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Abstract
Clause Learning is one of the more important com-
ponents of conflict driven clause learning (CDCL)
SAT solver that is effective on industrial instances.
Since the number of learned clauses is proved to be
exponential in the worse case, it is necessarily to
identify the most relevant clauses to maintain and
delete the irrelevant ones. As reported in the lit-
erature, several learned clauses deletion strategies
have been proposed. However the diversity in both
the number of clauses to be removed at each step of
reduction and the results obtained with each strat-
egy creates confusion to determine which criterion
is better. Thus, the problem to select which learned
clauses are to be removed during the search step
remains very challenging. In this paper, we pro-
pose a novel approach to identify the most relevant
learned clauses without favoring or excluding any
of the proposed measures, but by adopting the no-
tion of dominance relationship among those mea-
sures. Our approach bypasses the problem of the
diversity of results and reaches to a compromise be-
tween the assessments of these measures. Further-
more, the proposed approach also avoids another
non-trivial problem which is the amount of clauses
to be deleted at each reduction of the learned clause
database.

1 Introduction
The SAT problem, i.e., the problem of checking whether a
Boolean formula in conjunctive normal form (CNF) is sat-
isfiable or not, is central to many domains in computer sci-
ence and artificial intelligence including constraint satisfac-
tion problems (CSP), automated planning, non-monotonic
reasoning, VLSI correctness checking, etc. Today, SAT has
gained a considerable audience with the advent of a new
generation of solvers able to solve large instances encod-
ing real-world problems. These solvers, often called mod-
ern SAT solvers [Moskewicz et al., 2001; Eén and Sörens-
son, 2003] or CDCL (Conflict Driven Clause Learning)
SAT solvers have been shown to be very efficient at solv-
ing real-world SAT instances. They are built by integrat-
ing four major components to the classical(DPLL) procedure

[Davis et al., 1962]: lazy data structures [Moskewicz et al.,
2001], activity-based variable selection heuristics (VSIDS-
like) [Moskewicz et al., 2001], restart policies [Gomes et
al., 1998], and clause learning [Silva and Sakallah, 1999;
Moskewicz et al., 2001]. Although a nice combination of
these components contributes to improve the efficiency of
modern SAT solvers [Katebi et al., 2011], clause learning
remains known as the most important component [Pipatsri-
sawat and Darwiche, 2009]. The global idea of clause learn-
ing is that during the unit propagation process, when a cur-
rent branch of the search tree leads to a conflict, moderns
SAT solvers learn a conflict clause that helps unit propaga-
tion to discover one of the implications missed at an earlier
level. This conflict clause expresses the causes of the con-
flict and is used to prune the search space. Clause learn-
ing, also known in the literature as Conflict Driven Clause
Learning (CDCL), refers now to the most known and used
First (UIP) learning scheme, first integrated in the SAT solver
Grasp [Silva and Sakallah, 1996] and efficiently implemented
in zChaff [Moskewicz et al., 2001]. Most of the SAT solvers
integrate this strong learning scheme. Since at each conflict,
CDCL solvers learn a new clause that is added to the learned
clauses database, and the number of learned clauses is proved
to be exponential in the worse case, it is necessary to remove
some learned clauses to maintain a database of polynomial
size. Therefore, remove too many clauses can make learning
inefficient, and keeping too many clauses also can alter the
efficiency of unit propagation.

Managing the learned clauses database was the subject of
several studies [Moskewicz et al., 2001; Silva and Sakallah,
1996; Eén and Sörensson, 2003; Audemard and Simon, 2009;
Audemard et al., 2011; Guo et al., 2014]. These strategies
were proposed with the objective to maintain a learned clause
database of reasonable size by eliminating clauses deemed ir-
relevant to the subsequent search. The general principle of
these strategies is that, at each conflict, an activity is asso-
ciated to the learned clauses (static strategy). Such heuristic-
based activity aims to weight each clause according to its rele-
vance to the search process. In the case of dynamic strategies,
such clauses activities are dynamically updated. The reduc-
tion of the learned clauses database consists in eliminating
inactive or irrelevant clauses. Although all the learned clause
deletion strategies proposed in the literature are shown to
be empirically efficient, identifying the most relevant clause



to maintain during the search process remains a challenging
task. Our motivation in this work comes from the observa-
tion that the use of different relevant-based deletion strategies
gives different performances. Our goal is to take advantage of
several relevant learned clauses deletion strategies by seeking
a compromise between them through a dominance relation-
ship.

