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Abstract

This paper deals with the existence and uniqueness of (µ-pseudo) almost periodic
mild solution to some evolution equations with Stepanov (µ-pseudo) almost periodic
coefficients, in both determinist and stochastic cases. After revisiting some known
concepts and properties of Stepanov (µ-pseudo) almost periodicity in complete metric
space, we consider a semilinear stochastic evolution equation on a Hilbert separable
space with Stepanov (µ-pseudo) almost periodic coefficients. We show existence and
uniqueness of the mild solution which is (µ-pseudo) almost periodic in 2-distribution.
We also generalize a result by Andres and Pennequin, according to which there is
no purely Stepanov almost periodic solutions to differential equations with Stepanov
almost periodic coefficients.

Keywords : Weighted pseudo almost periodic; Stepanov almost periodic; Stochastic
evolution equations; Pseudo almost periodic in 2-UI distribution

1 Introduction

The concept of Stepanov almost periodicity, which is the central issue in this paper, was
first introduced in the literature by Stepanov [56], and is a natural generalization of the
concept of almost periodicity in Bohr’s sense. Important contributions upon such concept
where subsequently made by N. Wiener [65], P. Franklin [38], A. S. Besicovitch [11], B. M.
Levitan and V. V. Zhikov [45, 46], Amerio and Prouse [1], S. Zaidman [67], A. S. Rao [54],
C. Corduneanu [22], L. I. Danilov [26, 27], S. Stoiński [58, 57], J. Andres, A. M. Bersani,
G. Grande, K. Lesniak [3, 4, 2, 5]. Outside the field of harmonic analysis, a substantial
application of Stepanov almost periodicity lies in the theory of differential equations [50].
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In this context, the theory of dynamical systems is pertinent and, in particular, in the
study of various kinds and extensions of almost periodic and (or) almost automorphic
motions. This is due mainly to their importance and applications in physical sciences.
One can mention e.g. T. Diagana [29, 32, 33, 34], J. Blot et al. [17, 15, 16, 13], G. M.
N’Guérékata et al. [51, 52], J. Andres and D. Pennequin [7, 6], Z. Hu and A. B. Mingarelli
[40, 41, 39].

Though there has been a significant attention devoted to the theory of Stepanov al-
most periodicity in the deterministic case, there are few works related to the notion of
Stepanov almost periodicity for stochastic processes. To our knowledge, the first work ded-
icated to Stepanov almost periodically correlated (APC) processes is due to L. H. Hurd
and A. Russek [42], where Gladyshev’s characterization of APC correlation functions was
extended to Stepanov APC processes. In the framework of Stochastic differential equa-
tion, Bezandry and Diagana [12] introduced the concept of Stepanov almost periodicity
in mean-square. Their aim was to prove, under some conditions, existence and unique-
ness of Stepanov (quadratic-mean) almost periodic solution for a class of nonautonomous
stochastic evolution equations on a separable real Hilbert space. This paper was the start-
ing point of other works on stochastic differential equations with Stepanov-like (µ-pseudo)
almost periodic (automorphic) coefficients (see, e.g. [21, 20, 66, 60]). Unfortunately, the
claimed results are erroneous [9, 49].

The motivation of this paper has two sources. The first one comes from the papers
by Andres and Pennequin [7, 6], who show the nonexistence of purely Stepanov-almost
periodic solutions of ordinary differential equations in uniformly convex Banach spaces.
The second one comes from our paper [9, Example 3.1], where, with the simple counterex-
ample of Ornstein-Uhlenbeck process, we have shown that even a one-dimensional linear
equation with constant coefficients has no nontrivial solution which is Stepanov almost
periodic in mean-square.

In this paper, we revisit the question of existence and uniqueness of Stepanov almost
periodic solutions in both deterministic and stochastic cases. More precisely, we con-
sider two semilinear stochastic evolution equations in a Hilbert space. The first one has
Stepanov almost periodic coefficients, and the second one has Stepanov µ-pseudo almost
periodic coefficients. We show that each equation has a unique mild solution which is
almost periodic in 2-UI distribution in the first case, and µ-pseudo almost periodic in 2-UI
distribution in the second case. Our results generalize and complete those of Da Prato
and Tudor [23], and those obtained recently by Kamenskii et al. [43], and Bedouhene et
al. [9]. We also show, by mean of a new superposition theorem in the deterministic case,
the nonexistence of purely Stepanov µ-pseudo almost periodic solutions to some evolution
equations, generalizing a result of Andres and Pennequin [7].

The rest of the paper is organized as follows. In Section 2, we investigate several
notions of Stepanov almost periodicity in Lebesgue measure, and Stepanov (µ-pseudo)
almost periodicity for metric-valued functions. We see in particular that almost periodicity
in Stepanov sense depends on the uniform structure of the state space. Special attention is
paid to superposition operators between the spaces of Stepanov (µ-pseudo) almost periodic
metric-valued functions. Section 3 is the main part of this paper. Therein, we study
existence and uniqueness of bounded mild solutions to the abstract semilinear stochastic
evolution equation on a Hilbert separable space

dX(t) = AX(t)dt + F (t,X(t))dt + G(t,X(t))dW (t),

where F and G are Stepanov (µ-pseudo) almost periodic, satisfying Lipschitz and growth
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conditions. In the case of uniqueness, the solution can be (µ-pseudo) almost periodic in 2-
UI distribution. Our approach is inspired from Kamenskii et al. [43], Da Prato and Tudor
[23], and Bedouhene et al. [9]. The major difficulty is the treatment of the limits F∞ and
G∞ provided by the Bochner criterion in Stepanov sense applied to F and G respectively.
Thanks to an application of Komlós’s theorem [44], this difficulty dissipates by showing
that F∞ and G∞ inherit the same properties as F and G respectively. Finally, Section 4
is devoted to some remarks and conclusions about the problem of existence of purely
Stepanov almost periodic solutions. We show by a simple example in a one-dimensional
setting, that one can obtain bounded purely Stepanov almost periodic solutions when the
forcing term is purely Stepanov almost periodic in Lebesgue measure.

2 Stepanov Almost periodicity and its variants in metric

space

In this section, we present the concept of Stepanov (µ-pseudo) almost periodic function
and related concepts like almost periodicity in Lebesgue measure. Moreover, we also recall
some useful and key results. We begin with some notations.

2.1 Notations

In what follows, (E, d) is a complete metric space. Unless otherwise stated, we keep the
notation d to designate the metric of any metric space X. When X is a Banach space, its
norm induced by d will be denoted by ‖.‖.

Let X and Y be two complete metric spaces, we denote some classical spaces as follows:

• C(X,Y), the space of continuous functions from X to Y;

• Ck(X,Y), the space C(X,Y) endowed with the topology of uniform convergence on
compact subsets of X;

• BC(X,Y), the space of bounded continuous functions from X to Y;

• If Y is Banach space, we denote by CUB
(
R,Y

)
the space BC(R,Y) endowed with

the topology of uniform convergence on R whose norm is noted by ‖.‖∞.

2.2 Stepanov and Bohr almost periodicity

Let us recall some definitions of (Stepanov) almost periodic functions and some key results.

Almost periodicity Recall that a set A ⊂ R is relatively dense if there exists a real
number ℓ > 0, such that A∩ [a, a+ℓ] 6= ∅, for all a in R. We say that a continuous function
f : R → E is Bohr almost periodic (or simply almost periodic) if for all ε > 0, the set

T (f, ε) :=

{
τ ∈ R, sup

t∈R
d (f(t), f(t + τ)) < ε

}

is relatively dense [1, 11, 22]. The numbers τ ∈ T (f, ε) are called ε-almost periods. We
denote by AP(R,E) the space of Bohr almost periodic functions. We have the follow-
ing criteria for Bohr almost periodicity, established by Bochner [19] for complex-valued
functions, see also [23] for metric-valued functions:
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Theorem 2.1 ([19, 23]) Let f : R → E be a continuous function. The following condi-
tions are equivalent:

1. f ∈ AP(R,E).

2. f satisfies Bochner criterion, namely, the set {f(t + .), t ∈ R} is relatively compact
in BC(R,E) with respect to the uniform metric.

3. For every pair of sequences (α′
n) ⊂ R and (β′

n) ⊂ R, one can extract common
subsequences (αn) ⊂ (α′

n) and (βn) ⊂ (β′
n) such that

lim
n→∞

lim
m→∞

f(t + αn + βm) = lim
n→∞

f(t + αn + βn) (1)

pointwise.

If condition 3 holds, we say that f satisfies Bochner’s double sequence criterion. This
criterion turns out to be a very powerful tool in applications to differential equations, see
for instance [23].

Stepanov almost periodicity In all the sequel, unless stated otherwise, p denotes a
real number, with p ≥ 1. Following [25, 28], let M(R,E) be the set of measurable functions
from R to E (we do not distinguish between functions that coincide almost everywhere
for Lebesgue’s measure). We fix a point x0 in E. We denote by L

p(R,E), the subset of
M(R,E) of locally p-integrable functions, that is,

L
p(R,E) =

{
f ∈ M(R,E), for any a, b ∈ R;

∫

[a,b]

dp (f(t), x0) dt < +∞
}
.

Define Lp(0, 1;E) as the set

Lp(0, 1;E) =
{
f ∈ M(R, E),

∫

[0,1]

dp (f(t), x0) dt < +∞
}

which is a complete metric space, when it is endowed with the metric

DLp(f, g) =



∫

[0,1]

dp(f(t), g(t))dt




1/p

.

We denote by L∞(R,E) the space of all E-valued essentially bounded functions, endowed
with essential supremum metric. Obviously, all the previous spaces do not depend on the
choice of the point x0 ∈ E.

We say that a locally p-integrable function f : R → E is Stepanov almost periodic of
order p or S

p-almost periodic, if, for all ε > 0, the set

S
pT (f, ε) :=

{
τ ∈ R, Dd

Sp (f (. + τ) , f (.)) ≤ ε
}

is relatively dense, where, for any locally p-integrable functions f, g : R → E,

Dd
Sp(f, g) = sup

x∈R

(∫ x+1

x
dp(f(t), g(t)) dt

)1/p

.
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The space of Sp-almost periodic E-valued functions is denoted by S
pAP(R,E). Let S∞AP(R,E)

be the space of functions f ∈ L∞(R,E) such that for any ε > 0, there exists a relatively
dense T d

L∞(f, ε) such that

Dd
L∞ (f (. + τ) , f (.)) ≤ ε, for all τ ∈ T d

L∞(f, ε).

The relation limp→∞Dd
Sp

(f, g) = Dd
L∞(f, g) holds for any functions f, g ∈ M(R,E), see [7]

for the proof.
As in the case of Bohr-almost periodic functions, we have similar characterizations of

Stepanov almost periodic
functions. More precisely, let f ∈ L

p(R,E), p ∈ [1,+∞[. Then, the following state-
ments are equivalent (compare with [41, Theorem 1 and Proposition 6]):

• f is S
p-almost periodic.

• f is S
p-almost periodic in Bochner sense, that is, from every real sequence (α′

n) ⊂ R

one can extract a subsequence (αn) of (α′
n) and there exists a function g ∈ L

p(R,E)
such that

lim
n→+∞

Dd
Sp (f(. + αn), g(.)) = 0.

• f satisfies Bochner’s type double sequence criterion in Stepanov sense, that is, for
every pair of sequences {α′

n} ⊂ R and {β′

n} ⊂ R, there exist common subsequences
(αn) ⊂ (α′

n) and (βn) ⊂ (β′
n) such that, for every t ∈ R, the limits

lim
n→∞

lim
m→∞

f(t + αn + βm) and lim
n→∞

f(t + αn + βn), (2)

exist and are equal, in the sense of the Lp-metric

Dd
Lp(h(t + .), g(t + .)) =

(∫

[0,1]
dp(h(t + s), g(t + s)) ds

)1/p

for h, g ∈ L
p(R,E).

The equivalence between these statements was originally established in [41] in the context
of Banach spaces. However, one can provide a simpler proof of the equivalence of the three
previous items based on the following observation that the concept of Stepanov almost
periodicity can be seen as Bohr almost periodicity of some function with values in the
Lebesgue space Lp(0, 1;E). More precisely, let f b denote the Bochner transform [18] of a
function f ∈ L

p(R,E):

f b :

{
R → E

[0,1]

t 7→ f(t + .).

Then f ∈ S
pAP(R,E) if, and only if, f b ∈ AP(R,Lp(0, 1;E), and the previous equivalences

become a simple consequence of the fact that fn → f if and only if f b
n → f b (see e.g.

[1, 5, 8, 46]).
Since functions in S

pAP(R,E) are bounded with respect to the Stepanov metric, one
denotes by S

p(R,E) (or S
p(R) when E = R, and S(R,E) when p = 1) the set of all

Dd
Sp

-bounded functions, that is, for some (or any) fixed x0 ∈ E,

S
p(R,E) = {f ∈ M(R,E);Dd

Sp(f, x0) < +∞}.
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So, from now on, the space S
pAP(R,E) will be seen as a (closed) subset of the complete

metric space (Sp(R,E),Dd
Sp

). We have the following inclusions:

AP(R,E) ⊂ S
∞AP(R,E) ⊂ S

pAP(R,E) ⊂ S
qAP(R,E) ⊂ S

1AP(R,E) ⊂ S(R,E)

for p ≥ q ≥ 1 and AP(R,E) = S
pAP(R,E) ∩ Cu(R,E), where Cu(R,E) denotes the set of

E-valued uniformly continuous functions on R.
For more properties and details about real and Banach-valued Stepanov almost periodic

functions, we refer the reader for instance to the papers and monographs [1, 2, 8, 11, 22,
37, 45, 46].

