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Finding cut-vertices in the square roots of a graph ∗

Guillaume Ducoffe1

1Université Côte d’Azur, Inria, CNRS, I3S, France

Abstract

The square of a given graph H = (V,E) is obtained from H by adding an edge between every
two vertices at distance two in H. Given a graph class H, the H-Square Root problem asks
for the recognition of the squares of graphs in H. In this paper, we answer positively to an
open question of [Golovach et al., IWOCA’16] by showing that the squares of cactus block
graphs can be recognized in polynomial time. Our proof is based on new relationships between
the decomposition of a graph by cut-vertices and the decomposition of its square by clique
cutsets. More precisely, we prove that the closed neighbourhoods of cut-vertices in H induce
maximal prime complete subgraphs of G = H2. Furthermore, based on this relationship, we
introduce a quite complete machinery in order to compute from a given graph G the block-cut
tree of a desired square root (if any). Although the latter tree is not uniquely defined, we show
surprisingly that it can only differ marginally between two different roots. Our approach not
only gives the first polynomial-time algorithm for the H-Square Root problem in different
graph classes H, but it also provides a unifying framework for the recognition of the squares of
trees, block graphs and cactus graphs — among others.

Keywords: square root; biconnected components; clique cutset; cactus-block graph; Gallai
tree; cycle-power graph; circular-arc graph.

1 Introduction

This paper deals with the well-known concepts of square and square root in graph theory.
Roughly, the square of a given graph is obtained by adding an edge between the pairs of
vertices at distance two (technical definitions are postponed to Section 2). A square root of
a given graph is a graph of which it is the square. The reason for this terminology is that
when encoding a graph as an adjacency matrix A (with 1′s on the diagonal), its square has for
adjacency matrix A2 –obtained from A using Boolean matrix multiplication.

The squares of graphs appear, somewhat naturally, in the study of coloring problems: when it
comes about modeling interferences at bounded distance in a radio network [48]. Unsurprisingly,
there is thus an important literature on the topic, with nice structural properties of these graphs
being undercovered [2, 8, 17, 30, 33, 36]. In particular, an elegant characterization of the squares
of graphs has been given in [38]. Unfortunately, this does not lead to an efficient (polynomial-
time) algorithm for recognizing these graphs — that is the main focus of our paper. Such an

∗This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR program
“Investments for the Future” under reference ANR-11-LABX-0031-01.
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algorithm is in fact unlikely to exist since the problem has been proved NP-complete [37]. In
light of this negative result, there has been a growing litterature trying to identy the cases where
the recognition of the squares of graphs remains tractable [11, 22, 26, 25, 27, 32, 39]. We are
interested in the variant where the desired square root (if any) must belong to some specified
graph class.

1.1 Related work

There is a complete dichotomy result for the problem when it is parameterized by the girth of
the square root. More precisely, the squares of graphs with girth at least six can be recognized
in polynomial-time, and it is NP-complete to decide whether a graph has a square root with
girth at most five [1, 15, 16]. One first motivation for our work was to obtain similar dichotomy
results based on the separators in the square root. We are thus more interested in graph classes
with nice separability properties, such as chordal graphs. Recognizing the squares of chordal
graphs is already NP-complete [26]. However, it can be done in polynomial-time for many
subclasses [26, 27, 28, 35, 40, 44].

The most relevant examples to explain our approach are the classes of trees [44], block
graphs [28] and cacti [20]. The squares of all these graphs can be recognized in polynomial-time.
Perhaps surprisingly, whereas the case of trees is a well-known success story for which many
algorithmic improvements have been proposed over the years [10, 28, 32, 44], the polynomial-
time recognition of the squares of cactus graphs has been proved only very recently. A common
point to these three above classes of graphs is that they can be decomposed into very simple
subgraphs by using cut-vertices (respectively, in edges for trees, in cliques for block graphs and
in cycles for cactus graphs). This fact is exploited in the polynomial-time recognition algorithms
for the squares of these graphs. We observe that more generally, cut-vertices play a discrete,
but important role, in the complexity of the recognition of squares, even for general graphs. As
an example, most hardness results rely on a gadget called a ”tail”, that is a particular case of
cut-vertices in the square roots [16, 37]. Interestingly, this tail construction imposes for some
vertex in the square to be a cut-vertex with the same closed neighbourhood in any square root
(see Figure 1). It is thus natural to ask whether more general considerations on the cut-vertices
can help to derive additional constraints on the closed neighbourhoods in these roots. Our
results prove that it is indeed the case.

v1v2v3 v

(a) Tail in H.

v1v2v3 v

(b) Tail in H2.

Figure 1: Tail in a graph and its square.