In this paper, we integrate a user-preference point of view
in the SAT process. To this end, we integrate into the SAT
process the idea of skyline queries [Börzsönyi et al., 2001],
dominant patterns [Soulet et al., 2011], undominated associ-
ation rules [Bouker et al., 2014] in order to learn clauses in
a threshold-free manner. Such queries have attracted consid-
erable attention due to their importance in multi-criteria deci-
sion making. Given a set of clauses, the skyline set contains
the clauses that are not dominated by any other clause.

Skyline processing does not require any threshold selec-
tion function, and the formal property of domination satisfied
by the skyline clauses gives to the clauses a global interest
with semantics easily understood by the user. This skyline
notion has been developed for database and data mining ap-
plications, however it was unused for SAT purposes. In this
paper, we adapt this notion to the learned clauses manage-
ment process.

The paper is organized as follows. We first present some
effective relevant-based learned clauses deletion strategies
used in the literature. Then, our learned clauses deletion strat-
egy based on the dominance relationship between different
strategies is presented in section 3. Finally, before the con-
clusion, experimental results demonstrating the efficiency of
our approach are presented.

2 On the learned clauses database
management strategies

In this section, we present some efficient learned clauses rel-
evance measures exploited in the most SAT solvers of the lit-
erature.

The most popular CDCL SAT solver Minisat [Eén and
Sörensson, 2003] considers as relevant the clauses the most
involved in recent conflict analysis and removes the learned
clauses whose the involvement in recent conflict analysis is
marginal. An other strategy called LBD for Literal Block Dis-
tance was proposed in [Audemard and Simon, 2009]. LBD
based measure is also exploited by most of the best state-
of-the-art SAT solver (Glucose, Lingeling [Biere, 2012]) and
whose the efficiency has been proved empirically. LBD based
measure uses the number of different levels involved in a
given learned clause to quantify the quality of the learned
clauses. Hence, the clauses with smaller LBD are consid-
ered as more relevant. In [Audemard et al., 2011], a new
dynamic management policy of the learned clauses database
is proposed. It is based on a dynamic freezing and activa-
tion principle of the learned clauses. At a given search state,
using a relevant selection function based on progress saving
(PSM), it activates the most promising learned clauses while
freezing irrelevant ones. In [Guo et al., 2014], a new cri-
terion to quantify the relevance of a clause using its back-
track level called BTL for BackTrack Level based clause was

proposed. From experiments, the authors observed that the
learned clauses with small BTL values are used more often
in the unit propagation process than those with higher BTL
values. More precisely, the authors observed that the learned
clauses with BTL value less than 3 are always used much
more than the remaining clauses. Starting from this obser-
vation, and motived by the fact that a learned clause with
smaller BTL contains more literals from the top of the search
tree, the authors deduce that relevant clauses are those allow-
ing a higher backtracking in the search tree (having small
BTL value). More recently, several other learned clauses
database strategies were proposed in [Jabbour et al., 2014;
Ansótegui et al., 2015]. In [Jabbour et al., 2014], the authors
explore a number of variations of learned clause database re-
duction strategies, and the performance of the different ex-
tensions of Minisat solver integrating their strategies is evalu-
ated on the instances of the SAT competitions 2013/2014 and
compared against other state-of-the-art SAT solvers (Glucose,
Lingeling) as well as against default Minisat. From the per-
formances obtained in [Jabbour et al., 2014], the authors have
shown that size-bounded learning strategies proposed more
than fifteenth years ago [Silva and Sakallah, 1996; Bayardo
and Miranker, 1996; Bayardo, Jr. and Schrag, 1997] is not
over and remains a good measure to predict the quality of
learned clauses. They show that adding randomization to size
bounded learning is a nice way to achieve controlled diversi-
fication, allows to favor the short clauses, while maintaining
a small fraction of large clauses necessary for deriving reso-
lution proofs on some SAT instances. This study opens many
discussions about the learned clauses database strategies and
raises questions about the effectiveness proclaimed by other
strategies of the state-of-the-art [Eén and Sörensson, 2003;
Audemard and Simon, 2009]. In [Ansótegui et al., 2015],
the authors use the community structure of industrial SAT
instances to identify a set of highly useful learned clauses.
They show that augmenting a SAT instance with the clauses
learned by the solver during its execution does not always
mean to make the instance easy. However, the authors show
that augmenting the formula with a set of clauses based on
the community structure of the formula improves the per-
formance of the solver in many cases. The different perfor-
mances obtained by each strategy suggests that the question
on how to predict efficiently the "best" learned clauses is still
open and deserves further investigation.