Beside the previous characterizations of the class S
pAP(R,E), there is an other one

based on the concept of Stepanov almost periodicity in (Lebesgue) measure, invented by
Stepanov [56]. This concept plays a significant role in the proof of our superposition
theorem in SpAP(R,E) (Theorem 2.10).

Stepanov almost periodicity in Lebesgue measure : the space S
0AP For any

measurable set A ⊂ R, let

κ(A) = sup
ξ∈R

meas ([ξ, ξ + 1] ∩A) ,

where meas is the Lebesgue measure. A measurable function f : R → E is said to be
Stepanov almost periodic in Lebesgue measure or S0-almost periodic if for any ε, δ > 0, the
set

Tκ(f, ε, δ) :=

{
τ ∈ R, sup

ξ∈R
meas

{
t ∈ [ξ, ξ + 1], d

(
f(t + τ), f(t)

)
≥ ε
}
< δ

}

is relatively dense. It should be mentioned that this almost periodicity was introduced as
µ-almost periodicity [57]. We denote by S

0AP(R,E) (S0AP(R) when E = R) the space of
such fonctions. This space was studied in depth by several authors (in both normed and
metric spaces). One can quote Stoinski’s works [57, 59], where an approximation property
and some compactness criterion are given. Danilov [25, 26, 28] has explored this class in
the framework of almost periodic measure-valued functions. The recently published paper
[53], that we discovered at the time of writing this paper, completes the previous ones.
The authors of this paper investigate some other properties, in particular, they show that
in general the mean value of S

0-almost periodic functions may not exist, furthermore,
S
0-almost periodic functions are generally not Stepanov-bounded.

As pointed out by Danilov [26], S0-almost periodicity coincides with classical Stepanov
almost periodicity when replacing the metric d by d′ = min(d, 1). In other words, we have
the following characterization (see [26, 27])

S
0AP(R,E) = S

1AP
(
R, (E, d′)

)
= S

pAP
(
R, (E, d′)

)
,∀p > 0. (3)

More generally, Stepanov almost periodicity can be seen as S
0-almost periodicity under a

uniform integrability condition in Stepanov sense (see [25, 38, 53, 56]). To be more precise,
let M ′

p(R,E) be the set of Dd
Sp

-bounded functions such that

lim
δ→0+

sup
ξ∈R

sup
T⊂[ξ,ξ+1]

measT≤δ

∫

T
dp
(
f(t), x0

)
dt = 0. (4)
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The space M ′
p(R,E), p ≥ 1, is a closed subset of (Sp(R,E),Dd

Sp
). In [26, page 1420],

Danilov gives an elegant characterization of Stepanov almost periodic functions in terms
of M ′

p(R,E) and S
0AP(R,E), more precisely:

S
pAP(R,E) = S

0AP(R,E) ∩M ′
p(R,E). (5)

A rather interesting result about the space S
0AP(R,E) is reported in the following

theorem [27, Theorem 3], which gives a uniform approximation of Stepanov almost periodic
functions by Bohr almost periodic functions, in the context of normed space E. Before,
let us denote by S(R) the collection of measurable sets T ⊂ R such that the indicator
function of T , 1lT , belongs to S

1AP(R), and by T c the complementary set of T .

Theorem 2.2 (Danilov [27]) Let f ∈ S
0AP(R,E), then for any δ > 0, there exist a set

Tδ ∈ S(R) and a Bohr almost periodic function Fδ such that κ(T c
δ ) < δ and f(t) = Fδ(t)

for all t ∈ Tδ.

As consequence, we have the following corollary:

Corollary 2.3 Let f ∈ S
0AP(R,E). Then, for all ε > 0, there exist a measurable set

Tε ∈ S(R) and a compact subset Kε of E such that κ(T c
ε ) < ε and f(t) ∈ Kε,∀t ∈ Tε.

Danilov has shown that this property remains valid even in the metric framework [28].

Remark 2.4 1. Unlike almost periodicity in Bohr sense and almost periodicity in
Lebesque measure for function with values in a metric space (E, d), which depend
only on the topological structure of E and not on its metric (see e.g., [10] and [26] re-
spectively), Stepanov almost periodicity is a metric property. In fact, as the metrics
d and d′ = min(d, 1) are topologically equivalent on E, we only need to show that the
inclusion S

1AP
(
R, (E, d)

)
⊂ S

1AP
(
R, (E, d′)

)
is strict, since in view of (3), we have

S
1AP

(
R, (E, d′)

)
= S

0AP(R,E). Consider the example given in [7, Remark 3.3]. As

shown by the authors, the function g = exp
(∑+∞

n=2 gn
)
, where gn is the 4n-periodic

function given by

gn(t) = βn

(
1 − 2

αn
|t− n|

)
1l[n− 2

αn
,n+ 2

αn
](t), t ∈ [−2n, 2n],

with αn = 1/n5 and βn = n3, is not in S
1AP(R). Using Danilov’s Corollary [26], we

get that g belongs to S
0AP(R), as a superposition of a continuous function and a

periodic, continuous and bounded function.

2. Still in the spirit of the link between the spaces S
1AP(R) and S

0AP(R), an inter-
esting property established by Stoiński says that the inverse of any trigonometric
polynomial with constant sign is S0-almost periodic. In particular, the Levitan func-

tion f : R → R given by f(t) =
1

2 + cos(t) + cos(2t)
is S

0-almost periodic but not

Stepanov almost periodic (see Example 4.1 and [53] for the second statement).

3. Uniform integrability in Stepanov sense is a metric property, that is, the space
M ′

p(R, (E, d)) depends on the metric d.
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Bohr and Stepanov almost periodic functions depending on a parameter Here-
inafter, some definitions of Bohr and Stepanov almost periodicity for metric-valued para-
metric functions are presented. Such definitions are simple adaptation of the well-known
ones in the literature, see in particular [9, 17, 31, 35, 47].

1. We say that a parametric function f : R×X → Y is almost periodic with respect to the
first variable, uniformly with respect to the second variable in bounded subsets of X
(respectively in compact subsets of X) if, for every bounded (respectively compact)
subset B of X, the mapping f : R → C(B,Y) is almost periodic. We denote by
APUb(R× X,Y) and APUc(R× X,Y) respectively the spaces of such functions.

2. We say that a function f : R× X → Y is S
p-almost periodic if, for every x ∈ X, the

Y-valued function f(., x) is S
p-almost periodic. We denote by S

pAP (R× X,Y) the
space of such functions.

3. Let f ∈ S
pAP (R× X,Y). We say that f is Sp-almost periodic uniformly with respect

to the second variable in compact (resp. bounded) subsets of X if f(., x) is S
p-

almost periodic uniformly with respect to x ∈ K for any compact (resp. bounded)
subset K of X. The space of such functions is denoted by S

pAPUc (R× X,Y) (resp.
S
pAPUb (R× X,Y)).

Clearly, we have the following inclusions:

S
pAPUb(R× X,Y) ⊂ S

pAPUc(R × X,Y) ⊂ S
pAP(R× X,Y) ⊂ L

p(R× X,Y),

where L
p(R×X,Y) denotes the set of measurable functions f : R×X → Y such that, for

all x ∈ X; f(., x) ∈ L
p(R,Y).

The following proposition will be very useful in the sequel.

Proposition 2.5 Let Y be a complete metric space, and let X be a complete separable
metric space. Let f ∈ S

pAP(R × X,Y) satisfying the following Lipschitz condition:

d (f(t, x), f(t, y)) ≤ K(t)d (x, y) , ∀t ∈ R, x, y ∈ X, (6)

for some positive function K(.) in S
p(R). Then for every real sequence (α

′

n), there exist
a subsequence (αn) ⊂ (α

′

n) (independent of x) and a function f∞ ∈ S
pAP(R × X,Y) such

that for every t ∈ R and x ∈ X, we have

lim
n

∫ t+1

t
d (f(s + αn, x), f∞(s, x))p ds = 0. (7)

Proof Firstly, let us show that f∞ is Lipschitz with respect to the second variable in
the Stepanov metric sense. Let x, y ∈ X. We consider a real sequence (α

′

n) ⊂ R. Since
f ∈ S

pAP(R × X,Y), for every x ∈ X, we can find a subsequence (αn) ⊂ (α
′

n) (depending
on x) such that

lim
n

Dd
Sp (f(. + αn, x) − f∞(., x)) = 0. (8)

For the same reason, for every y ∈ X, there exists a subsequence of (αn), (depending on
both x and y still noted (αn) for simplicity) such that

lim
n

Dd
Sp (f(. + αn, y), f∞(., y)) = 0. (9)
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Then, by (6), (8) and (9), we get

Dd
Sp (f∞(., x), f∞(., y)) ≤ limDd

Sp (f∞(., x), f(. + αn, x))+limDd
Sp (f(. + αn, x), f(. + αn, y))

+ limDd
Sp (f(. + αn, y), f∞(., y))

≤ ‖K‖Spd(x, y). (10)

Secondly, let us show (7). Let (α
′

n) be a real sequence. Since X is separable, let D
be a dense countable subset of X. Using (8) and a diagonal procedure, we can find a
subsequence (αn) of (α

′

n) such that for every t ∈ R and x ∈ D, we have

lim
n

∫ t+1

t
(d (f(s + αn, x), f∞(s, x)))p ds = 0 (11)

Let x ∈ X, there exists a sequence (xk) ⊂ D such that limk d(xk, x) = 0. From (6), we
deduce

lim
k

∫ t+1

t
(d (f(s + αn, xk), f(s + αn, x)))p ds = 0, (12)

uniformly with respect to n ∈ N. Now from (11), we obtain, for every t ∈ R and k ∈ N,

lim
n

∫ t+1

t
(d (f(s + αn, xk), f∞(s, xk)))p ds = 0. (13)

Using (12), (13) and by a classical result on interchange of limits, we deduce

lim
n

f(s + αn, x) = lim
k

f∞(s, xk) = f∞(s, x)

in Stepanov metric. The last equality follows from (10).

2.3 Bohr and Stepanov weighted pseudo almost periodic functions with

values in metric space

The notions of Stepanov-like weighted pseudo almost periodicity and Stepanov pseudo
almost periodicity of functions, with values in Banach space X, were introduced by T.
Diagana [29, 30, 31] as natural generalizations of the pseudo almost periodicity invented
by Zhang [68, 69].

Here we give the definitions of these different notions for functions with values in a
complete metric space E. C. and M. Tudor [62] have proposed an elegant definition of
pseudo almost periodicity in the context of metric spaces, which is slightly restrictive,
since it requires compactness of the range of the function instead of its boundedness. A
more general definition of weighted pseudo almost periodicity (automorphic) has been
introduced in [9], where it is shown that there is no need to assume that E is a vector
space, nor a metric space, and these notions depend only on the topological structure of
E. The definition we propose here (see Definition 2.6) is an intermediate between that of
C. and M. Tudor and that in the wide sense [9, Proposition 2.5 (i)]. It coincides with the
one existing in the literature when E is a normed space [15, 16].

We begin by recalling the definition of µ-ergodicity for vector-valued functions [15, 16].
Let (X; ‖.‖) be a Banach space. Let µ be a Borel measure on R satisfying

µ(R) = ∞ and µ(I) < ∞ for every bounded interval I. (14)
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A function f ∈ BC(R,X) is said to be µ-ergodic if it satisfies

lim
r→∞

1

µ([−r, r])

∫

[−r,r]
‖f(t)‖ dµ(t) = 0.

We denote by E(R,X, µ) the space of µ-ergodic X-valued functions. When µ is the Lebesgue
measure, we merely denote this space by E(R,X). For more details about µ-ergodic func-
tions, we refer the reader to [15, 16].

Definition 2.6 A continuous and bounded function f : R → E is said to be pseudo almost
periodic if there exists a function g ∈ AP(R,E) such that the mapping t → d(f(t), g(t))
is in E(R,R), and it is said to be µ-pseudo almost periodic or weighted pseudo almost
periodic if there exists a function g ∈ AP(R,E) such that the mapping t → d(f(t), g(t)) is
in E(R,R, µ).

We denote respectively by PAP(R,E) and PAP(R,E, µ) the spaces of such functions. Note
that g is uniquely determined by f in the first case (see [62]). This is not necessarily the
case when considering f ∈ PAP(R,E, µ). However, it is easy to see that a sufficient
condition of uniqueness of g is that E(R,E, µ) is translation invariant. This is the case in
particular if Condition (H) of [15] is satisfied:

(H) For every τ ∈ R, there exist β > 0 and a bounded interval I such that µ(A + τ) ≤
βµ(A) whenever A is a Borel subset of R such that A ∩ I = ∅.