As stated before, we are not the first to study the properties of cut-vertices in the square
roots. In this respect, the work in [20] has been a major source of inspiration for this paper.
However, most of the results so far obtained are specific to some graph classes and they hardly
generalize to more general graphs [20, 28]. Evidence of this fact is that whereas both the squares
of block graphs and the squares of cacti can be recognized in polynomial-time, the techniques
involved in these two cases do not apply to the slightly more general class of cactus-block graphs
(graphs that can be decomposed by cut-vertices into cycles and cliques) [20]. In the end, the

2



characterization of the cut-vertices in these roots is only partial – even for cactus roots –, with
most of the technical work for the recognition algorithm being rather focused on the notion of
tree decompositions (e.g., clique-trees for chordal squares, or decomposition of the square into
bounded-treewidth graphs). Informally, tree decompositions [43] aim at decomposing graphs
into pieces, called bags, organized in a tree-like manner. As proved in [19], the decomposition of
the square root of a graph by its cut-vertices leads to a specific type of tree decompositions for
this graph that are called ”H-tree decompositions”. Note that it is not known whether a H-tree
decomposition can be computed in polynomial-time. In contrast, we use in this work another
type of tree decompositions, called an atom tree, that generalizes the notion of clique-trees for
every graph. It can be computed in polynomial-time [5].

1.2 Our contributions

Our work is based on new relationships between the cut-vertices in a given graph and the clique-
cutsets of its square (separators inducing a clique). These results are presented in Section 3. In
particular, we obtain a complete characterization of the atoms of a graph (maximal subgraphs
with no clique cutset) based on the blocks of its square roots (maximal subgraphs with no
cut-vertices).

Having a thought on the problem, the existence of such relationships may look unsurprising,
or even trivial. The most difficult part is to show how to ”reverse” these relationships: from
the square back to its square root. We prove in Section 4 that it can be done to some extent.
More precisely, in Section 4.1 we show that the ”essential” cut-vertices of the square roots: with
at least two connected components not fully contained in their closed neighbourhoods, are in
some sense unique (independent of the root) and that they can be computed in polynomial-
time, along with their closed neighbourhood in any square root. Indeed, structural properties
of these vertices allow to reinterpret them as the cut-vertices of some incidence graphs that can
be locally constructed from the intersection of the atoms in an atom tree (tree decomposition
whose bags are exactly the atoms). Proving a similar characterization for non essential cut-
vertices remains to be done. We give sufficient conditions and a complete characterization of
the closed neighbourhoods of these vertices for a large class of graphs in Section 4.2.

Then, inspired from these above results, we introduce a novel framework in Section 5 for
the recognition of squares. Assuming a square root exists, we can push further some ideas of
Section 4 in order to compute, for every block in this root, a graph that is isomorphic to its
square. We thus reduce the recognition of the squares to a stronger variant of the problem for
the squares of biconnected graphs. This is further discussed in Section 5.1. Let us point out
that this approach can be particularly beneficial when the blocks of the roots are assumed to
be part of a well-structured graph class.

In Section 6, we finally answer positively to an open question of [20] by proving that the
squares of cactus-block graphs can be recognized in polynomial-time. Our result is actually
much more general, as it gives a unifying algorithm for many graph classes already known
to be tractable (e.g., trees, block graphs and cacti) and it provides the first polynomial-time
recognition algorithm for the squares of related graph classes – such as Gallai trees [18]. In its full
generality, the result applies to the class of graphs whose blocks are cycle-power graphs (graphs
obtained from cycles by adding some specific shortcuts). We call them trees of cycle-powers
in what follows. Note that cycle-power graphs are related to the class of Harary graphs and
they have already received some attention in the literature [31]. Furthermore, as expected this
last result is obtained by using our novel framework. This application is not straightforward.
Indeed, we need to show the existence of a square root that is a tree of cycle-powers and has
some ”good” properties in order for the framework to be applied. We also need to show that
a stronger variant of the recognition of squares (discussed in Section 5.1) can be solved in
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polynomial-time for cycle-power graphs. We do so by introducing classical techniques from the
study of circular-arc graphs [47].

Definitions and preliminary results are given in Section 2. We conclude this paper in Section 7
with some open questions.

2 Preliminaries

We use standard graph terminology from [9]. All graphs in this study are finite, unweighted and
simple (hence with neither loops nor multiple edges), unless stated otherwise. Given a graph
G = (V,E) and a set S ⊆ V , we will denote by G[S] the subgraph of G that is induced by S.
The open neighbourhood of S, denoted by NG(S), is the set of all vertices in G[V \ S] that are
adjacent to at least one vertex in S. Similarly, the closed neighbourhood of S is denoted by
NG[S] = NG(S) ∪ S.

