Optimal algorithms for smooth and strongly convex distributed optimization in networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Optimal algorithms for smooth and strongly convex distributed optimization in networks

Résumé

In this paper, we determine the optimal convergence rates for strongly convex and smooth distributed optimization in two settings: centralized and decentralized communications over a network. For centralized (i.e. master/slave) algorithms, we show that distributing Nesterov's accelerated gradient descent is optimal and achieves a precision $\varepsilon > 0$ in time $O(\sqrt{\kappa_g}(1+\Delta\tau)\ln(1/\varepsilon))$, where $\kappa_g$ is the condition number of the (global) function to optimize, $\Delta$ is the diameter of the network, and $\tau$ (resp. $1$) is the time needed to communicate values between two neighbors (resp. perform local computations). For decentralized algorithms based on gossip, we provide the first optimal algorithm, called the multi-step dual accelerated (MSDA) method, that achieves a precision $\varepsilon > 0$ in time $O(\sqrt{\kappa_l}(1+\frac{\tau}{\sqrt{\gamma}})\ln(1/\varepsilon))$, where $\kappa_l$ is the condition number of the local functions and $\gamma$ is the (normalized) eigengap of the gossip matrix used for communication between nodes. We then verify the efficiency of MSDA against state-of-the-art methods for two problems: least-squares regression and classification by logistic regression.
Fichier principal
Vignette du fichier
distributed_dual_axiv.pdf (423.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01478317 , version 1 (28-02-2017)

Identifiants

Citer

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié. Optimal algorithms for smooth and strongly convex distributed optimization in networks. 2017. ⟨hal-01478317⟩
620 Consultations
1253 Téléchargements

Altmetric

Partager

More