Let p ≥ 1. We use Bochner’s transform to define the Stepanov µ-pseudo almost
periodicity for metric-valued functions:

Definition 2.7 1. We say that a locally p-integrable function f : R → E is Stepanov
µ-ergodic if f b ∈ E(R,Lp([0, 1], dt,E), µ). Set

S
pE(R,E, µ) =

{
f ∈ L

p(R,E); f b ∈ E(R,Lp([0, 1], dt,E), µ)
}
.

2. We say that f : R → E is

S
p-weighted pseudo almost periodic, or Stepanov µ-pseudo almost periodic if

f b ∈ PAP(R,Lp([0, 1];E), µ),

that is, if there exists g ∈ S
pAP(R,E) such that

lim
r→∞

1

µ([−r, r])

∫

[−r,r]
DLp

(
f b(t), gb(t)

)
dµ(t) = 0, (15)

or, equivalently,

lim
r→∞

1

µ([−r, r])

∫

[−r,r]




1∫

0

dp(f(t + s), g(t + s))ds




1/p

dµ(t) = 0. (16)

We denote by S
pPAP(R,E, µ) the space of such functions. Note that, in this case, the

function g is uniquely determined if µ satisfies Condition (H). In fact, assume that g1, g2 ∈
S
pAP(R,E) define the same function f . Then, the mapping t → DLp(gb1(t), gb2(t)) is in

E(R,R, µ) ∩ AP(R,R). It follows that DLp(gb1(t), gb2(t)) = 0, for all t ∈ R. Consequently
g1 = g2, a.e..

We have the following characterization of SpPAP(R,E, µ):

10



Proposition 2.8 Eq. (16) is equivalent to

lim
r→∞

1

µ([−r, r])

∫

[−r,r]

1∫

0

dp(f(t + s), g(t + s))ds dµ(t) = 0. (17)

Our proof is inspired from J. Blot and P. Cieutat [14, Proposition 6.6].
Proof The case when p = 1 is obvious. Set, for simplicity, d(f(t+ s), g(t+ s)) := h(t+ s)
and

|H|
Sp(t) :=




1∫

0

‖H(t + s)‖p ds




1/p

(18)

for any p-locally integrable Banach-space valued function, H. Let us assume that t 7→
|h|p

Sp(t) ∈ E(R,R, µ), p > 1. Using Hölder’s inequality, we have

∫

[−r,r]
|h|

Sp(t) dµ(t) ≤ (µ([−r, r]))1/q
{∫

[−r,r]
|h|p

Sp(t) dµ(t)

}1/p

.

Thus,

1

µ([−r, r])

∫

[−r,r]
|h|

Sp(t) dµ(t) ≤
{

1

µ([−r, r])

∫

[−r,r]
|h|p

Sp(t) dµ(t)

}1/p

which leads to |h|
Sp(.) ∈ E(R,R, µ). Conversely, set M = sup

t∈R
|h|p−1

Sp(t) < ∞. We have

1

µ([−r, r])

∫

[−r,r]
|h|p

Sp(t) dµ(t) ≤ 1

µ([−r, r])

∫

[−r,r]
|h|

Sp(t) |h|
p−1
Sp(t) dµ(t)

≤M
1

µ([−r, r])

∫

[−r,r]
|h|

Sp(t) dµ(t)

which means that |h|p
Sp(.) ∈ E(R,R, µ).

From now on, we only deal with the weighted pseudo almost periodicity since pseudo
almost periodicity is a special case.

Weighted pseudo almost periodic and Stepanov-like weighted pseudo almost
periodic functions depending on a parameter Let µ be a Borel measure on R satis-
fying (14). The definition of µ-pseudo almost periodicity for functions with parameter we
present here is just an adaptation of that presented in [9]. We recall it for the convenience
of the reader. Let X and Y be two metric spaces.

• We say that f ∈ BC(R × X,Y) is µ-pseudo almost periodic with respect to the first
variable, uniformly with respect to the second variable in compact subsets of X if,

1. for every x ∈ X, f(., x) is µ-pseudo almost periodic (in this case, we write
f ∈ PAP(R× X,Y, µ)),

11



2. there exists g ∈ APUc(R× X,Y) such that:

lim
r→∞

1/µ([−r, r])

∫ r

−r
d(f(t, x), g(t, x)) dµ(t) = 0

uniformly with respect to x in compact subsets of X.

Denote by PAPUc(R× X,Y, µ) the collection of such functions.

• If (Y; ‖.‖) is a Banach space, we say that a function f ∈ L
p(R×X,Y) is Stepanov µ-

ergodic with respect to the first variable, uniformly with respect to the second variable
in compact subsets of X if,

1. for every x ∈ X, f b(., x) ∈ E(R,Y, µ),

2. f satisfies

lim
r→∞

1/µ([−r, r])

∫ r

−r
|f(., x)|

Sp(t) dµ(t) = 0

uniformly with respect to x in compact subsets of X, where |.|
Sp(t) is defined by

(18).

The collection of such functions is denoted by S
pEUc(R× X,Y, µ).

• A function f ∈ L
p(R×X,Y) is said to be Stepanov-like µ-pseudo almost periodic with

respect to the first variable, uniformly with respect to the second variable in compact
subsets of X if there exists g ∈ S

pAPUc(R× X,Y) such that

[
(t, x) 7→ d

(
f(t, x), g(t, x)

)]
∈ S

pEUc(R× X,R, µ).

The space of such functions is denoted by S
pPAPUc(R× X,Y, µ).

2.4 A superposition theorem in SpPAP(R,E, µ)

In this section, we study some properties of parametric functions, especially Nemytskii’s
operators N (f)(x) := [t 7→ f(t, x(t))] built on f : R × E → E in the space of Stepanov
(µ-pseudo) almost periodic functions. In the following, we assume that 1

p = 1
q + 1

r with p,
q and r ≥ 1, and we consider the parametric function f : R × E → E, which satisfies the
Lipschitz condition:

(Lip) There exists a nonnegative function L ∈ S
r(R) such that

d(f(t, u), f(t, v)) ≤ L(t)d(u, v), ∀t ∈ R, u, v ∈ E.

Using compactness property of Stepanov almost periodicity given by Danilov (see The-
orem 2.2 and Corollary 2.3), we improve the composition theorem of Stepanov almost
periodic functions given in [35, Theorem 2.1]. We show in particular that in order to
obtain that N (f) maps SqAP(R,E) into S

pAP(R,E), the following compactness condition:

(Com) There exists a subset A ⊂ R with meas(A) = 0 such that K := {x(t) : t ∈ R\A} is a
compact subset of E,
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is not necessary. Let us mention that Andres and Pennequin [7, Lemma 3.2] have shown
that, given a Banach space X, a continuous function f : X → X satisfying, for some a, b > 0
and p, q ≥ 1, the following growth condition:

∀x ∈ X, ‖f(x)‖ ≤ a ‖x‖p/q + b,

and an S
pAP-function g : R → X, the composition f ◦ g is an S

qAP-function.
We begin by a lemma which identifies the spaces SpAP(R×E,E) and S

pAPUc(R×E,E)
under Condition (Lip).

Lemma 2.9 Let f : R × E → E be a parametric function satisfying Condition (Lip).
Then, f ∈ S

pAP(R × E,E) if, and only if, f ∈ S
pAPUc(R × E,E).

The proof of this lemma is very similar to that of Fan et al. [36, Lemma 3.1] which is the
analogous result for almost automorphic case.

Now, before giving the superposition theorem in S
pAP(R × E,E), we need some more

notations. Let u : R → E be a mesurable function, let A ⊂ R be a measurable set. We
denote by u⌊A,x0⌋ the ”truncated” function from R to E, defined by

u⌊A,x0⌋(t) =

{
u(t) if t ∈ A
x0 if t /∈ A.

We are now ready to present the superposition theorem in S
pAP(R× E,E):

Theorem 2.10 Let f ∈ S
pAP(R × E,E), and assume that f satisfies Condition (Lip).

Then, for every u ∈ S
qAP(R,E), we have f(., u(.)) ∈ S

pAP(R,E).

Proof Fix ε > 0 and x0 ∈ E. Let u ∈ S
qAP(R,E). In view of (5), we have u ∈

M ′
p(R,E) ∩ S

0AP(R,E), thus, there exists η > 0 such that Dd
Sq

(
u⌊A,x0⌋(.), x0

)
≤ ε for all

measurable set A ⊂ R satisfying κ(A) ≤ η. For such η, using Corollary 2.3, we deduce
that there exists a compact subset Kη(ε) ⊂ E such that

κ{t ∈ R, x(t) /∈ Kη(ε)} < η

and
Dd

Sq

(
u⌊T

c
ε ,x0⌋(.), x0

)
≤ ε

6 ‖L‖
Sr

, (19)

where Tε := Tη(ε) is the subset of R on which u(t) ∈ Kη(ε) (we exclude for simplicity the
trivial case when ‖L‖

Sr
= 0). The compactness of Kη(ε) implies that there exists a finite

sequence (x1, x2, ..., xn) in Kη(ε) such that

Kη(ε) ⊂
⋃

1≤i≤n

B

(
xi,

ε

6 ‖L‖
Sr

)
. (20)

For i = 1, . . . , n and t ∈ R, let

τ(t) =

{
0 if t 6∈ Tε

min
{
i ∈ {1, . . . , n}; d(u(t), xi) ≤ ε

6‖L‖
Sr

}
if t ∈ Tε,

and, for i = 0, . . . , n and ξ ∈ R, let

Ai,ξ = {t ∈ [ξ, ξ + 1]; τ(t) = i}.
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By Lemma 2.9, we have f ∈ S
pAPUc(R × E,E). Since u ∈ S

qAP(R,E), we can choose
a common relatively dense set T (f, u, ε) ⊂ R such that, for τ ∈ T (f, u, ε),

Dd
Sq (u(. + τ), u(.)) ≤ ε

3 ‖L‖
Sr

(21)

and
n∑

i=0

Dd
Sp

(
f(. + τ, xi), f(., xi)

)
≤ ε

3
(22)

for all τ ∈ T (f, u, ε). Let τ ∈ T (f, u, ε). We have

Dd
Sp

(
f (. + τ, u(. + τ)) , f(., u(.))

)

≤Dd
Sp

(
f(. + τ, u(. + τ)), f(. + τ, u(.))

)
+ Dd

Sp

(
f(. + τ, u(.)), f(., u(.))

)

≤‖L‖
Sr

Dd
Sq

(
u(. + τ), u(.)

)
+ Dd

Sp

(
f(. + τ, u(.)), f(., u(.))

)

≤ε

3
+ Dd

Sp

(
f(. + τ, u(.)), f(., u(.))

)
.

Now,

Dd
Sp

(
f(. + τ, u(.)), f(., u(.))

)
= sup

ξ∈R

(∫ ξ+1

ξ
dp(f(t + τ, u(t)), f(t, u(t))) dt

)1/p

≤ sup
ξ∈R

(∫ ξ+1

ξ

n∑

i=0

1lAi,ξ(t)d
p(f(t + τ, u(t)), f(t + τ, xi)) dt

)1/p

+ sup
ξ∈R

(∫ ξ+1

ξ

n∑

i=0

1lAi,ξ(t)d
p(f(t + τ, xi), f(t, xi)) dt

)1/p

+ sup
ξ∈R

(∫ ξ+1

ξ

n∑

i=0

1lAi,ξ(t)d
p(f(t, xi), f(t, u(t))) dt

)1/p

≤ sup
ξ∈R

(∫ ξ+1

ξ
L(t + τ)

n∑

i=0

1lAi,ξ(t)d
p(u(t), xi) dt

)1/p

+
n∑

i=0

Dd
Sp

(
f(. + τ, xi), f(., xi)

)

+ sup
ξ∈R

(∫ ξ+1

ξ
L(t)

n∑

i=0

1lAi,ξ(t)d
p(u(t), xi) dt

)1/p

≤ sup
ξ∈R

(∫ ξ+1

ξ
Lr(t + τ) dt

)1/r

Dd

Sq

(
u⌊T

c
ε ,x0⌋(.), x0

)
+

(∫ ξ+1

ξ

n∑

i=1

1lAi,ξ(t)d
q(u(t), xi) dt

)1/q

+
ε

3
+ sup

ξ∈R

(∫ ξ+1

ξ
Lr(t) dt

)1/r

Dd

Sq

(
u⌊T

c
ε ,x0⌋(.), x0

)
+

(∫ ξ+1

ξ

n∑

i=1

1lAi,ξ
(t)dq(u(t), xi) dt

)1/q

≤2 ‖L‖
Sr

ε

6 ‖L‖
Sr

+
ε

3
=

2ε

3
.
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Combining the preceding inequalities, we deduce that

Dd
Sp

(
f(. + τ, u(. + τ)), f(., u(.))

)
≤ ε

3
+

2ε

3
= ε.

Theorem 2.11 Let µ be a Borel measure on R satisfying (14) and Condition (H), and
let p ≥ 1. Assume that F ∈ S

pPAPUc(R × E,E, µ). Let G be in S
pAPUc(R × E,E) such

that [
(t, x) 7→ H(t, x) = d

(
F (t, x), G(t, x)

)]
∈ S

pEUc(R× E,R, µ). (23)

Assume that Condition (Lip) holds for F and G. If X is S
q-weighted pseudo almost

periodic, then F (.,X(.)) ∈ S
pPAP(R,E, µ).