For every u, v ∈ V , vertex v is dominated by u if NG[v] ⊆ NG[u]. In particular, if NG[u] =
NG[v] then we say u and v are true twins. If even more strongly, we have NG[w] ⊆ NG[u] for
every w ∈ NG[v], then u is a maximum neighbour of v.

2.1 Squares and powers of graphs

For every connected graph G and for every u, v ∈ V , the distance between u and v in G,
denoted by distG(u, v), is equal to the minimum length (number of edges) of a uv-path in G.
The jth-power of G is the graph Gj = (V,Ej) with same vertex-set as G and an edge between
every two distinct vertices at distance at most j in G.

In particular, the square of a graph G = (V,E) is the graph G2 = (V,E2) with same vertex-set
V as G and an edge between every two distinct vertices u, v ∈ V such that NG[u] ∩NG[v] 6= ∅.
Conversely, if there exists a graph H such that G is isomorphic to H2 then H is called a square
root of G. On the one hand it is easy to see that not all graphs have a square root. For example,
if G is a tree with at least three vertices then it does not have any square root. On the other
hand, note that a graph can have more than one square root. As an example, the complete
graph Kn with n-vertices is the square of any diameter two n-vertex graph.

In what follows, we will focus on the following recognition problem:

Problem 1 (H-square root).

Input: A graph G = (V,E).

Question: Is G the square of a graph in H ?

Our proofs will make use of the notions of subgraphs, induced subgraphs and isometric
subgraphs, the latter denoting a subgraph H of a connected graph G such that distH(x, y) =
distG(x, y) for every x, y ∈ V (H).

Furthermore, since we extensively use it in our proofs, we formalize the somewhat natural
relationship between the walks in a square graph and walks in its square roots. More precisely:
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Definition 1. Let G = (V,E) be a graph, H be a square root of G, and W = (x0, x1, . . . , xl)
be a walk in G. An H-extension of W is any walk W ′ of H that is obtained from W by
adding, for every i such that xi and xi+1 are nonadjacent in H, a common neighbour yi ∈
NH(xi) ∩NH(xi+1) between xi and xi+1.

2.2 Graph decompositions

A set S ⊆ V is a separator in a graph G = (V,E) if its removal increases the number of
connected components. A full component in G[V \S] is any connected component C in G[V \S]
satisfying that N(C) = S (note that a full component might fail to exist). The set S is called a
minimal separator in G if it is a separator and there are at least two full components in G[V \S].

Minimal separators are closely related to the notion of Robertson and Seymour’s tree decom-
positions (e.g., see [41]). Formally, a tree-decomposition (T,X ) of G is a pair consisting of a tree
T and of a family X = (Xt)t∈V (T ) of subsets of V indexed by the nodes of T and satisfying:

•
⋃

t∈V (T ) Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;

• for any v ∈ V , {t ∈ V (T ) | v ∈ Xt} induces a subtree, denoted by Tv, of T .

The sets Xt are called the bags of the decomposition.

In what follows, we will consider two main types of minimal separators.

Cut-vertices. If S = {v} is a separator then it is a minimal one and we call it a cut-vertex
of G. Following the terminology of [20], we name v and essential cut-vertex if there are at least
two components C1, C2 of G \ v such that C1 6⊆ NG(v) and similarly C2 6⊆ NG(v); otherwise, v
is called a non essential cut-vertex1.

Given a connected graph G = (V,E), it is called biconnected if it does not have a cut-vertex.
Examples of biconnected graphs are cycles and complete graphs. Furthermore, the blocks of G
are the maximal biconnected subgraphs of G. It is well-known that the blocks and the cut-
vertices of a connected graph G are the nodes of a tree, sometimes called the block-cut tree, that
is obtained by adding an edge between every block B and every cut-vertex v such that v ∈ B
(see Figure 2 for an example). It can be computed in linear O(n + m)-time [23].

(a) Graph G. (b) Block-cut tree of G.

Figure 2: An example of block-cut-tree.

Observe that if G has a square root then it is biconnected. However, the following was proved
in [19].

1The authors in [20] have rather focused on the stronger notion of important cut-vertices, that requires the existence
of an additional third component C3 of G \ v such that C3 6⊆ NG(v). We do not use this notion in our paper.
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Lemma 2 ( [19]). Let H be a square root of a graph G. Let C and B be the sets of cut-vertices
and blocks of H, respectively, and let TH be the block-cut tree of H, with vertex set VT = C ∪B.
For every u ∈ C, let Xu = NH [u] and for every B ∈ B, let XB = V (B). Then, (TH , (Xt)t∈VT

)
is a tree decomposition of G that is called the H-tree decomposition of G.