On the other hand, it is important to note that the effi-
ciency of most of these state-of-the-art learned clauses man-
agement strategies heavily depends on the cleaning frequency
and on the amount of clauses to be deleted each time. Gen-
erally, all the CDCL SAT solvers using these strategies ex-
actly delete half of the learned clauses at each learned clauses
database reduction step. For example, the CDCL SAT solver
Minisat [Eén and Sörensson, 2003] and Glucose [Audemard
and Simon, 2009] delete half of the learned clauses at each
cleaning. Therefore, the efficiency of this amount of learned
clauses to delete (e.g the half) at each cleaning step of the
learned clauses database has not been demonstrated theoret-
ically, but instead experimentally. For our knowledge, there
are not many studies in the literature on how to determine
the amount of clauses to be deleted each time. This paper



proposes an approach to identify the relevant learned clauses
during the resolution process without favor any of the best re-
ported relevant measures and which frees itself of the amount
of clauses to be removed at each time: the amount of learned
clauses to delete corresponds at each time to the number of
learned clauses dominated by one particular learned clause of
the set of the current learned clauses which is called in the
following sections, the reference learned clause.

3 Detecting undominated learned Clauses
We present now our learned clauses relevant measure based
on dominance relationship. We first motivate this approach
with a simple example, and then propose an algorithm al-
lowing to identify the relevant clauses with some technical
details.

3.1 Motivating example
Let us consider the following relevant strategies: LBD [Aude-
mard and Simon, 2009], SIZE (which consider as relevant the
clause of the short size) and the relevant measure use by min-
isat [Eén and Sörensson, 2003] that we denote here CVSIDS.
Suppose that we have in the learned clauses database, the
clauses c1, c2 and c3 with:

• SIZE(c1) = 8, LBD(c1) = 3, CV SIDS(c1) = 1e100,

• SIZE(c2) = 6, LBD(c2) = 5, CV SIDS(c2) = 1e200,

• SIZE(c3) = 5, LBD(c3) = 4, CV SIDS(c3) = 1e300.

The question we ask is the following: which one is relevant?
In [Audemard and Simon, 2009], the authors consider the
clause c1 which has the most small LBD measure as the most
relevant. In contrast, the authors of [Jabbour et al., 2014]
and [Goldberg and Novikov, 2007] prefer the clause c3 while
the preference of the authors of Minisat [Eén and Sörensson,
2003] leads to the clause c3. Our approach copes with the par-
ticular preference at one measure by finding a compromise
between the different relevant measures through the domi-
nance relationship. Hence, for the situation described above,
only the clause c2 is irrelevant because it is dominated by the
clause c3 on the three given measures.

3.2 Formalization
During the search process, the CDCL SAT solvers learn a set
of clauses which are stored in the learned clauses database
∆, ∆ = {c1, c2, ..., cn}. At each cleaning step, we evaluate
these clauses with respect to a set M = {m1,m2, ...,mk}
of relevant measures. We denote m(c) the value of the mea-
sure m for the clause c, c ∈ ∆, m ∈ M. Since the evalua-
tion of learned clauses varies from a measure to another one,
using several measures could lead to different outputs (rele-
vant clauses with respect to a measure). For example, if we
consider the motivating example, c1 is the best clause with
respect to the LBD measure whereas it is not the case ac-
cording to the evaluation of SIZE measure which favors c3 .
This difference of evaluations is confusing for any process of
learned clauses selection. Hence, we can utilize the notion of
dominance between learned clauses to address the selection
of relevant ones. Before, formulating the dominance relation-
ship between learned clauses, we need to define it at the level

of measure values. To do that, we define dominance value as
follows:

Definition 1 (dominance value) Given a learned clauses
relevant measure m and two learned clauses c and c′, we
say that m(c) domine m(c′), denoted by m(c) � m(c′), iff
m(c) is preferred to m(c′). If m(c) � m(c′) and m(c) 6=
m(c′) then we say that m(c) strictly dominates m(c’), de-
noted m(c) � m(c′).

Definition 2 (dominance clause) Given two learned clauses
c, c′, the dominance relationship according to the set of
learned clauses relevant measuresM is defined as follows:

• c dominates c′, denoted c � c′, iff m(c) � m(c′), ∀m ∈
M.

• If c dominates c′ and ∃m ∈M such thatm(c) � m(c′),
then c stritly dominates c′ and we note c � c′.

To discover the relevant learned clauses a naive approach
consists in comparing each clause with all other ones. How-
ever, the number of learned clauses is proved to be exponen-
tial which makes pairwise comparisons costly. In the follow-
ing, we show how to overcome this problem by defining at
each cleaning step of learned clauses database, a particular
learned clause denoted by τ that we call here current refer-
ence learned clause which is an undominated clause of ∆
according to the set of learned clauses relevant measuresM.
At each cleaning step, all the learned clauses dominated by τ
will be considered as the irrelevant learned clauses and thus
deleted from the learned clauses database.

To define current reference learned clause, we need a new
relevant measure based on all the learned clauses relevant
measures of M. We call this new measure Degree of com-
promise, in short DegComp defines as follows:

Definition 3 (Degree of compromise) Given a learned
clause c, the degree of compromise of c with respect to the
set of learned clauses relevant measures M is defined by

DegComp(c) =
∑n

i=1 m̂i(c)

|M | , where m̂i(c) corresponds to
the normalized value of the clause c on the measure mi.

In fact, in practice, measures are heterogeneous and de-
fined within different scales. For example the values of the
learned clauses relevant measures in [Eén and Sörensson,
2003] are very high, in exponential order while the values
of the relevant measures in [Audemard and Simon, 2009] are
smallest ones. Hence, in order to avoid that the measures with
the higher values make marginal the measures with smallest
values in the computation of the comprise degree of a given
learned clauses, it is recommend to normalize the measures
values. In our case here, we choose to normalize all the
measures in the interval [0, 1]. More precisely, each value
of measure m(c) of any learned clause c must be normalized
into m̂(c) within [0, 1]. The normalization of a given mea-
sure m is performed depending on its domain and the sta-
tistical distribution of its active domain. We recall that the
active domain of a measure m is the set of its possible val-
ues. It is worth mentioning, the normalization of a mea-
sure does not modify the dominance relationship between
two given values. If we consider the learned clause c1 given



in the motivating example in the section 3.1, with its three

values : DegComp(c1) =
̂CV SDIS(c1)+ ̂LBD(c1)+ ̂SIZE(c1)

3 ,

then, we have, DegComp(c1) =
1

1e100
+ 3

nV ars()
+ 8

nV ars()

3 ,
with nV ars() the number of variables of the Boolean for-
mula.

After giving the necessary definitions (current reference
learned clause and Degree of compromise), the following
lemma offers a swifter solution rather than pairwise compar-
isons, to find relevant clauses based on dominance relation-
ship.

Lemma 1 Let c be a learned clause having the minimal de-
gree of compromise with respect to the set of learned clauses
relevant measuresM, then c is an undominated clause.

Proof 1 Let c be a learned clause having the minimal degree
of compromise with respect to the set of learned clauses rel-
evant measures M, we suppose that there exists a learned
clause c′ that strictly dominates c, which means that ∀m ∈
M, m(c′) � m(c) and ∃m′ ∈ M, m′(c′) � m′(c). Hence,
we haveDegComp(c′) < DegComp(c). The latter inequal-
ity contradicts our hypothesis, since c has the minimal degree
of compromise with respect toM.