Proof Since X ∈ S
qPAP(R,E, µ), there exists Y ∈ S

qAP(R,E) such that

Z(.) = d
(
X(.), Y (.)

)
∈ S

pE(R,R, µ). (24)

To show that F (.,X(.)) ∈ S
pPAP(R,E, µ), it is enough to have

d
(
F (.,X(.)), G(., Y (.))

)
∈ S

pE(R,R, µ),

since by Theorem 2.10, the function G(., Y (.)) ∈ S
pAP(R,E). We have

d
(
F (t,X(t)), G(t, Y (t))

)
≤ d
(
F (t, Y (t)), G(t, Y (t))

)
+ d
(
F (t, Y (t)), F (t,X(t))

)
.

Clearly, d
(
F (., Y (.)), F (.,X(.)

)
∈ S

pE(R,R, µ). Indeed, for every r > 0,

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, Y b(t)), F b(t,Xb(t)

)
dµ(t) ≤ 1

µ([−r, r])

∫ r

−r
‖L‖

Sr
Dd

Lq

(
Y b(t),Xb(t)

)
dµ(t)

and hence, using (24), it follows that

lim
r→∞

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, Y b(t)), F b(t,Xb(t)

)
dµ(t) = 0.

Now, we claim that d
(
F (., Y (.)), G(., Y (.))

)
∈ S

pE(R,R, µ). In fact, let ε > 0 and

x0 ∈ E. Since Y ∈ S
pAP(R,E) ⊂ M ′

p(R,E), there exists δ := δ(ε) > 0 such that

Dd
Sq

(Y ⌊A,x0⌋(.), x0) ≤ ε for all measurable set A ⊂ R satisfying κ(A) ≤ δ. Thus, us-
ing Corollary 2.3, we deduce that there exists a compact subset Kδ ⊂ E such that

κ{t ∈ R, Y (t) /∈ Kδ} < δ

and
Dd

Sq(Y ⌊T c
δ
,x0⌋(.), x0) ≤ ε

4 ‖L‖
Sr

(25)

where Tδ := Tδ(ε) is the subset of R on which Y (t) ∈ Kδ. The compactness of Kδ(ε) implies
that there exist y1, y2, ..., ym ∈ Kε such that

Kε ⊂
⋃

1≤i≤m

B

(
yi,

ε

4 ‖L‖
Sr

)
. (26)
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Hence,

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, Y b(t)), Gb(t, Y b(t)

)
dµ(t)

≤ max
1≤i≤m

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, Y b(t)), F b(t, yi)

)
dµ(t)

+ max
1≤i≤m

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, yi), G

b(t, yi)
)
dµ(t)

+ max
1≤i≤m

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
Gb(t, yi), G

b(t, Y b(t))
)
dµ(t)

:=J1(r) + J2(r) + J3(r).

We have from (25) and (26):

J1(r) + J3(r) ≤2 ‖L‖
Sr

max
1≤i≤m

Dd
Sq

(
Y (.), yi

)

≤2 ‖L‖
Sr

max
1≤i≤m

{
Dd

Sq

(
Y ⌊Tδ,yi⌋(.), yi

)
+ Dd

Sq

(
Y ⌊T c

δ
,yi⌋(.), yi

)}
≤ ε.

Let us estimate J2(r). Using the fact that the parametric function H is in S
pEUc(R ×

E,R, µ), we have

J2(r) ≤ sup
y∈Kε

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, y), Gb(t, y)

)
dµ(t),

from which we deduce that limr→∞ J2(r) = 0. Finally, since ε is arbitrary, we obtain that

lim
r→∞

1

µ([−r, r])

∫ r

−r
Dd

Lp

(
F b(t, Y b(t)), Gb(t, Y b(t)

)
dµ(t) = 0.

This proves that F (.,X(.)) ∈ S
pPAP(R,E, µ).

2.5 Weighted pseudo almost periodicity for stochastic processes

This subsection is devoted to some definitions related to µ-pseudo almost periodicity
for a stochastic process. As observed in [10], [9] and [61], there are various modes and
extension of almost periodicity for a stochastic process. We recall here the more relevant for
applications to stochastic differential equations, namely, the µ-pseudo almost periodicity
in p-UI distribution, p ≥ 0, proposed in [9]. For the convenience of the reader, we repeat
some notations and definitions from [9] and [23], thus making our exposition self-contained.
Let (X, ‖.‖) be a separable Banach space, and let (Ω,F ,P) be a probability space. For a
random variable X : (Ω,F ,P) → X, we denote by law(X) its law (or distribution) and
by E(X) its expectation. The space of all random variables from Ω to X is denoted by
L0(Ω,P,X). Note that

(
L0(Ω,P,X), dProb

)
, where dProb is the distance that generates the

topology of convergence in probability,

dProb(U, V ) = E (‖U − V ‖ ∧ 1) ,

for U, V ∈ L0(Ω,P,X), is complete. For p ≥ 1, let Lp(Ω,P,X) stand for the space of all
X-valued random variables, X, such that E ‖X‖p :=

∫
Ω ‖X‖p dP < +∞. We equip this

space with its natural norm that we denote by ‖.‖p := (E ‖X‖p)1/p.
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Let M1,+ (X) be the set of Borel probability measures on X. We endowed M1,+ (X)
with tow topologies. The first one is that of narrow (or weak) convergence. For a given
ϕ ∈ BC(X,R) and υ, ν ∈ M1,+ (X), we define

‖ϕ‖
L

= sup
{ϕ(x) − ϕ(y)

d(x, y)
; x 6= y

}

‖ϕ‖
BL

= max{‖ϕ‖∞ , ‖ϕ‖
L
}

dBL(υ, ν) = sup
‖ϕ‖BL≤1

∫

X

ϕd(υ − ν).

The space
(
M1,+ (X) , dBL

)
is a Polish space and dBL generates the weak topology on

M1,+ (X). An other useful topology related to the metric space M1,+ (X) is that induced
by the convergence in Wasserstein distance. Let p ≥ 1. For any υ, ν ∈ M1,+ (X), the
Wasserstein distance of order p, Wassp, is defined by

Wassp(υ, ν) = inf
{(

E
(
‖X − Y ‖p

))1/p
, law(X) = υ, law(Y ) = ν

}
(27)

where the notation means that the infimum (actually, a minimum) is taken over all pairs
(X,Y ) of X-valued random variables defined on some probability space (not necessarily
(Ω,F ,P)) such that law(X) = υ and law(Y ) = ν. For any interval [a, b], we denote by
Wassp[a,b] the Wasserstein distance between the distributions of two continuous X-valued

stochastic processes X = (Xt)t∈R and Y = (Yt)t∈R, viewed as C([a, b],X)-valued random
variables. Let (Xn) ⊂ Lp(Ω,P,X) be a sequence of random vectors of X and let X ∈
Lp(Ω,P,X). The convergence in Wasserstein distance can be characterized as follows (see
e.g. [63]): The sequence (law(Xn)) converges to law(X) for Wassp if and only if

1. (Xn) converges to X in distribution, i.e. dBL(law(Xn), law(X)) → 0 as n → ∞;

2. the family (‖Xn‖p) is uniformly integrable (p-UI).

Let us mention that
(
M1,+ (X) ,Wassp

)
is also a Polish space.

Now, in connection with the results of Section 3, let us recall the following definitions
for a stochastic process X = (Xt)t∈R with values in X, defined on the probability space
(Ω,F ,P).

Definition 2.12 ([61]) 1. We say that X is almost periodic in one-dimensional dis-
tributions, and write X ∈ APD1(R,X), if the mapping

law(X(.)) :

{
R → M1,+ (X)
t 7→ law(X(t))

is almost periodic.

2. If X has continuous trajectories, we say that X is almost periodic in distribution,
and write X ∈ APD(R,X), if the mapping

law(X̃(.)) :

{
R → M1,+ (Ck(R,X))

t 7→ law(X̃(t))

is almost periodic, where X̃(t) stands for the random variable X(t + .) with values
in C(R,X).
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One can define, in a same manner, the almost periodicity in
(
M1,+ (X) ,Wassp

)
and(

M1,+ (Ck(R,X)) ,Wassp[a,b]

)
. We denote by WasspAPD1(R,X) and Wassp[a,b]APD(R,X)

the classes obtained respectively.
Let us also recall the definition of almost periodicity in p-UI distribution1 introduced

in [9] under a different name, which requires uniform integrability property:

Definition 2.13 ([9]) Let p ≥ 0. An X-valued stochastic process, X, is called almost
periodic in p-UI one-dimensional distribution (resp. almost periodic in p-UI distribution,
if X is continuous) if

(i) X ∈ APD1(R,X) (resp. X ∈ APD(R,X));

(ii) if p > 0, the family (‖X(t)‖p)t∈R is uniformly integrable (p-UI).

We denote by APDp
1(R,X) and APDp(R,X) the set of X-valued processes which are almost

periodic in p-UI one-dimensional distribution and in p-UI distribution, respectively. Note
that when p = 0, one obtains APD0

1(R,X) = APD1(R,X) and APD0(R,X) = APD(R,X).
It should be mentioned that if X ∈ APDp(R,X), the mapping t 7→ X(t), R → Lp(Ω,P,X),
is continuous.

Remark 2.14 Let us clarify the relation between the classes APDp
1(R,X), APDp(R,X)

and the corresponding almost periodicity in the Wasserstein distance sense. We use
Bochner’s double sequences criterion. Let (α′

n) ⊂ R and (β′
n) ⊂ R be arbitrary sequences.

Let (αn) ⊂ (α′
n) and (βn) ⊂ (β′

n) be the subsequences provided by Bochner’s double se-
quences criterion. We just need to compare the corresponding UI. Our reasoning is based
on the following observation that a family is UI if, and only if, from any sequence extracted
from this family, one can extract a subsequence that is UI.

1. Observe that if X : R → Lp(Ω,P,X), p > 0, is bounded, we have

X ∈ APDp
1(R,X) ⇔ X ∈ WasspAPD1(R,X).

Indeed, as the sequences (α′
n) and (β′

n) are arbitrary, it is easy to check that the fam-
ily (‖X(t)‖p)t∈R is UI if, and only if, for any t ∈ R, the sequences (‖X(t + αn + βm)‖p)n,m
and (‖X(t + αn + βn)‖p)n are too.

2. Let X ∈ CUB
(
R,Lp(Ω,P,X)

)
. Then,

X ∈ Wassp[a,b]APD(R,X) ⇒ X ∈ APDp(R,X).

For, let (s′n) ⊂ R be any sequence. Since X ∈ Wassp[a,b]APD(R,X), one can ex-

tract a subsequence (sn) ⊂ (s′n) such that for any interval [a, b], the sequence(
supt∈[a,b] ‖X(t + s′n)‖p

)
n

is UI. In particular, the sequence ‖X(s′n)‖p is UI. It fol-

lows that the family (‖X(t)‖p)t∈R is UI.

Definition 2.15 ([9]) Let p ≥ 0. We say that X is µ-pseudo almost periodic in p-UI
distribution if X can be written

X = Y + Z, where Y ∈ APDp(R,X) and Z ∈ E(R,Lp(Ω,P,X), µ).
1This notion was introduced in [9] under the name ”almost periodic (automorphic) in p-distribution”.

We have modified the terminology, and introduced the symbol ”p-UI” defined above to bring out from the
notion ”p-distribution” the condition of ”p-uniform integrability”. This seems clearer and more evocative.
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The set of X-valued processes which are µ-pseudo almost periodic in p-UI distribution is
denoted by PAPDp(R,X).

Of course, thanks to the Bochner transform, it is not difficult to extend these definitions
in Stepanov sense for a stochastic process. This will not be useful in this article, since our
aim is to improve and generalize the results obtained by Da Prato and Tudor [23], see also
[43] and [9], and to show the absence of purely Stepanov almost periodic in distribution
to stochastic differential equations. This is the purpose of Section 3 below.

3 Almost periodic solutions to stochastic differential equa-

tions with Stepanov almost periodic coefficients

Let (H1, ‖.‖H1) and (H2, ‖.‖H2) be separable Hilbert spaces, and let us denote by L(H1,H2)
(or L(H1) if H1 = H2) the space of all bounded linear operators from H1 to H2, and
by L2(H1,H2) the space of Hilbert-Schmidt operators from H1 to H2. For a symmetric
nonnegative operator Q ∈ L2(H1,H2) with finite trace, we assume that W (t), t ∈ R, is a
Q-Wiener process with values on H1 defined on a stochastic basis (Ω,F , (Ft)t∈R,P). We
denote by trQ the trace of Q.

Throughout this section, we consider the following abstract semilinear stochastic dif-
ferential equation

dXt = AX(t) dt + F (t,X(t)) dt + G(t,X(t)) dW (t), t ∈ R (28)

where A : Dom(A) ⊂ H2 → H2 is a densely defined closed (possibly unbounded) linear
operator, and F : R ×H2 → H2, and G : R × H2 → L2(H1,H2) are measurable functions
(not necessarily continuous). To discuss the existence and uniqueness of (µ-pseudo) al-
most periodic in 2−UI distribution solutions to equation (28), we consider the following
requirements.