Clique cutsets. More generally, if S is a minimal separator inducing a clique of G = (V,E)
then we call it a clique cutset of G. A connected graph G = (V,E) is prime if it does not have
a clique cutset. Cycles and complete graphs are again examples of prime graphs, and it can be
observed more generally that every prime graph is biconnected.

The atoms of G are the maximal prime subgraphs of G. They can be computed in polynomial-
time [29, 46]. A clique-atom is an atom inducing a clique. Furthermore, a simplicial vertex is a
vertex v ∈ V such that NG[v] induces a clique. The following was proved in [14].

Lemma 3 ( [14]). Let G = (V,E) be a graph and let v ∈ V . Then, v is simplicial if and only
if NG[v] is a clique-atom, and it is the unique atom containing v.

If the atoms of G are given, then the clique-modules and the simplicial atoms of G can be
computed in linear O(n + m)-time [14].

(a) Graph G. (b) Atom tree of G.

Figure 3: An example of atom tree.

Finally, it has been proved in [5] that the atoms of G are the bags of a tree decomposition of
G, sometimes called an atom tree. We refer to Figure 3 for an illustration. An atom tree can
be computed in O(nm)-time, and it is not necessarily unique. In what follows, we often use in
our analysis the following properties of an atom tree:

Lemma 4 ( [6]). Let G = (V,E) be a graph and let A,A′ be atoms of G. Then, A \ A′ is a
connected subset and A ∩A′ ⊆ NG(A \A′).

Lemma 5 ( [6]). Let G = (V,E) be a graph. For every atom tree (TG,A) of G, we have:∑
{A,A′}∈E(TG)

|A ∩A′| = O(n + m).

3 Basic properties of the atoms in a square

We start presenting relationships between the block-cut tree of a given graph and the decompo-
sition of its square by clique cutsets (Theorem 10). These relationships are compared to some
existing results in the literature for the H-square root problem.
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More precisely, our approach in this paper is based on the following relationship between the
clique cutsets in a graph G and the cut-vertices in its square-roots (if any).

Proposition 6. Let H = (V,E) be a graph. The closed neighbourhood of any cut-vertex in H
is a clique-atom of G = H2.

Proof. Let v ∈ V be a cut-vertex of H and let Av = NH [v]. It is clear that Av is a clique of G
and so, this set induces a prime subgraph of G. In particular, Av must be contained in an atom
A of G. Suppose for the sake of contradiction that A 6= Av. Let u ∈ A \ Av. This vertex u is
contained in some connected component Cu of H \ v. Furthermore since v is a cut-vertex of H,
there exists w ∈ NH(v) \Cu. We claim that S = (Cu ∩NH(v))∪ {v} is an uw-clique separator
of G. Indeed, let us consider any uw-path P in G. We name Q = (x0 = u, x1, . . . , xl = w)
an arbitrary H-extension of P. Since Q is an uw-walk in H, and u and w are in different
connected components of H \ v, there exists an i such that xi ∈ Cu, xi+1 = v. In particular,
xi ∈ Cu ∩ NH(v) = S \ v. Furthermore, by construction, for every two consecutive vertices
xi, xi+1 in the H-extension Q, at least one of xi or xi+1 belongs to P. As a result, every
uw-path in G intersects S, that proves the claim and so, that contradicts the fact that A is an
atom of G. Therefore, A = Av. Since Av is a clique it is indeed a clique-atom of G.

The above Proposition 6 unifies and generalizes some previous results that have been found
only for specific graph classes [20, 28]. One toy example is for the class of chordal graphs: a.k.a,
the graphs whose atoms are exactly their maximal cliques (the atom trees of chordal graphs
are usually called clique-trees) [7].

Corollary 7. Let H be a graph with a chordal square G = H2. For every cut-vertex of H, its
closed neighbourhood in H is a maximal clique of G.

For chordal squares, Corollary 7 and Proposition 6 are equivalent. However Proposition 6 is
stronger than Corollary 7 for general graphs since every clique-atom is also a maximal clique.

Chordal graphs with a chordal square have been characterized in [24]. In particular, every
tree, and more generally every block graph, has a chordal square.

Corollary 8 ( [28]). Let H be a block graph. For every cut-vertex of H, its closed neighbourhood
in H is a maximal clique of G.

By the previous Proposition 6, the closed neighbourhoods of cut-vertices in a given graph H
are atoms of its square G = H2. However, these may not be the only atoms of G. Our purpose
with Theorem 10 is to give a partial characterization of the remaining atoms. Ideally, we would
have liked them to correspond to the blocks of H. It turns out that this is not always the case.
A counter-example is given in Figure 4. However, we prove in Lemma 9 the following weaker
statement.