Property 1 Let M the set of learned clauses relevant mea-
sures, ∀c, c′, c” three learned clauses, if c � c′ and c′ � c”
then c � c”.

During the search process, at each cleaning step of the
learned clauses database, we first find the learned clause
cMin having the minimal degree of compromise with respect
toM. Then, we delete from the learned clauses database all
the clauses dominated by cMin.

Searching for all undominated clauses during each clean-
ing step can be time consuming, such that we only commpute
the undominated clauses with respect to the reference learned
clause during each reduction step.

3.3 Algorithm
In this section, after presenting the general scheme of a dele-
tion strategy of learned clauses (reduceDB(∆)) adopted by
most of the reported solvers, we propose an algorithm allow-
ing to discover relevant learned clauses by using dominance
relationship.

Algorithm 1 depicts the general scheme of a learned clause
deletion strategy (reduceDB(∆)). This algorithm first sorts
the set of learned clauses according to the defined criterion
and then deletes half of the learned clauses. In fact, this al-
gorithm take a learned clauses database of size n and outputs
a learned clauses database of size n/2. This is different from
our approach which first searches the learned clause having
the smallest degree of compromise (called reference learned
clause) and then removes all the learned clauses that it dom-
inates. The algorithm 2 depicts our learned clause deletion
strategy. It is important to note that the clauses whose size
(number of literals) and LBD are less than or equal to 2 are
not concerned by the dominance relationship. These learned
clauses are considered as more relevant and are maintained
in the learned clauses database. Hence, the minDegComp

function of our algorithm 2 looks the learned clause of mini-
mal degree of compromise among the learned clauses of size
and LBD greater than 3.

Algorithm 1: Deletion Strategy: reduceDB function
Input: ∆: The learned clauses database of size n
Output: ∆ The new learned clauses database of size n/2
sortLearntClauses() ; /* by the defined1
criterion */
limit = n/2;2
ind = 0;3
while ind < limit do4
clause = ∆[ind] ;5
if clause.size() > 2 and clause.lbd() > 2 then6
removeClause() ;7

else8
saveClause() ;9

ind+ +;10

return ∆ ;11

Algorithm 2: reduceDB-Dominance-Relationship
Input: ∆: The learned clauses database;M: a set of

relevant measures
Output: ∆ The new learned clauses database
cMin = minDegComp(M) ; /* cMin the1
clause having minimal degree of
compromise according to M */
ind = 0;2
while ind < |∆| do3
c = ∆[ind] ; /* a learned clause */4
if c.size() > 2 and c.lbd() > 2 and5
dominates(cMin, c,M) then
removeClause() ;6

else7
saveClause() ;8

ind+ +;9

return ∆ ;10

Function dominates(cMin: a clause, c: a clause,M)11
i = 0;12
while i < |M| do13
m =M[i] ; /* a relevant measure */14
if m(c) � m(cMin) then15

return FALSE ;16

i+ +;17

return TRUE ;18

4 Experiments
For our experiments, we use three relevant measures for the
dominance relationship in other to assess the efficiency of our
approach. Notice that the user can choose to combine differ-
ent other measures. We use SIZE [Goldberg and Novikov,
2007], LBD [Audemard and Simon, 2009] and CV SIDS
[Eén and Sörensson, 2003] measures. All these measures
have been proved effective in the literature [Eén and Sörens-



son, 2003; Audemard and Simon, 2009; Jabbour et al., 2014].
It is possible to use more relevant measures, but it should be
noted that by adding a measure toM, the number of relevant
learned clauses maintained may decrease or increase. The de-
crease can be explained by the fact that a learned clause can
be dominated with respect to a set of measures M and un-
dominated with respect toM′ , such thatM⊂M′. For ex-
ample, if two learned clauses c and c′ are undominated with
respect to M, there is a possibility that one of them domi-
nates the other by removing one measure. The increase can
be explained by the fact that a learned clause can be dom-
inated with respect to M and undominated with respect to
M′. For example, consider a learned clause c which domi-
nates another learned clause c′ with respect toM, by adding
a measure m to M, such that m(c′) � m(c), then c′ is no
longer dominated by c.