(H1) The operator A : Dom(A) → H2 generates a contraction C0-semigroup (S(t))t≥0

[24], that is, there exists δ > 0 such that

‖S(t)‖L(H2) ≤ e−δt, for all t ≥ 0.

(H2) The mappings F and G satisfy a sublinear growth condition: there exists a positive
constant M such that

‖F (t, x)‖H2 + ‖G(t, x)‖L2(H1,H2) ≤ M(1 + ‖x‖H2)

for all t ∈ R and x ∈ H2.

(H3) The mappings F and G are Lipschitz in the sense that there exists a positive function
K(.) ∈ S

p(R), with p > 2, such that

‖F (t, x) − F (t, y)‖H2 + ‖G(t, x) −G(t, y)‖L2(H1,H2) ≤ K(t)‖x− y‖H2

for all t ∈ R and x, y ∈ H2.

(H4) F ∈ S
2AP(R ×H2,H2) and G ∈ S

2AP(R×H2,L2(H1,H2)).
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3.1 Almost periodic solutions in 2-UI distribution

In order to study the µ-pseudo almost periodicity of solutions to (28), we need a re-
sult on almost periodicity. In what follows, let q > 0 with 1

2 = 1
q + 1

p . Recall that

CUB
(
R,L2(P,H2)

)
, the Banach space of square-mean continuous and L2-bounded stochas-

tic processes, is endowed with the norm

‖X‖2∞ = sup
t

E ‖X(t)‖2H2
.

The main result concerning the existence (and uniqueness) of an almost periodic in
2-UI distribution solution to (28), under Stepanov almost periodicity condition on the
coefficients, is established by the next theorem.

Theorem 3.1 1. Under assumptions (H1) − (H3), Eq. (28) admits a unique mild so-
lution X to (28) in CUB

(
R,L2(P,H2)

)
provided that

θS :=

(
2 ‖K‖2

S2

δ(1 − e−δ)
+

2 ‖K‖2
S2

trQ

1 − e−2δ

)
< 1.

Moreover, X has a.e. continuous trajectories and can be written as,

X(t) =

∫ t

−∞
S(t− s)F

(
s,X(s)

)
ds +

∫ t

−∞
S(t− s)G

(
s,X(s)

)
dW (s), t ∈ R. (29)

2. Suppose, in addition, that (H4) is fulfilled and

θ′S :=
4

3qδ

((
3β1
) q

2 +
(
3β2
) q

2

)
< 1,

with

β1 :=
4

δ

(
‖K‖p

Sp

1 − e−
pδ
4

) 2
p

, β2 := 4 trQ

(
‖K‖p

Sp

1 − e−
pδ
2

) 2
p

then X is almost periodic in 2-UI distribution.

Before giving the proof of Theorem 3.1, let us state two results:

Lemma 3.2 Let K : R → R be a nonnegative Sp-bounded (resp. Stepanov almost periodic)
function, then the function

κ(t) =

∫ t

−∞
e−δ(t−s)Kp(s)ds

is uniformly bounded (resp. Bohr almost periodic), and we have

sup
t∈R

κ(t) ≤ ‖K‖p
Sp

1 − e−δ
.

Proof The proof is very simple, see for instance [54, 55].

The following proposition is based on the application of Komlós’s theorem [44].

Proposition 3.3 1. Let (U,Σ, λ) be a σ-finite measure space, and let B be a separable
Banach space. Let (F ′

n) be a sequence of mappings from U× B to B satisfying
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(i) each F ′
n is measurable,

(ii) for every u ∈ U, the sequence (F ′
n(u, .)) is equicontinuous,

(iii) there exists a measurable mapping F : U× B → B, such that

(∀x ∈ B) lim
n→∞

∫

U

∥∥F ′
n(u, x) − F (u, x)

∥∥ dλ(u) = 0.

Then there exists a subsequence (Fn) of (F ′
n), a modification F̃ of F , and a λ-negligible

subset N of U such that

(∀x ∈ B) (∀u ∈ U \ N ) lim
n→∞

Fn(u, x) = F̃ (u, x),

and such that, for every u ∈ U \ N , the mapping F (u, .) is continuous.
2. With the same hypothesis as in 1., assume now that U = R is the set of real numbers,

Σ its Borel σ-algebra, and λ the Lebesgue-measure. Assume furthermore that there exists
a sequence (K ′

n) of measurable mappings from R to R
+, and a number p ≥ 1, satisfying

(iv)
(∀n ≥ 1) (∀x, y ∈ B) (∀u ∈ R)

∥∥F ′
n(u, x) − F ′

n(u, y)
∥∥ ≤ K ′

n(u) ‖x− y‖ ,

(v)

A := sup
n≥1

sup
u∈R

∫ u+1

u
(K ′

n)
p
(v) dv < ∞.

Then we can extract the subsequence (Fn) in such a way that there exists a measurable
mapping K : R → R

+ and a λ-negligible subset N of R such that

(∀x, y ∈ B) (∀u ∈ U \ N ) ‖F (u, x) − F (u, y)‖ ≤ K(u) ‖x− y‖ , (30)

with

sup
u∈R

∫ u+1

u
Kp(v) dv ≤ A.

Proof
1. For every x ∈ B, we can find a subsequence (F

(x)
n ) of (F ′

n) and a λ-negligible set Nx

such that
(∀u ∈ U \ Nx) lim

n→∞
F (x)
n (u, x) = F (u, x).

Let D be a dense countable subset of B. Using a diagonal procedure, we can find a
subsequence (Fn) of (F ′

n) and a λ-negligible subset N of U such that

(∀y ∈ D) (∀u ∈ U \ N ) lim
n→∞

Fn(u, y) = F (u, y).

On the other hand, for every u ∈ U and every x ∈ B, we have, by equicontinuity of Fn(u, .),

lim
y→x

sup
n

‖Fn(u, y) − Fn(u, x)‖ = 0. (31)

Let u ∈ U \ N , and let x ∈ B. Using the uniformity in (31), we deduce, by a classical
result on interchange of limits, that, for any x ∈ B,

lim
n→∞

Fn(u, x) = lim
n→∞

lim
y→x
y∈D

Fn(u, y) = lim
y→x
y∈D

lim
n→∞

Fn(u, y) = lim
y→x
y∈D

F (u, y). (32)
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Note that, for u ∈ U \ N , the calculation (32) shows that f(u, .) is continuous on D. Let
us define F̃ : U× B → B by

F̃ (u, x) =





lim
n→∞

Fn(u, x) = lim
y→x
y∈D

F (u, y) for u ∈ U \ N and x ∈ B,

0 for u ∈ N and x ∈ B.

This definition is consistent, thanks to (32). Furthermore, F̃ (u, .) is continuous on B for
every u ∈ U. Finally, since F̃ (u, y) = F (u, y) for all (u, y) ∈ (U \N )×D, we have, for any
x ∈ B,

∫

U

∥∥∥F̃ (u, x) − F (u, x)
∥∥∥ dλ(u)

≤ lim
y→x
y∈D



∫

U

∥∥∥Fn(u, y) − F̃ (u, x)
∥∥∥ dλ(u) +

∫

U

‖Fn(u, y) − F (u, x)‖ dλ(u)

 = 0,

which proves that F̃ (u, x) = F (u, x) for λ-almost every u ∈ U.

2. By an application of Komlós’s theorem [44] on each interval [k, k + 1], where k is an
integer, and using a diagonal procedure, we can extract a subsequence (Kn) of (K ′

n) and
a mapping K : R → R

+ such that

lim
n→∞

1

n

n∑

j=1

Kp
j (u) = Kp(u) for λ-a.e. u ∈ R,

and such that this almost sure Cesàro convergence holds true for any further subsequence
of (Kn) (the negligible set on which the convergence does not hold depends on the sub-
sequence). We can thus ask for the sequences (Fn) and (Kn) to have the same indices.
Denote, for n ≥ 1,

Gn =
1

n

n∑

j=1

Fj , Ln =


 1

n

n∑

j=1

Kp
j




1/p

.

There exists a λ-negligible subset N of R such that

(∀x ∈ B) (∀u ∈ R \ N ) lim
n→∞

Gn(u, x) = F (u, x) and lim
n→∞

Ln(u) = K(u). (33)

On the other hand, by the triangle inequality, we have also:

(∀n ≥ 1) (∀x, y ∈ B) (∀u ∈ R) ‖Gn(u, x) −Gn(u, y)‖ ≤ Ln(u) ‖x− y‖ . (34)

We deduce (30) from (33) and (34). Furthermore, by Fatou’s lemma, we have

sup
u∈R

∫ u+1

u
Kp(v) dv ≤ sup

u∈R
lim inf
n→∞

∫ u+1

u
Lp
n(v) dv ≤ A.

Proof of Theorem 3.1. Clearly, the process

X(t) =

∫ t

−∞
T (t− s)F

(
s,X(s)

)
ds +

∫ t

−∞
T (t− s)G

(
s,X(s)

)
dW (s)
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satisfies

X(t) = T (t− a)X(a) +

∫ t

a
T (t− s)F

(
s,X(s)

)
ds +

∫ t

a
T (t− s)G

(
s,X(s)

)
dW (s)

for all t ≥ a for each a ∈ R , and hence X is a mild solution to (28). We introduce an
operator Γ by

ΓX(t) =

∫ t

−∞
T (t− s)F

(
s,X(s)

)
ds +

∫ t

−∞
T (t− s)G

(
s,X(s)

)
dW (s).

The rest of the proof is shared naturally into three steps.

Step 1: existence and uniqueness of a mild solution in CUB
(
R,L2(P,H2)

)
. Let

us show that Γ has a unique fixed point. For this purpose we need to show that Γ maps
S
2
(
R,L2(P,H2)

)
into CUB

(
R,L2(P,H2)

)
. Let X ∈ S

2
(
R,L2(P,H2)

)
. Put Γ = Γ1 + Γ2,

where

(Γ1X)(t) =

∫ t

−∞
T (t− s)F

(
s,X(s)

)
ds

and

(Γ2X)(t) =

∫ t

−∞
T (t− s)G

(
s,X(s)

)
dW (s).

Using conditions (H1) and (H3), the functions F and G satisfy the properties f(.) :=
F (.,X(.)) ∈ S

2
(
R,L2(P,H2)

)
and g(.) := G(.,X(.)) ∈ S

2
(
R,L2(P,L2(H1,H2)

)
. Let us

introduce the following processes, for each n ≥ 1,

(Γ1,nX)(t) =

∫ t−n+1

t−n
T (t− s)f(s)ds

and

(Γ2,nX)(t) =

∫ t−n+1

t−n
T (t− s)g(s)dW (s).

Clearly, for each n, Γ1,nX ∈ C(R,L2(P,H2)). Likewise for Γ2,nX, for which the continuity
is a property of the stochastic integral. To show the boundedness of Γ1,nX and Γ2,nX for
each fixed n ≥ 1, we use standard arguments. By Hölder’s inequality, we have, for any
t ∈ R, and n ≥ 1

E ‖(Γ1,nX)(t)‖2
H2

≤ E

(∫ t−n+1

t−n
‖T (t− s)‖ ‖f(s)‖

H2
ds

)2

≤ δ−1

∫ t−n+1

t−n
e−δ(t−s) E ‖f(s)‖2

H2
ds

≤ δ−1e−δ(n−1)

∫ t−n+1

t−n
E ‖f(s)‖2

H2
ds,

which leads to
‖Γ1,nX‖2∞ ≤ δ−1e−δ(n−1) ‖f‖2

S2
.

Since the series
∑∞

n=1 e
−2δ(n−1) ‖f‖2

S2
is convergent, it follows that

Γ1X :=
∞∑

n=1

Γ1,nX ∈ CUB
(
R,L2(P,H2)

)
. (35)
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By Itô’s isometry, we have for every t ∈ R and n ≥ 1,

E ‖(Γ2,nX)(t)‖2
H2

= trQ

∫ t−n+1

t−n
E ‖T (t− s)‖2 ‖g(s)‖2L2(H1,H2)

ds

≤ trQ

∫ t−n+1

t−n
e−2δ(t−s) E ‖g(s)‖2L2(H1,H2)

ds

≤ trQe−2δ(n−1) ‖g‖2
S2

.

This shows that Γ2,nX ∈ CUB
(
R,L2(P,H2)

)
for each n ≥ 1. Since

∑∞
n=1 e

−2δ(n−1) < +∞,
the series

∑∞
n=1(Γ2,nX)(t) is uniformly convergent on R. Thus

Γ2X :=

∞∑

n=1

Γ2,nX ∈ CUB
(
R,L2(P,H2)

)
. (36)

From (35) and (36), we deduce that Γ maps S
2
(
R,L2(P,H2)

)
into CUB

(
R,L2(P,H2)

)
.

Let us show that Γ is a contraction operator. We have, for any t ∈ R and X,Y ∈
CUB

(
R,L2(P,H2)

)
,

E ‖(ΓX)(t) − (ΓY )(t)‖2
H2

≤2 E

(∫ t

−∞
e−δ(t−s)‖F (s,X(s)) − F (s, Y (s))‖H2ds

)2

+ 2 E

∥∥∥∥
∫ t

−∞
T (t− s)[G(s,X(s)) −G(s, Y (s))]dW (s)

∥∥∥∥
2

H2

=I1(t) + I2(t).