We first remind that given a graph G = (V,E), X ⊆ V is a (monophonic) convex set of G if,
for every x, y ∈ X, every induced xy-path in G is contained in X (see [12]). For example, every
atom is a monophonic convex set.

Lemma 9. Let G = (V,E) be a graph and let H be a square root of G. Every block of H is a
monophonic convex set of G.
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Proof. Let B be a block of H, let u,w ∈ B and let P be an induced uw-path in G. Since
P is induced, any of its H-extensions Q must be a path (i.e., with no repeated vertices). In
particular, we claim that it implies V (Q) ⊆ B. Indeed if it were not the case then Q should pass
twice by a same cut-vertex v of H (in order to leave then to go back in B), thereby contradicting
the fact that it is a path. As a result, V (P) ⊆ V (Q) ⊆ B, and so, B is a monophonic convex
set of G.

x

y

(a) Graph H.

x

y

(b) Square H2. Vertices x, y are simplicial in it.

Figure 4: A biconnected graph with a non prime square.

We finally present the main result in this section.

Theorem 10. Let H be the square root of a given graph G = (V,E). Then, the atoms of G
are exactly:

• the cliques Av = NH [v], for every cut-vertex v of H;

• and for every block B of H, the atoms A′ of H[B]2 that are not dominated in H by a
cut-vertex.

Proof. Let A be an atom of G. There are two cases to be distinguished.

1. Suppose that A is not contained in a block of H. Let B1, B2 be two different blocks
of H intersecting A and let u ∈ B1 \ B2, w ∈ B2 \ B1 such that u,w ∈ A. By the
hypothesis, there exists a cut-vertex v of H that intersect every uw-path of H. We claim
that A = Av. Indeed, suppose for the sake of contradiction that A 6= Av. W.l.o.g., u /∈ Av.
Let us name by Cu the connected component of H \ v that contains u. Then, it is easy
to prove (as we did for Proposition 6) that every uw-path in G must intersect the clique
S = (NH(v) ∩ Cu) ∪ {v}. The latter contradicts our assumption that the atom A has no
clique cutset. Therefore, we obtain that A ⊆ Av. Since Av is an atom by Proposition 6,
it follows as claimed that A = Av.

2. Else, A ⊆ B, for some block B of H. Observe that B induces an isometric subgraph of H,
hence H[B]2 and G[V (B)] are isomorphic. As a result, A is an atom of G implies that A
is also an atom of H[B]2. Conversely, if A′ is an atom of H[B]2 then A′ induces a prime
subgraph of G. In particular, it is an atom of G if and only if it is inclusion wise maximal
w.r.t. this property. Finally, we note that the only atoms that can possibly contain A′

are the sets Av, for any cut-vertex v of H that is contained in B. Altogether combined,
we have in this situation that A is an atom of H[B]2 such that, for every cut-vertex v of
H that is contained in B, A′ 6⊆ Av.

8



From Theorem 10, we deduce that the atom trees of a given square graph G are related to
its H-tree decompositions, as introduced in Lemma 2. In fact, for any square root H of G, the
atom trees of G are refinements of its H-tree decomposition, in the sense that every atom is
included in a bag of the H-tree decomposition of G.

Furthermore, the atoms of G coincide with the bags of its H-tree decomposition if and only
if: every block of H has a prime square, and there is no block of H included in the closed
neighbourhood of a cut-vertex. In this situation, the H-tree decomposition of G is an atom
tree. However, it may be the case that G has other atom trees. We refer to [45] for counting
the number of atom trees for a given graph.

4 Computation of the cut-vertices from the square

Given a square graph G = (V,E), we aim at computing all the cut-vertices in some square root
H of G. More precisely, we consider a square root Hmax of G maximizing its number of blocks.
We call it a maxblock square root of G. This notion is related to, but different than, the notion
of minimal square root studied in [20].

The following section is based on Proposition 6, that gives a necessary condition for a vertex
to be a cut-vertex in Hmax. Indeed, it follows from this Proposition 6 that there is a mapping
from the cut-vertices of Hmax to the clique-atoms of its square G = H2

max. We can observe that
the mapping is injective: indeed, it follows from the existence of the block-cut tree that every
two distinct cut-vertices v, v′ of Hmax can be contained in at most one common block; since
every cut-vertex is contained in at least two blocks, we get NHmax

[v] 6= NHmax
[v′]. However, the

mapping is not surjective in general.

In what follows, we present sufficient conditions for a clique-atom of G to be the closed
neighbourhood of a cut-vertex in any maxblock square root of G. In particular, we obtain a
complete characterization for the essential cut-vertices.