We run the SAT solvers on the 300 instances taken from
the last SAT-RACE 2015 and on the 300 instances taken from
the last SAT competition 2016. All the instances are pre-
processed by SatElite [Eén and Biere, 2005] before running
the SAT solver. The experiments are made using Intel Xeon
quad-core machines with 32GB of RAM running at 2.66 Ghz.
For each instance, we used a timeout of 1 hour of CPU time
for the SAT-RACE, and 10000s for the SAT Competition. We
integrate our approach in Glucose and made a comparison
between the original solver and the one enhanced with the
new deletion learned clause strategy using dominance rela-
tionship called DegComp-Glucose.

4.1 Number of solved instances and CPU time
Table 1 presents results on SAT-RACE. We use the source
code of Glucose 3.0 with the measure LBD (written LBD-
Glucose orGlucose in what follows). We then replace LBD
by each of the other measures : SIZE-Glucose that con-
siders the shortest clauses as the most relevant, CV SIDS-
Glucose that maintains the learned clauses most involved in
recent conflict analysis, and finally our proposal DegComp-
Glucose. Table 1 shows the comparative experimental eval-
uation of the four measures as well as Minisat 2.2. In
the second column of Table 1, we give the total number of
solved instances (#Solved). We also mention, the number of
instances proven satisfiable (#SAT) and unsatisfiable (#UN-
SAT) in parenthesis. The third column shows the average
CPU time in seconds (total time on solved instances divided
by the number of solved instances). On the SAT-RACE 2015,
our approach DegComp-Glucose is more efficient than the
others in terms of the number of solved instances (see also
Figure 1). In fact the original solver Glucose solves 236 in-
stances while it is enhanced with our dominance approach
as 12 more instances are solved. In fact, solving such addi-
tional number of instances is clearly significant in practical
SAT solving. The CV SIDS-Glucose solver solves 4 more
instances than Glucose 3.0. Minisat 2.2 is the worst solver
among the five solvers.

Table 2 shows 5 instances of the SAT-RACE 2015 solved
by our approach but not solved by LBD-Glucose, SIZE-
Glucose, nor CV SIDS-Glucose. The time used to solved
those instances may also explained the increase of the aver-
age running time ofDegComp-Glucose. In addition we also

Solvers #Solved (#SAT - #UNSAT) Average Time
Minisat 2.2 209 (134 - 75) 585.19 s
SIZE-Glucose 230 (131 - 99) 533.86 s
CV SIDS-Glucose 240 (140 - 100) 622.23 s
LBD-Glucose 236(136 - 100) 481.66 s
DegComp-Glucose 248 (146 - 102) 571.31 s

Table 1: Comparative evaluation on SAT-RACE-2015.

find that there is none instance solved by all the other solvers
and not solved by our approach (as detailed later). This shows
on the one hand that the application of dominance between
different relevant measures does not degrade the performance
of all the solvers but instead takes advantage of the perfor-
mance of each relevant measure, considering the SAT-RACE
dataset.

Instances LBD SIZE CVSIDS DegComp
jgiraldezlevy.2200.9086.08.40.8 - - - 93.71
manthey_DimacsSorterHalf_37_3 - - - 2642.88
14packages-2008seed.040-NOTKNOWN - - - 1713.46
manthey_DimacsSorter_37_3 - - - 2673.39
jgiraldezlevy.2200.9086.08.40.2 - - - 3195.03

Table 2: Instances solved by DegComp-Glucose and not
solved by the others on SAT-RACE.