Let us estimate I1(t). Using (H3), Cauchy-Schwartz inequality, and Lemma 3.2, we obtain:

I1(t) ≤ 2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s) E ‖F (s,X(s)) − F (s, Y (s))‖2H2

ds

)

≤ 2

δ

(∫ t

−∞
e−δ(t−s)K2(s) E ‖X(s) − Y (s)‖2H2

ds

)

≤ 2

δ

(
sup
s∈R

E ‖X(s) − Y (s)‖2H2

)(∫ t

−∞
e−δ(t−s)K2(s)ds

)

≤ 2 ‖K‖2
S2

δ(1 − exp(−δ))
sup
s∈R

E ‖X(s)) − Y (s))‖2H2
.

For I2(t), using again (H3), Lemma 3.2, and Itô’s isometry we get:

I2(t) ≤ 2 trQ

∫ t

−∞
e−2δ(t−s) E ‖G(s,X(s)) −G(s, Y (s))‖2L2(H1,H2)

ds

≤ 2 trQ

∫ t

−∞
e−2δ(t−s)K2(s) E ‖X(s) − Y (s)‖2H2

ds

≤ 2 trQ

(
sup
s∈R

E ‖X(s) − Y (s)‖2H2

)(∫ t

−∞
e−2δ(t−s)K2(s)ds

)

≤ 2 ‖K‖2
S2

trQ

1 − exp(−2δ)

(
sup
s∈R

E ‖X(s) − Y (s)‖2H2

)
.
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We thus have

‖ΓX − ΓY ‖2∞ ≤
(

2 ‖K‖2
S2

δ(1 − exp(−δ))
+

2 ‖K‖2
S2

trQ

1 − exp(−2δ)

)
‖X − Y ‖2∞ = θS‖X − Y ‖2∞.

Consequently, as θS < 1, we deduce that Γ is a contraction operator, hence there exists
a unique mild solution to (28) in CUB

(
R,L2(P,H2)

)
. By [24, Theorem 7.2]), almost all

trajectories of this solution are continuous.

Step 2: almost periodicity in one-dimensional distribution of the solution.

We use Bochner’s double sequences criterion in Stepanov sense. Since F ∈ S
2AP(R ×

H2,H2) and G ∈ S
2AP(R × H2,L2(H1,H2)), we deduce, by Proposition 2.5, that there

exist subsequences (α
′

n) ⊂ (α
′′

n) and (β
′

n) ⊂ (β
′′

n) with same indexes (and independent of
x), and functions F∞ ∈ S

2AP(R×H2,H2) and G∞ ∈ S
2AP(R×H2,L2(H1,H2)) such that

for every t ∈ R and x ∈ H2

lim
n→∞

∫ t+1

t

∥∥∥F (s + α
′

n + β
′

n, x) − F∞(s, x)
∥∥∥
2

H2

ds

= lim
n→∞

lim
m→∞

∫ t+1

t

∥∥∥F (s + α
′

n + β
′

m, x) − F∞(s, x)
∥∥∥
2

H2

ds = 0, (37)

lim
n→∞

∫ t+1

t

∥∥∥G(s + α
′

n + β
′

n, x) −G∞(s, x)
∥∥∥
2

L2(H1,H2)
ds

= lim
n→∞

lim
m→∞

∫ t+1

t

∥∥∥G(s + α
′

n + β
′

n, x) −G∞(s, x)
∥∥∥
2

L2(H1,H2)
ds = 0. (38)

These limits exist also uniformly with respect to t ∈ R.
Thanks to Proposition 3.3, we obtain the following interesting properties:

• The functions F∞ and G∞ satisfy similar conditions as (H2) and (H3).

• There are subsequences of (αn) (resp. (βn)), still noted (for simplicity) by (αn) (resp.
(βn)) and Lebesgue-negligible subset N of R such that for all s ∈ R \ N and every
x ∈ H2

lim
n→∞

F (s + αn + βn, x) = lim
n→∞

lim
m→∞

F (s + αn + βm, x) = F∞(s, x), (39)

lim
n→∞

G(s + αn + βn, x) = lim
n→∞

lim
m→∞

G(s + αn + βm, x) = G∞(s, x). (40)

We now set γn = αn + βn and consider the sequence of operators, defined, for each n ≥ 1,
by

(ΓnX)(t) =

∫ t

−∞
T (t− s)F (s + γn,X(s))ds +

∫ t

−∞
T (t− s)G(s + γn,X(s))dW (s).

Let Γ∞ be the operator defined by

(Γ∞X)(t) =

∫ t

−∞
T (t− s)F∞(s,X(s))ds +

∫ t

−∞
T (t− s)G∞(s,X(s))dW (s).
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Using the same reasoning as in the first step, we deduce that, for each n ≥ 1, Γn maps
S
2
(
R,L2(P,H2)

)
into CUB

(
R,L2(P,H2)

)
and it is a contraction operator, with contraction

constant equal to θS. It follows, by an application of the fixed point theorem, that there
exists a process

Xn(t) =

∫ t

−∞
T (t− s)F (s + γn,X

n(s))ds +

∫ t

−∞
T (t− s)G(s + γn,X

n(s))dW (s)

which is the fixed point of Γn and also the mild solution to

dX(t) = AX(t)dt + F (t + γn,X(t))dt + G(t + γn,X(t))dW (t).

Moreover, thanks to Proposition 3.3, the mappings F∞ and G∞ satisfy similar conditions
as (H2) and (H3). Hence, the fixed point theorem applied on Γ∞ ensures the existence of
a process X∞, satisfying the integral equation

X∞(t) =

∫ t

−∞
T (t− s)F∞(s,X∞(s))ds +

∫ t

−∞
T (t− s)G∞(s,X∞(s))dW (s),

that is, X∞ is a mild solution to

dX(t) = AX(t)dt + F∞(t,X(t))dt + G∞(t,X(t))dW (t).

Make the change of variable σ + γn = s, the process

X(t + γn) =

∫ t+γn

−∞
T (t + γn − σ)F (σ,X(σ))dσ +

∫ t+γn

−∞
T (t + γn − σ)G(σ,X(σ))dW (σ)

becomes

X(t+γn) =

∫ t

−∞
T (t−s)F (s+γn,X(s+γn))ds+

∫ t

−∞
T (t−s)G(s+γn,X(s+γn))dW̃n(s),

where W̃n(s) = W (s + γn) −W (γn) is a Brownian motion with the same distribution as
W (s). We deduce that the process X(t + γn) has the same distribution as Xn(t).

Let us show that Xn(t) converges in quadratic mean to X∞(t) for each fixed t ∈ R.
We have, by the triangular inequality,

E‖Xn(t) −X∞(t)‖2 = E‖
∫ t

−∞
T (t− s)[F (s + γn,X

n(s)) − F∞(s,X∞(s))]ds

+

∫ t

−∞
T (t− s)[G(s + γn,X

n(s)) −G∞(s,X∞(s))]dW (s)‖2

≤4 E‖
∫ t

−∞
T (t− s)[F (s + γn,X

n(s)) − F (s + γn,X
∞(s))]ds‖2

+ 4 E‖
∫ t

−∞
T (t− s)[G(s + γn,X

n(s)) −G(s + γn,X
∞(s))]dW (s)‖2

+ 4 E‖
∫ t

−∞
T (t− s)[F (s + γn,X

∞(s)) − F∞(s,X∞(s))]ds‖2

+ 4 E‖
∫ t

−∞
T (t− s)[G(s + γn,X

∞(s)) −G∞(s,X∞(s))]dW (s)‖2
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≤In1 (t) + In2 (t) + In3 (t) + In4 (t).

Now, using (H1), (H3), Hölder’s inequality, and Lemma 3.2, we obtain

In1 (t) = 4 E‖
∫ t

−∞
T (t− s)[F (s + γn,X

n(s)) − F (s + γn,X
∞(s))]ds‖2

≤ 4 E

(∫ t

−∞
e−δ(t−s)‖F (s + γn,X

n(s)) − F (s + γn,X
∞(s))‖ds

)2

≤ 4

δ

∫ t

−∞
e−δ(t−s)K2(s + γn) E‖Xn(s) −X∞(s)‖2ds

≤ 4

δ

(∫ t

−∞
e−

pδ
4
(t−s)Kp(s + γn)ds

) 2
p
(∫ t

−∞
e−

qδ
4
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2ds
) 2

q

≤ 4

δ

(
‖K‖p

Sp

1 − e−
pδ
2

) 2
p
(∫ t

−∞
e−

qδ
2
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2 ds

) 2
q

.

For In2 (t), using Itô’s isometry, Hölder’s inequality, and Lemma 3.2, we get

In2 (t) = 4 E‖
∫ t

−∞
T (t− s)[G(s + γn,X

n(s)) −G(s + γn,X
∞(s))]dW (s)‖2

≤ 4 trQE

∫ t

−∞
‖T (t− s)‖2‖G(s + γn,X

n(s)) −G(s + γn,X
∞(s))‖2ds

≤ 4 trQ

∫ t

−∞
e−2δ(t−s)K2(s + γn) E‖Xn(s) −X∞(s)‖2ds

≤ 4 trQ

(∫ t

−∞
e−

pδ
2
(t−s)Kp(s + γn)ds

) 2
p
(∫ t

−∞
e−

qδ
2
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2 ds

) 2
q

≤ 4 trQ

(
‖K‖p

Sp

1 − e−
pδ
2

) 2
p
(∫ t

−∞
e−

qδ
2
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2ds

) 2
q

.

Let us show that In3 (t) and In4 (t) go to 0 as n goes to infinity.

For any r ∈ R, since X∞ ∈ CUB
(
R,L2(P,H2)

)
, the family

(
‖X∞(s)‖2

)

r≤s≤r+1

is uniformly integrable, by the converse to Vitali’s theorem. By the growth condition
satisfied by F and F∞, this shows that the family

(Us,n) :=
(
‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖2
)
r≤s≤r+1, n≥1

is uniformly integrable. By La Vallée Poussin’s criterion, there exists a non-negative in-
creasing convex function Φ : R → R such that limt→∞

Φ(t)
t = +∞ and sups,n E(Φ(Us,n)) <

+∞. We thus have

sup
n

E

∫ r+1

r
Φ
(
Us,n

)
ds < +∞,
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which prove that the family (U.,n)n≥1 is uniformly integrable with respect to the probability
measure P⊗λ on Ω × [r, r + 1], where λ denotes Lebesgue’s measure. This proves that,
for any r ∈ R,

lim
n→+∞


E

(∫ r+1

r
‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖2ds
)

1/2

= 0. (41)

Let t ≥ 0. Since X∞ ∈ CUB
(
R,L2(P,H2)

)
, and thanks to the growth condition

satisfied by F , the sequence

(
E

∫ t−k+1

t−k
‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖2ds
)
k≥1,n≥0

is bounded. We can thus find an integer N(t, η) such that, for any n ≥ 0,




∑

k>N(t,η)

e−δ(k−1) E

∫ t−k+1

t−k
‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖2ds



1/2

≤ η. (42)

Using (42), we get

√
In3 (t) ≤2


E

(∫ t

−∞
‖T (t− s)‖‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖ds
)2

1/2

≤2

N(t,η)∑

k=1


E

(∫ t−k+1

t−k
e−δ(t−s)‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖ds
)2



1/2

+ 2
∞∑

N(t,η)+1


E

(∫ t−k+1

t−k
e−δ(t−s)‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖ds
)2



1/2

≤2

N(t,η)∑

k=1

e−δ(k−1)


E

(∫ t−k+1

t−k
‖F (s + γn,X

∞(s)) − F∞(s,X∞(s))‖ds
)2



1/2

+ 2η.

(43)

Since the sum in (43) is finite and η is arbitrary, we deduce from (41) that

lim
n→+∞

In3 (t) = 0.

For In4 (t), applying Itô’s isometry, we obtain

In4 (t) = 4 E‖
∫ t

−∞
T (t− s)[G(s + γn,X

∞(s)) −G∞(s,X∞(s))]dW (s)‖2

≤ 4 trQE

(∫ t

−∞
e−2δ(t−s)‖G(s + γn,X

∞(s)) −G∞(s,X∞(s))‖2ds
)
.

For the same reason as for In3 (t) and by (40), In4 (t) goes to 0 as n → ∞. Now, let us define
the following quantities:

αn(t) := In3 (t) + In4 (t), β1 :=
4

δ

(
‖K‖p

Sp

1 − e−
pδ
4

) 2
p

, β2 := 4 trQ

(
‖K‖p

Sp

1 − e−
pδ
2

) 2
p

.
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From the above, we have

E‖Xn(t) −X∞(t)‖2 ≤ αn(t) + β1

(∫ t

−∞
e−

qδ
4
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2 ds

) 2
q

+β2

(∫ t

−∞
e−

qδ
2
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2 ds

)2
q

.

By convexity of the mapping u 7→ u
q
2 defined on R

+, we get

(
E‖Xn(t)−X∞(t)‖2

) q
2 ≤ 1

3

(
3αn(t)

) q
2 +

1

3

(
3β1
) q

2

(∫ t

−∞
e−

qδ
4
(t−s)

(
E‖Xn(s)−X∞(s)‖2

) q
2 ds

)

+
1

3

(
3β2
) q

2

(∫ t

−∞
e−

qδ
2
(t−s)

(
E‖Xn(s) −X∞(s)‖2

) q
2ds

)
.