4.1 Recognition of the essential cut-vertices

We recall that a cut-vertex v of Hmax is called essential if there are two vertices in different
connected components of Hmax\v that are both at distance two from v in Hmax. The remaining
of the section is devoted to prove the following result.

Theorem 11. Let G = (V,E) be a square graph. Every maxblock square root of G has the same
set C of essential cut-vertices. Furthermore, every vertex v ∈ C has the same neighbourhood Av

in any maxblock square root of G. All the vertices v ∈ C and their neighbourhood Av can be
computed in O(n + m)-time if an atom tree of G is given.

The proof of Theorem 11 mainly follows from the correctness proof and the complexity
analysis of Algorithm 1. Its basic idea is that the essential cut-vertices in any maxblock square
root of G are exactly the cut-vertices in some ”incidence graphs”, that are locally constructed
from the neighbourhoods of each clique-atom in the atom tree.

Formally, for every clique-atom A of G, let Ω(A) contain NG(C) for every connected compo-
nent C of G \Av (note that Ω(A) is a multiset, with its cardinality being equal to the number
of connected components in G \ Av). The incidence graph IA = Inc(Ω(A), A) is the bipartite
graph with respective sides Ω(A) and A and an edge between every S ∈ Ω(A) and every u ∈ S.
Note that IA may contain isolated vertices (i.e., simplicial vertices in A that are not contained
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Algorithm 1 Computation of the essential cut-vertices.

Require: A graph G = (V,E); an atom tree (TG,A) of G.
Ensure: Returns (if G is a square) the set C of essential cut-vertices, and for every v ∈ C its neighbourhood Av, in

any maxblock square root of G.
1: C ← ∅.
2: for all clique-atom A ∈ A do
3: Compute the incidence graph IA = Inc(Ω(A), A), with Ω(A) being the multiset of neighbourhoods of the

connected components of G \A.
4: if

⋂
S∈Ω(A)

S = {v} and v is a cut-vertex of IA then

5: C ← C ∪ {v}; Av ← A.

in the neighbourhood of any component), and so, disconnected. We first make the following
useful observation:

Fact 12. For every v ∈ A, v is a cut-vertex of IA if and only if there is a bipartition P,Q of
the connected components of G \A such that NG(P ) ∩NG(Q) = {v}.

We now subdivide the correctness proof of Algorithm 1 in the two following lemmas.

Lemma 13. Let H be the square root of a given graph G = (V,E), let v ∈ V be an essential cut-
vertex of H and let Av = NH [v]. Then, v has a neighbour in G in every connected component
of G \Av. Furthermore, there is a bipartition P,Q of the connected components of G \Av such
that NG(P ) ∩NG(Q) = {v}.

Proof. We prove the two statements of the lemma separately. First, observe that for every
connected component D of G\Av, we have that NH(D)∩Av 6= ∅. Since Av = NH [v], it follows
that v ∈ NG(D). In particular, v has a neighbour in G in every connected component of G\Av.

Second, let C1, C2, . . . , Ck be all the connected components of H \v such that Ci 6⊆ Av. Note
that k ≥ 2 by the hypothesis. Furthermore, since for every i 6= j and for every ui ∈ Ci\Av, uj ∈
Cj \Av, we have distH(ui, uj) = distH(ui, v) + distH(uj , v) ≥ 4, there can be no edge between
Ci \Av and Cj \Av in G. It implies that for every component D of G\Av, there is an 1 ≤ i ≤ k
such that D ⊆ Ci \ Av. So, let us group the components of G \ Av in order to obtain the sets
Ci \ Av, 1 ≤ i ≤ k. For every 1 ≤ i ≤ k, we have {v} ⊆ NG(Ci \ Av) ⊆ (NH(v) ∩ Ci) ∪ {v}.
In particular, for every i 6= j, we obtain NG(Ci \ Av) ∩ NG(Cj \ Av) = {v}. Hence, let us
bipartition the sets Ci \ Av into two nonempty supersets P and Q; by construction we have
NG(P ) ∩NG(Q) = {v}.

It turns out that conversely, Lemma 13 also provides a sufficient condition for a vertex v to
be an essential cut-vertex in some square root of G (and in particular, in any maxblock square
root). We formalize this next.

Lemma 14. Let Hmax be a maxblock square root of a given graph G = (V,E), and let v ∈ V .
Suppose there is a clique-atom Av of G and a bipartition P,Q of the connected components
of G \ Av such that NG(P ) ∩ NG(Q) = {v}. Then, for every square root H of G, we have
NH(P ) ∪ NH(Q) ⊆ NH(v) ⊆ Av. In particular, v is an essential cut-vertex of Hmax and
NHmax [v] = Av.

