employed single-scale implementation for
all keypoint detection schemes to ensure a fair comparison.

The detection performance is measured in terms of RR (as dis-
cussed in Section 2.2) with an error rate of 5 pixels. Namely, a key-
point is considered to be repeated in the test image if it lies in a circle
of radius 5 centered on the projection of the reference keypoint onto
the test image.

3.2.1. Training and Implementation details

For each test scene, we build the training set with 10,000 samples
and use it to train and validate the SVR model. This training set is
drawn from other scenes excluding the corresponding test scene. For
instance, to test the Project Room scene, we build the training set by
randomly selecting the samples from all other 7 scenes. For each
training sample, we compute feature on a small patch size of 5 × 5
while following the feature extraction procedure from Section 2.3.
Higher patch-size is not advisable as pixel correlation diminishes
with increasing distance. Conversely smaller patch-size may extract
insufficient information.

Implementation. We use the SVR implementation of Lib-
SVM [27] using the Radial Basis Function (RBF) kernel. To obtain
the optimal values of SVR parameters, the regularization cost and
epsilon-SVR are tuned by 5-fold cross validation from the range of
[2−5, 215] and = [2−10, 25], respectively.

We use the HDR Toolbox [28] for the implementation of the
considered TMOs. Moreover, we use the Matlab’s Computer Vision
toolbox for Harris, Shi-Tom, FAST, BRISK and SURF, and Vlfeat
for SIFT. Similar to previous keypoint evaluation studies [3,20], we
selected the strongest 500 keypoints from each test image.
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Fig. 5: Quantitative Results I: Repeatability Rates (RR) computed
using AdTMO, BTMO(opt) and BTMO for each test scene using
Harris keypoint detector. Note that while testing AdTMO for a par-
ticular scene we assured that the training for AdTMO is done on all
other scenes.

3.3. Evaluation Results

Quantitative Results: We perform a thorough evaluation of our pro-
posed AdTMO in quantitative terms as shown in Fig. 5 and Fig. 6.
We basically evaluate the performance of our method over all test
scenes using the Harris corner detector. In Fig. 5, we compare
our model with the other variants of bilateral filtering based TMOs:
BTMO and BTMO(opt) [9]. These results clearly show that local
modulation of bilateral filtering based tone mapping function using
the proposed learned model significantly improves the keypoint sta-
bility across both the indoor and outdoor scenes.

Comparison with popular TMOs. We evaluate the perfor-
mance of our method across different keypoint detection schemes
including both corner and blobs. In Fig. 6, we initially compute the
RR for all scenes for each considered TMO and then average them
to compute the Average Repeatability Rate (AvgRR). We observe
that for either detector (corner or blob) our proposed model out-
performs all the other TMOs (perception based or keypoint-based).
Further, the lower standard deviations observed with our proposed
TMO shows higher stability of keypoints than other perception-
based TMOs. Although the algorithm presented in this paper has
been optimized for corners, it gives comparable or better perfor-
mance with respect to other methods on blob detectors. This is par-
tially due to the single scale implementation of the blob detectors
used in this evaluation. However, the performance may differ when
the multi-scale blob detection is taken into account.

We compare our AdTMO with popular and visually pleasing
Reinhard TMO [6] and MantiukTMO [7]. In Fig. 7, we show that
the our method produces the highest number of repeated keypoints,
even though both Reinhard TMO [6] and MantiukTMO [7] produce
more visually appealing images.

4. CONCLUSIONS

We propose a new learning based adaptive tone mapping framework
to detect stable keypoints under drastic changes of lighting condi-
tions. To this end, we train a Support Vector Regressor using local
characteristic features to learn a model which spatially modulates

Fig. 7: Repeated Keypoints. Row I: 2 HDR images from Invalides

scene taken at different day-time. HDR images are displayed af-
ter log scaling[14]. Row II: the repeated keypoints using our pro-
posed AdTMO (66 repeated keypoints out of strongest 200 key-
points). Row III: the repeated keypoints using Reinhard TMO (7
repeated keypoints out of strongest 200 keypoints). Row IV: the re-
peated keypoints using MantiukTMO (5 repeated keypoints out of
strongest 200 keypoints).

the pixel-wise adaptive TMO. Further, we introduce a simple and ef-
fective method for generating the training set to learn the SVR for
the given problem. We evaluate our model on our proposed HDR
benchmark dataset of indoor/outdoor scenes. Our model signifi-
cantly outperforms state-of-the-art TMOs on the HDR dataset and
also achieve state-of-the-art results across different keypoint detec-
tion algorithms. In the future, we plan to extend our model for scale
space and explore its usability for real-time problems of tracking and
panorama creation.
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[19] A. Rana, J. Zepeda, and P. Pérez, “Feature learning for the image re-
trieval task,” in Computer Vision - FSLCV, ACCV 2014 - Singapore,

November 1-2, 2014, 2014, pp. 152–165.

[20] P. Bronislav, A. Chalmers, and P. Zemcı́k, “Feature point detection
under extreme lighting conditions,” in Spring Conference on Computer

Graphics, 2012, pp. 156–163.

[21] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” in Proceedings of the 24th Annual Confer-

ence on Computer Graphics and Interactive Techniques, New York,
USA, 1997, SIGGRAPH, pp. 369–378.

[22] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-
ages,” in Proceedings of the Sixth International Conference on Com-

puter Vision, Washington, DC, USA, 1998, ICCV ’98, pp. 839–.

[23] E. Rosten and T. Drummond, Machine Learning for High-Speed Cor-

ner Detection, pp. 430–443, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006.

[24] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in Proceedings of the 2011 International

Conference on Computer Vision, Washington, DC, USA, 2011, ICCV
’11, pp. 2548–2555.

[25] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust fea-
tures,” in 9th European Conference on Computer Vision (ECCV), pp.
404–417. 2006.

[26] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Nov. 2004.

[27] C.C. Chang and C.J. Lin, “Libsvm: A library for support vector ma-
chines,” ACM Transactions on Intelligent Systems and Technology, vol.
2, no. 3, May 2011.

[28] F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High

Dynamic Range Imaging: Theory and Practice, Natick, MA, USA,
2011.

[29] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” in Proceedings of the 29th Annual Conference

on Computer Graphics and Interactive Techniques, 2002, SIGGRAPH
’02, pp. 257–266.