Since θ′
S

= 4
3qδ

((
3β1
) q

2 +
(
3β2
) q

2

)
< 1, we obtain, by Gronwall’s Lemma as in [43,

Lemma 3.3],

(
E‖Xn(t) −X∞(t)‖2

) q
2 ≤ 1

3
(3αn(t))

q
2 +

1

3

∫ t

−∞
e−γ(t−s)

(
3αn(s)

) q
2ds.

Using the dominated convergence theorem and the convergence of αn(t) to 0 as n → ∞,
we obtain the convergence of Xn(t) to X∞(t) in quadratic mean. Hence Xn(t) converges
in distribution to X∞(t). But, since the distribution of Xn(t) is the same as that of
X(t + γn), we deduce that, for every t ∈ R

lim
n→∞

law(X(t + αn + βn)) = law(X∞(t)).

Using the same reasoning as above and taking into account (39) and (40), we can easily
deduce that

lim
m→∞

lim
n→∞

law(X(t + αm + βn)) = law(X∞(t)).

Thus the solution X is almost periodic in one-dimensional distribution.
To prove almost periodicity in 2-UI distribution of the solution to (28), we need a

generalization of [23, Proposition 3.1] to the Stepanov context. This allows us to obtain
the convergence of the solutions by assuming only the convergence in mean (in Stepanov
sense) of the coefficients. Let us mention that a similar result is obtained by Ivo Vrkoč
[64], but in another context.

Proposition 3.4 Let τ ∈ R. Let (ξn)n ⊂ L2(P,H2) be a sequence of random variables.
Let Fn : R×H2 → H2 and Gn : R×H2 → L2(H1,H2), n ∈ N, be two S

2-bounded sequences.
Assume that for each n ∈ N, the mappings Fn and Gn satisfy (H2) − (H3), such that the
constant M is independent of n and the set of mappings {Kn, n ∈ N} is S

2-bounded, that
is, supn∈N ‖Kn‖S2 < +∞. Let Xn be the unique mild solution to

Xn(t) = T (t− τ)ξn +

∫ t

τ
T (t− s)Fn

(
s,Xn(s)

)
ds +

∫ t

τ
T (t− s)Gn

(
s,Xn(s)

)
dW (s), t ≥ τ
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in the space CUB
(
R,L2(P,H2)

)
. Assume that for each x in H2, the sequences (Fn(., x))n

and (Gn(., x))n converge in Stepanov sense to F∞(., x) and G∞(., x) respectively, that is,

lim
n→∞

‖Fn(., x) − F∞(., x)‖S2 = 0, lim
n→∞

‖Gn(., x) −G∞(., x)‖S2 = 0,

for each x in H2. It follows that

a) There exists a unique mild solution X∞ to

X∞(t) = T (t−τ)ξ∞+

∫ t

τ
T (t−s)F∞

(
s,X∞(s)

)
ds+

∫ t

τ
T (t−s)G∞

(
s,X∞(s)

)
dW (s), t ≥ τ.

(44)

b) If limn→∞ E‖ξn − ξ∞‖2 = 0, then, for all σ ≥ τ ,

lim
n→∞

E

(
sup

τ≤t≤σ
‖Xn(t) −X∞(t)‖2

)
= 0. (45)

c) If

lim
n→∞

dBL(law(ξn), law(ξ∞)) = 0,

then we have in C([τ, σ];H2), for all σ ≥ τ ,

lim
n→∞

dBL(law(Xn), law(X∞)) = 0. (46)

Proof a) By Proposition 3.3, F∞ and G∞ satisfy Conditions (H2), (H3), and (H4). We
deduce a) as in the first step of the proof of Theorem 3.1.

b) For any subsequence (X ′
n) of (Xn), we can find, by Proposition 3.3, a subsequence (X ′′

n)
of (X ′

n) and versions F ′′
∞ and G′′

∞ of F∞ and G∞ respectively (i.e., F ′′
∞(t, .) = F∞(t, .) and

G′′
∞(t, .) = G∞(t, .) for almost every t), such that the corresponding subsequences (F ′′

n ) and
(G′′

n) converge pointwise to F ′′
∞ and G′′

∞ respectively. Since the integrals in (44) remain
unchanged if we replace F∞ by F ′′

∞ and G∞ by G′′
∞, we deduce by [23, Proposition 3.1]

that

lim
n→∞

E

(
sup

τ≤t≤σ
‖X ′′

n(t) −X∞(t)‖2
)

= 0. (47)

Thus, for any subsequence (X ′
n) of (Xn) we can find a subsequence (X ′′

n) of (X ′
n) such

that (47) holds, which proves (45).

c) Similarly, using [23, Proposition 3.1], we obtain that, for any subsequence (X ′
n) of (Xn)

we can find a subsequence (X ′′
n) of (X ′

n) such that

lim
n→∞

dBL(law(X ′′
n), law(X∞)) = 0,

thus (46) holds.

Proof of Theorem 3.1 (continued)

Step 3: almost periodicity in 2-UI distribution of the solution. To prove that
X is almost periodic in distribution, we use the same arguments as in [43] (see also [9]),
using Proposition 3.4. For the uniform integrability part, we proceed as in [9, page 1144].

We omit the details. We can get more. From (45), the sequence

(∥∥∥X̃(t + γn)
∥∥∥
2

Ck

)
is

uniformly integrable. This means that X ∈ Wassp[a,b]APD(R,H2).
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3.2 µ-Pseudo almost periodicity of the solution in 2-UI distribution

Let µ be a Borel measure on R satisfying (14) and Condition (H). Let us start with a
useful Lemma:

Lemma 3.5 Let h ∈ S
qE(R,R, µ), and let K(.) be an S

p-bounded function from R to R
+.

The function

t 7→
(∫ t

−∞
e−2δ(t−s)K2(s)h2(s) ds

)1/2

is in E(R,R, µ).

Proof Our proof uses the following result of [15, Theorem 3.5], that ensures that SqE(R,R, µ)
is translation invariant. We have, for every u ∈ R,

lim
r→+∞

1

µ([−r, r])

∫

[−r,r]

(∫ 1

0
|h(t + u + s)|q ds

) 1
q

dµ(t) = 0. (48)

By Lebesgue’s dominated convergence theorem and Hölder’s inequality, we get

1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−2δ(t−s)K2(s)h2(s) ds

)1/2

dµ(t)

=
1

µ([−r, r])

∫

[−r,r]

(+∞∑

k=1

∫ 1

0
e−2δ(k−u)K2(t + u− k)h2(t + u− k) du

)1/2

dµ(t)

≤ lim
n→+∞

n∑

k=1

e−(k−1)pδ ‖K‖p
Sp

1

µ([−r, r])

∫

[−r,r]

(∫ 1

0
hq(t + u− k) du

) 1
q

dµ(t)

≤ lim
n→+∞

n∑

k=1

e−(k−1)pδ ‖K‖p
Sp

1

µ([−r, r])

∫

[−r,r]

(∫ 1

0
hq(t + u− k) du

) 1
q

dµ(t).

Since the series

∑

k≥1

e−(k−1)pδ ‖K‖p
Sp

1

µ([−r, r])

∫

[−r,r]

(∫ 1

0
hq(t + u− k) du

) 1
q

dµ(t)

is uniformly convergent with respect to r, the claimed result is a consequence of (48).

Before presenting the main result of this subsection, namely, the existence of µ-pseudo
almost periodic solution to Eq. (28), let us introduce the following condition (H4)′ and
some notations:

(H4)′ F ∈ S
2PAP(R×H2,H2, µ) and G ∈ S

2PAP(R×H2,L2(H1,H2), µ).

We denote by (F1, G1) and (F2, G2) the decompositions of F and G respectively, that is,

F = F1 + F2, G = G1 + G2,

F1 ∈ S
2AP(R ×H2,H2), F2 ∈ S

2E(R×H2,H2, µ),

G1 ∈ S
2AP(R×H2,L2(H1,H2)), G2 ∈ S

2E(R×H2,L2(H1,H2), µ).

Let us now state the main result of the subsection.
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Theorem 3.6 Let µ be a Borel measure on R satisfying (14) and Condition (H). Assume
that (H1) − (H3) and (H4)′ hold for both F and G. Assume in addition that F1 and G1

satisfy the same growth and Lipschitz conditions (H2) and (H3) as F and G respectively,
with same coefficient M and mapping K(.). Then:

1. Eq. (28) admits a unique mild solution, X, in the space CUB
(
R,L2(P,H2)

)
and X

has a.e. continuous trajectories, provided θS < 1.

2. Moreover, if θ′
S
< 1, then X is µ-pseudo almost periodic in 2-UI distribution.

The proof of this theorem is inspired from [9, Theorem 4.4]. Before giving it, let us first
revisit the hypotheses in [9, Theorems 4.4 and 4.3 ] in the context of (µ-pseudo) almost
periodicity (resp. µ-pseudo almost automorphy).

Remark 3.7 1. It should be noted that assuming that F1 and G1 satisfy the same
growth and Lipschitz conditions as F and G respectively, as was done in [9, The-
orem 4.4], is not necessary since these properties can be deduced from (H2) and
(H3) imposed on both F and G. Indeed, assume for instance that F is L-Lipchitz
(the reasoning is similar for the growth condition). Set, for all fixed x, y ∈ H1, and
t ∈ R, F̂ (t, x, y) := ‖F (t, x) − F (t, y)‖

H2
. From the following rewriting of F̂ (t, x, y):

F̂ (t, x, y) = F̂1(t, x, y) +
(
F̂ (t, x, y) − F̂1(t, x, y)

)
, and the µ-ergodicity of the map-

ping [
t 7→ H(t, x, y) := F̂ (t, x, y) − F̂1(t, x, y)

]
,

we have F̂ (., x, y) ∈ PAP(R,H2, µ). In view of the uniqueness of the previous de-
composition (under Condition (H)), we deduce that

{
F̂1(t, x, y), t ∈ R

}
⊂
{
F̂ (t, x, y), t ∈ R

}

(the closure of the range of F̂ ). Consequently, for all t ∈ R,

F̂1(t, x, y) ≤ sup
t∈R

F̂ (t, x, y) ≤ L ‖x− y‖
H2

from which we conclude that F1 is L-Lipschitz. The same conclusion holds for G1.

2. Compared to the uniformity imposed on the almost periodicity of the parametric
functions in [9, Theorem 4.7] and [43, Theorem 3.1], which occurs with respect to
the second variable in bounded subsets of H2, that imposed here, namely F1 and
G1 are (Stepanov) almost periodic with respect to the second variable in compact
subsets of H2, is clearly weaker.

Proof of Theorem 3.6 The existence, uniqueness and properties of the mild solution X
to (28) can be obtained using the same arguments as in Theorem 3.1, that is, the classical
method of the fixed point theorem for the contractive operator Γ on CUB

(
R,L2(P,H2)

)

defined by

ΓX(t) =

∫ t

−∞
T (t− s)F

(
s,X(s)

)
ds +

∫ t

−∞
T (t− s)G

(
s,X(s)

)
dW (s).

To show that X is almost periodic in 2-UI distribution, and therefore X has a decom-
position X = Y + Z with Y ∈ APD2(R,H2) and Z ∈ E(R,L2(Ω,P,H2), µ), we proceed
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as in [9]. Let Y ∈ CUB
(
R,L2(P,H2)

)
be the unique almost periodic in 2-UI distribution

mild solution to

dY (t) = AY (t) dt + F1(t, Y (t)) dt + G1(t, Y (t)) dW (t), t ∈ R. (49)

The existence and properties of Y are guaranteed by Theorem 3.1. The process Y is
thus the component almost periodic in 2-UI distribution of X. To construct the µ-
ergodic component, namely, Z, we exploit the fact that X, defined by (29), is the limit in
CUB

(
R,L2(P,H2)

)
of a sequence (Xn) with arbitrary X0 and, for every n, Xn+1 = Γ(Xn).

Let us take a particular sequence, namely

X0 = Y, Xn+1 = Γ(Xn), Zn = Xn − Y, n ∈ N.

(The first term is provided by the solution to Eq. (49)). Let us prove by induction that
each Zn is in E

(
R,L2(P,H2), µ

)
. We use some arguments of the proof of [15, Theorem

5.7].
We have, for every n ∈ N and every t ∈ R,

Zn+1(t) =Γ(Xn)(t) − Y (t)

=

∫ t

−∞
T (t− s)

(
F (s,Xn(s)) − F (s, Y (s))

)
ds

+

∫ t

−∞
T (t− s)

(
G(s,Xn(s)) −G(s, Y (s))

)
dW (s)

+

∫ t

−∞
T (t− s)

(
F (s, Y (s)) − F1(s, Y (s))

)
ds

+

∫ t

−∞
T (t− s)

(
G(s, Y (s)) −G1(s, Y (s))

)
dW (s)

=

∫ t

−∞
T (t− s)

(
F (s,Xn(s)) − F (s, Y (s))

)
ds

+

∫ t

−∞
T (t− s)

(
G(s,Xn(s)) −G(s, Y (s))

)
dW (s)

+

∫ t

−∞
T (t− s)F2(s, Y (s)) ds +

∫ t

−∞
T (t− s)G2(s, Y (s)) dW (s)

=J1(t) + J2(t) + J3(t).