10



Proof. Let H be any square root of G. By the hypothesis, there can be no edge in G between
P and Q, and so, NH(P ) ∩NH(Q) = ∅. Furthermore, if it were the case that u ∈ NH(P ) and
w ∈ NH(Q) are adjacent in H, then it would imply that u,w ∈ NG(P ) ∩ NG(Q), that would
contradict the hypothesis that NG(P )∩NG(Q) = {v}. As a result, for every u ∈ NH(P ) and w ∈
NH(Q), there exists a common neighbour v′ ∈ NH(u)∩NH(w) such that v′ /∈ NH(P )∪NH(Q)
(otherwise it would imply the existence of an edge in H between NH(P ) and NH(Q)). Since in
addition v′ ∈ NG(P ) ∩ NG(Q) then it must be the case that v′ = v. Altogether combined, it
implies that NH(P ) ∪NH(Q) ⊆ NH(v) ⊆ Av.

Then, suppose for the sake of contradiction that v is not a cut-vertex of Hmax. We claim that
Av must be contained in a block of Hmax. Indeed, observe that since v is the unique vertex
such that NHmax

(P )∪NHmax
(Q) ⊆ NHmax

(v), there can be no cut-vertex of Hmax whose closed
neighbourhood is Av. In this situation, by Theorem 10 Av is an atom in the square of some
block B of Hmax. It implies as claimed that Av must be contained in B.

Let H0 be obtained from Hmax as follows. We first remove all the edges in Hmax between
every vertex of NG(P ) \ NHmax

(P ) and every vertex of NG(Q) \ NHmax
(Q). Note that this

operation does not change the neighbourhood at distance two of P and Q. Then, we make
every vertex of Av adjacent to v. By doing so, we make of vertex v a cut-vertex in H0,
and we so increase the number of blocks. Furthermore, Av is still a clique of H2

0 , and since
NHmax(P )∪NHmax(Q) ⊆ NG(v), the adjacency relations between the vertices of P ∪Q and the
vertices of Av are the same in H2

0 as in G. Hence, by construction H0 is a square root of G with
strictly more blocks that in Hmax, that contradicts the fact that Hmax is a maxblock square
root.

Therefore, v is a cut-vertex of Hmax. By using the same arguments as above, it can also
be proved that the vertices in P are in different connected components of Hmax \ v than the
vertices in Q. Hence, v is an essential cut-vertex of Hmax. Finally, since NHmax

[v] ⊆ Av and
NHmax

[v] is a clique-atom of G by Proposition 6, we have NHmax
[v] = Av.

Proof of Theorem 11. The unicity of C and of the sets Av, v ∈ C follows from Lemmas 13
and 14. Indeed, on the one hand let v ∈ V be an essential cut-vertex in some square root H of
G and let Av = NH [v]. Let IAv

= Inc(Ω(Av), Av) be the incidence graph as defined above. By
Lemma 13 we have v ∈

⋂
S∈Ω(A)

S. Furthermore, since v is a cut-vertex of IA, it is the unique

vertex in this common intersection
⋂

S∈Ω(A)

S. As a result, vertex v passes the test of Algorithm 1

for A = Av. Conversely, if for some clique-atom A the (unique) vertex v tested passes the test
of Algorithm 1, then by Lemma 14 v is an essential cut-vertex with closed neighbourhood being
equal to A in any maxblock square root of G.

Let us finally prove that given an atom tree (TG,A) of G, the set C and the closed neigh-
bourhood Av, v ∈ C can be computed in linear time. In order to prove it, it suffices to prove
that Algorithm 1 can be implemented to run in linear time. We first remind that the set of
clique-atoms of G can be computed from (TG,A) in linear time [14].

Furthermore, let A ∈ A be a fixed clique-atom, and let Ω∗(A) = {A′ ∩A | {A′, A} ∈ E(TG)}.
By the properties of atom trees (Lemma 4), Ω∗(A) is a subset of Ω(A). In addition (by the
properties of tree decompositions) we have that every set S ∈ Ω(A) is included in some set
S∗ ∈ Ω∗(A). So, instead of computing the incidence graph IA, let us compute the ”reduced
incidence graph” I∗A = Inc(Ω∗(A), A). Let us replace IA by I∗A for the test of Algorithm 1. By
doing so, this test can be performed in O(|E(I∗A)|) = O(

∑
S∗∈Ω∗(A) |S∗|).

Let us prove that this modification of the test does not change the output of the algorithm.
On the one hand, if v ∈ A passes the modified test then by Lemma 14, v ∈ C and Av = A.