Figure 1 shows the cumulated time results i.e. the num-
ber of instances (x-axis) solved under a given amount of time
in seconds (y-axis). This figure gives for each technique the
number of solved instances (#instances) in less than t sec-
onds. It confirms the efficiency of our dominance relationship
approach. From this figure, we can observe that DegComp-
Glucose is generally faster than all the other solvers, even if
the average running time of LBD-Glucose is the lowest one
(see Table 1). Although DegComp-Glucose needs addition-
nal time to compute the dominance relationship, the quality
of the remained clauses on SAT-RACE helps to improve the
time needed to solved the instances.
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Table 3 presents results on the instances of the SAT Com-
petition 2016. Here LBD-Glucose and CV SIDS-Glucose



Solvers #Solved (#SAT - #UNSAT) Average Time
Minisat 2.2 138 (65 - 73) 1194.85 s
SIZE-Glucose 156 (67 - 89) 1396.73 s
CV SIDS-Glucose 165 (67 - 98) 1368.99 s
LBD-Glucose 165 (68 - 97) 1142.33 s
DegComp-Glucose 164 (69 - 95) 1456.34 s

Table 3: Comparative evaluation on SAT-Competition-2016.
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Figure 2: Evaluation on SAT competition 2016

solve one more instance than DegComp-Glucose which re-
mains competitive, and solves the greatest number of satisfi-
able instances. Figure 2 presents the cumulated time results
on the instances of the SAT competition 2016. It comes out
from this second dataset that LBD-Glucose is more efficient
than the others including our approach which remains com-
petitive wrt the number of solved instances.

This outcome gives credit to the NO FREE Lunch theorem
[Wolpert and Macready, 1997]. We also think that the aggre-
gated function may not be unique for all the datasets, such
that it is necessary to explore the efficient combination of the
prefered measures.

4.2 Common solved instances
In table 4, the intersection between two relevant measures
gives the number of common instances solved by each mea-
sure. For example, LBD and SIZE solved 219 instances
in common, while 234 instances are solved by LBD and
DegComp. We can see than our approach solves the largest
number of instances in common with each of the aggregated
measures. More precisely, the number of common instances
solved with another measure is lower than the number of
common instances solved with our approach.

Measures LBD SIZE CVSIDS DegComp
LBD 236 234
SIZE 219 230 225
CVSIDS 233 221 240 238
DegComp 248

Table 4: Common solved Instances from SAT-RACE-2015.

To get more details, Table 5 gives the number of instances
commonly solved by the considered relevant measures. This
table allows to see the number of common instances solved
by one, two, three or four measures. For example, there
are 218 common instances solved by the four deletion strate-
gies, while 44 instances are not solved by none of them. We
can observe that 1, 1, 5, and 5 are the number of instances
solved alone by respectively LBD and CV SIDS, SIZE
and DegComp. Moreover, there is no instance solved by the
three strategies (LBD, SIZE andCV SIDS) and not solved
by our approach DegComp.

Measures DegComp ¬DegComp
CVSIDS ¬CVSIDS CVSIDS ¬CVSIDS

LBD SIZE 218 1 0 0
¬SIZE 1 1 1 1

¬ LBD SIZE 3 3 0 5
¬SIZE 3 5 1 44

Table 5: Detailed of common instances with SAT-RACE.

4.3 Combined measures
Table 6 gives the number of instances solved with our dom-
inance approach wrt the measures used in the dominance re-
lations. From this table, we can see that the number of in-
stances solved by using two measures (instead of three) in
the dominance relationship is always lower than the number
of instances solved (248) by using three measures.

Measures LBD SIZE CVSIDS DegComp
LBD 236
SIZE 223 230
CVSIDS 239 242 240
DegComp 248

Table 6: Combining two measures on SAT-RACE-2015.

5 Conclusion and Future Works
In this paper, we propose an approach that addresses the
learned clauses database management problem. We have
shown that the idea of dominance relationship between rel-
evant measures is a nice way to take profit of each measure.
This approach is not hindered by the abundance of relevant
measures which has been the issue of several works. The pro-
posed approach avoids another non-trivial problem which is
the amount of learned clauses to be deleted at each reduction
step of the learned clauses database. The experimental results
show that exploiting the dominance relationship improves the
performance of CDCL SAT solver, at least on the SAT-RACE
2015. For the case of SAT-Competition, we still have to find
a good dominance relation. The instances categories might
also be an issue which should be explored.

To the best of our knowledge, this is the first time that dom-
inance relationship has been used in the satisfiability domain
to improve the performance of a CDCL SAT solver. Our ap-
proach opens interesting perspectives. In fact, any new rel-
evant measure of learned clauses can be integrated into the
dominance relationship.
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