Assume that Zn ∈ E
(
R,L2(P,H2), µ

)
. Since E

(
R,L2(P,H2), µ

)
⊂ S

qE
(
R,L2(P,H2), µ

)
, we

have by the Lipschitz condition (H3),
(
E ‖F (s,Xn(s)) − F (s, Y (s)‖2

)1/2 ≤ K(s)
(
E ‖Zn(s)‖2

)1/2
, ∀s ∈ R.

The same inequality holds for G. Thus, using Hölder’s inequality and Lemma 3.5, we get

1

µ([−r, r])

∫

[−r,r]

(
E ‖J1(s)‖2

)1/2

dµ(t)

≤ 1

µ([−r, r])

∫

[−r,r]

(
E

∥∥∥∥
∫ t

−∞
T (t− s)

(
F (s,Xn(s)) − F (s, Y (s))

)
ds

∥∥∥∥
2)1/2

dµ(t)

≤ 1

(δ)1/2
1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−δ(t−s)K2(s) E ‖Zn(s)‖2 ds

)1/2

dµ(t)

→ 0 when r → +∞,
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and

1

µ([−r, r])

∫

[−r,r]

(
E ‖J2(s)‖2

)1/2

dµ(t)

≤ 1

µ([−r, r])

∫

[−r,r]

(
E

∥∥∥∥
∫ t

−∞
T (t− s)

(
G(s,Xn(s)) −G(s, Y (s))

)
dW (s)

∥∥∥∥
2)1/2

dµ(t)

≤ (trQ)1/2
1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−2δ(t−s)K2(s) E ‖Zn(s)‖2 ds

)1/2

dµ(t)

→ 0 when r → +∞.

Hence, J1(.) and J2(.) are in E
(
R,L2(P,H2), µ

)
. Now, by using the same reasoning as in

[9, page 36], let us prove that J3(.) is in E
(
R,L2(P,H2), µ

)
. The almost periodicity in

distribution of Y implies that the family (Y (u + .))u∈R is uniformly tight in Ck(R,H2).
Therefore, for each ε > 0 there exists a compact subset Kε of Ck(R,H2) such that, for
every u ∈ R,

P {Y (u + .) ∈ Kε} ≥ 1 − ε.

Then, there exists a compact subset Kε of H2 such that, for every u, t ∈ R,

P {(∀s ∈ [t, t + 1]); Y (u + s) ∈ Kε} ≥ 1 − ε.

For u = 0, we obtain,

P {(∀s ∈ [t, t + 1]); Y (s) ∈ Kε} ≥ 1 − ε. (50)

Let Ωε,t be the measurable subset of Ω on which (50) holds. By compactness of Kε, we
can find a finite sequence y1, . . . , yn(ε) such that

Kε ⊂ ∪n(ε)
i=1 B(yi, ε),

and we get, using (50), for every t ∈ R,

sup
s∈[t,t+1]

E

(
min

1≤i≤n(ε)

(
1Ωε,t ‖Y (s) − yi‖2

))
< ε. (51)

It is straightforward to see that F2 = F − F1 and G2 = G−G1 satisfy conditions similar
to (H2) and (H3). We have then by Itô’s isometry

1

µ([−r, r])

∫

[−r,r]
E

∥∥∥∥
∫ t

−∞
T (t− s)F2(s, Y (s))ds +

∫ t

−∞
T (t− s)G2(s, Y (s)) dW (s)

∥∥∥∥
2

dµ(t)

≤ 2δ−1

µ([−r, r])

∫

[−r,r]

∫ t

−∞
e−δ(t−s) E ‖F2(s, Y (s))‖2 dsdµ(t)

+
2 trQ

µ([−r, r])

∫

[−r,r]

∫ t

−∞
e−2δ(t−s) E ‖G2(s, Y (s))‖2 dsdµ(t)

=J1
3 (r) + J2

3 (r).

Let us deal with the term J1
3 (r). We have
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J1
3 (r) ≤ 2δ−1

µ([−r, r])

∫

[−r,r]

(
+∞∑

k=1

∫ t−k+1

t−k
e−δ(t−s) E ‖F2(s, Y (s))‖2 ds

)
dµ(t)

≤ 4δ−1

µ([−r, r])

∫

[−r,r]

+∞∑

k=1

e−δ(k−1)

∫ t−k+1

t−k
E

(
min
1≤i≤n

(
1lΩε,t ‖F2(s, Y (s)) − F2(s, yi)‖2

))
dsdµ(t)

+ max
1≤i≤n

4δ−1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−δ(t−s) E

(
‖F2(s, yi)‖2

)
ds

)
dµ(t)

+
4δ−1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−δ(t−s) E

(
1lΩc

ε,t
‖F2(s, Y (s))‖2

)
ds

)
dµ(t)

=I1(r) + I2(r) + I3(r).

Using the Lipschitz condition (H3) and the estimation (51), we obtain

I1(r) ≤ 4δ−1

µ([−r, r])

∫

[−r,r]

(
+∞∑

k=1

e−δ(k−1) sup
t∈R

∫ t+1

t
K2(s) E

(
min
1≤i≤n

(
1lΩε,t ‖Y (s)) − yi‖2

))
ds

)
dµ(t)

≤ 4δ−1 ‖K‖2
S2

1 − e−δ
ε.

Thanks to the ergodicity of F2 and Lebesgue’s dominated convergence theorem, one ob-
tains, for any r > 0,

I2(r) = max
1≤i≤n

4δ−1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−δ(t−s) E

(
‖F2(s, yi)‖2

)
ds

)
dµ(t)

≤ max
1≤i≤n

4δ−1

µ([−r, r])

∫

[−r,r]

(
+∞∑

k=1

e−δ(k−1)

∫ t−k+1

t−k
E
(
‖F2(s, yi)‖2

)
ds

)
dµ(t)

= max
1≤i≤n

4δ−1

µ([−r, r])

∫

[−r,r]

(
+∞∑

k=1

e−δ(k−1)

∫ t−k+1

t−k
E
(
‖F2(s, yi)‖2

)
ds

)
dµ(t)

=

+∞∑

k=1

e−δ(k−1) max
1≤i≤n

4δ−1

µ([−r, r])

∫

[−r,r]

(∫ 1

0
E
(
‖F2(t− k + s, yi)‖2

)
ds

)
dµ(t).

Arguing as in the proof of Lemma 3.5, we deduce that limr→∞ I2(r) = 0. On the other
hand, by Condition (H2) and the uniform integrability of the family (‖Y (t)‖2)t∈R, we get

I3(r) =
4δ−1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−δ(t−s) E

(
1lΩc

ε,t
‖F2(s, Y (s))‖2

)
ds

)
dµ(t)

≤ 4Mδ−1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞
e−δ(t−s) E

(
1lΩc

(ε,t)
(1 + ‖Y (s))‖)2

)
ds

)
dµ(t)

≤ 8Mδ−1

µ([−r, r])

∫

[−r,r]

(
+∞∑

k=1

e−δ(k−1)

(
P
(
Ωc
ε,t

)
+

∫ t−k+1

t−k
E
(

1lΩc
ε,t

‖Y (s))‖2
)
ds

))
dµ(t)

≤ 8Mδ−1ε

1 − e−δ
.

As ε is arbitrary, we deduce from the previous estimations on I1(r), I2(r) and I3(r), that
limr→∞ J1

3 (r) = 0. In the same way, we can estimate the term J2
3 (r). We then easily see
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that limr→∞ J2
3 (r) = 0. Which shows that J3(.) is in E

(
R,L2(P,H2), µ

)
. Consequently,

Zn+1 ∈ E
(
R,L2(P,H2), µ

)
.

So we have shown that the sequence (Zn) lies in E
(
R,L2(P,H2), µ

)
.

Now, the sequence (Xn) converges to X in CUB
(
R,L2(P,H2)

)
, thus (Zn) converges to

Z := X − Y in CUB
(
R,L2(P,H2)

)
. Using the same calculations as in [9, page 1150], we

obtain that Z ∈ E
(
R,L2(P,H2), µ

)
.

4 Comments and concluding remarks

When the function g in (28) is equal to zero, we retrieve a semilinear (deterministic)
differential equation in the Banach space L2(P,H2):

u′(t) = Au(t) + f(t, u(t)), t ∈ R. (52)

An extensive literature (see e.g. [35, 48, 47, 70]), is devoted to the problem of existence
and uniqueness of a bounded (µ-pseudo) almost periodic mild solution to (52) in a Banach
space X. The adopted approach is based on superposition theorems in the Banach space
S
pAP(R,X) (or SpPAP(R,X, µ)) combined with the Banach’s fixed-point principle, applied

to the nonlinear operator

(Γu)(t) =

∫ t

−∞
T (t− s)f(s, u(s))ds.

To our knowledge, all existing results use the fact that Γ maps AP(R,X) into itself, but
Γ does not map S

pAP(R,X) into AP(R,X) nor into S
pAP(R,X) (see in particular [35,

48, 47, 70]). The proposed proofs may be summarized as follows: if u ∈ AP(R,X),
then u satisfies the compactness condition (Com) of Subsection 2.4, and u ∈ SpAP(R,X).
From the existing superposition theorems (see e.g. [35, Theorem 2.1]) combined with
Condition (Lip) of Subsection 2.4, it follows that F (.) := f(., u(.)) ∈ S

pAP(R,X), and
then (Γu)(.) =

∫ .
−∞ T (. − s)F (s)ds ∈ AP(R,X). This obviously shows the existence

(and uniqueness) of an almost periodic mild solution to (52), but it does not exclude the
possibility of existence of a purely Stepanov almost periodic solution. The main difficulty
in showing the nonexistence of a purely Stepanov almost periodic bounded solution with
the tools used in the literature (see for example [35]), arises from the imposed compactness
condition (Com) in the superposition theorem of Stepanov almost periodic functions, which
seems strong enough in S

pAP(R,X). Thanks to Theorem 2.10, it is easy to see that under
Condition (Lip), the operator Γ maps S

pAP(R,X) into AP(R,X). This shows that the
obtained bounded solution cannot be purely Stepanov almost periodic.

Now, we focus on the following problem: can we expect a similar conclusion if we
replace the assumption that f is Stepanov almost periodic by the assumption that f is
Stepanov almost periodic in Lebesgue measure? Obviously, the answer depends on the
Bohl-Bohr-Amerio Theorem, see e.g. [46, p. 80], for functions which are Stepanov almost
periodic in Lebesgue measure. What we need is to solve first another problem, namely,
does the boundedness of the indefinite integral of a function which is Stepanov almost
periodic in Lebesgue measure imply its Bohr almost-periodicity? The answer to this
question is negative as shown by the following example:

Example 4.1 It is well-known that the Levitan function H : R → R, defined by

H(t) = sin

(
1

g(t)

)
,
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where
g(t) = 2 + cos(t) + cos(

√
2t)

is a bounded S
p-almost periodic function but not Bohr-almost periodic (see e.g. [46]).

Let’s denote by h its derivative. We have

h(t) = cos

(
1

g(t)

)(
sin(t) +

√
2 sin(

√
2t)

g2(t)

)
. (53)

By the Bohl-Bohr Theorem, the derivative function h cannot be Stepanov almost periodic
(see [6]), and consequently, the function 1/g cannot be Stepanov almost periodic. But
one can easily observe by taking into account 2. in Remark 2.4, that h is in S

0AP(R) as a
product of S0-almost periodic functions.

In order to answer the first problem, we give, in the following, a simple affine scalar
equation with purely Stepanov almost periodic in Lebesque measure coefficient. We see
that the unique bounded solution is not Bohr-almost periodic (but it is purely Stepanov
almost periodic).

Example 4.2 Consider the affine differential equation

x′(t) = −x(t) + h(t), t ∈ R, (54)

where h is given by (53). The unique bounded solution to (54) is given by:

x(t) =

∫ t

−∞
e(s−t)h(s)ds = sin

(
1

g(t)

)
+

∫ t

−∞
e(s−t) sin

(
1

g(s)

)
ds.

The boundedness of x follows from

|x(t)| ≤
∣∣∣∣sin

(
1

g(t)

)∣∣∣∣+

∫ t

−∞
e(s−t)

∣∣∣∣sin
(

1

g(s)

)∣∣∣∣ ds ≤ 2, ∀t ∈ R.

But x is not Bohr-almost periodic, as it is the sum of the purely Stepanov almost periodic

function H(t) = sin
(

1
g(t)

)
and a Bohr almost periodic function.

In comparison to the consequences obtained by Andres and Pennequin [6, Conse-
quence 1, p. 1667 and Consequence 4, p. 1679], this example shows (in addition) that one
can obtain the existence and the uniqueness of a bounded purely Stepanov almost periodic
solution when the coefficients are purely Stepanov almost periodic in Lebesgue measure.

This simple result can open new directions about the problem of existence of purely
Stepanov almost periodic solutions, in both stochastic and deterministic cases.
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[56] W. Stepanoff. Über einige verallgemeinerungen der fast periodischen funktionen.
Mathematische Annalen, 95(1):473–498, 1926.
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