11



Conversely, let v ∈ C be arbitrary and let A = Av. Note that since by Lemma 13 we have
v ∈

⋂
S∈Ω(A)

S, we also have v ∈
⋂

S∗∈Ω∗(A)

S∗. In addition, since G is assumed to be a square, it

is biconnected and so, |S| ≥ 2 for every S ∈ Ω(A); in particular, every two S, S∗ ∈ Ω(A) such
that S ⊆ S∗ are in the same block of IA (since they have two common neighbours in IA), that
implies that v keeps the property to be a cut-vertex of I∗A. The latter implies as before that⋂
S∗∈Ω∗(A)

S∗ = {v}. It thus follows that every vertex v ∈ C passes the modified test.

Overall, this above implementation of Algorithm 1 runs in time:

O(
∑
A∈A

∑
S∗∈Ω∗(A)

|S∗|) = O(
∑

{A,A′}∈E(TG)

|A ∩A′|).

Since (T,A) is an atom tree, it is O(n + m) by Lemma 5.

4.2 Sufficient conditions for non essential cut-vertices

We let open whether a good characterization of non essential cut vertices can be found. The
remaining of this section is devoted to partial results in this direction.

It can be observed that in general, not all the maxblock square roots of a graph have the
same set of non essential cut-vertices. This is due to the fact that non essential cut-vertices can
have a true twin in the square graph (e.g., see Figure 5).

Our main result in this section is a complete characterization of the closed neighbourhoods of
such vertices in any maxblock square root — under additional assumptions on the properties of
its blocks (Theorem 18). Admittedly, these additional conditions are a bit technical. However,
we show in the next sections that they are satisfied by many interesting graph classes.

0 1

23

4

5

(a) Square root H1.

0 1

23

4

5

(b) Square root H2

(isomorphic to H1).

0 1

23

4

5

(c) Square G.

Figure 5: Two square roots where the cut-vertices are different.

Observe that if v is a non essential cut-vertex in some square root H of a graph G, there is
at most one component of H \ v that is not fully contained in NH [v]. Thus, we can make the
following easy observation:

Fact 15. Let Hmax be a maxblock square root of a graph G = (V,E) and let v ∈ V be a non
essential cut-vertex of Hmax. All but at most one components of Hmax \ v are reduced to an
edge between v and a pending vertex.
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Non essential cut-vertices in a maxblock square root are strongly related to simplicial vertices
in the square. Indeed, let Hmax be a maxblock square root of a graph G = (V,E). Let v be
a non essential cut-vertex of Hmax and u be a pending vertex adjacent to v in Hmax. Then, u
becomes a simplicial vertex of G such that NG[u] = NH [v].

In general, if a clique-atom of G contains a simplicial vertex then it may not necessarily
represent the closed neighbourhood of a cut-vertex in Hmax. However, we are able to prove the
following weaker statement:

Lemma 16. Let G = (V,E) be a graph, and let A be a clique-atom of G that contains a
nonempty set K of simplicial vertices. If G is a square then it has a square root H such that
H \K is a monophonic convex subgraph of H.

Proof. Let H ′ be any square root of G. Let S1 = NH′(V \ A), S2 = NH′(S1) ∩ A. Note that
NH′(K) ⊆ S2. Furthermore, let H be obtained from H ′ by adding an edge between every two
nonadjacent vertices of S2. By construction, H is still a square root of G, and since S2 is a
clique we have that H \K is a monophonic convex subgraph of H.

The above construction of Lemma 16 could be refined if we were able to decide when a vertex
of S2 can be made adjacent to every vertex of S1. The following are, so far, the most general
cases where we are able to do so. We first recall that a vertex is called simple if it is simplicial
and the closed neighbourhoods of its neighbours can be linearly ordered by inclusion.

Lemma 17. Let Hmax be a maxblock square root of a graph G = (V,E). If there exists a simple
vertex u in G then it has a neighbour v ∈ NG(u) that is a non essential cut-vertex of Hmax.
Furthermore, NHmax [v] = NG[u].

Proof. Let A = NG[u]. Since u is simple, by Lemma 3 A is the unique atom of G containing
u. Furthermore, we claim that A is the closed neighbourhood of a cut-vertex in Hmax. By
contradiction, suppose that it is not the case.

By Theorem 10, A is an atom in the square of some block of Hmax. Hence, A is contained
in a block of Hmax. We will transform Hmax so that it is no longer the case, that will arise a
contradiction. In order to do so, let S = S1 ∪S2 with S1 = NHmax(V \A), S2 = NHmax(S1)∩A
and let K = A \ S. Observe that K 6= ∅ (since u ∈ K). Thus, since NHmax(K) ⊆ S2 and
A is a clique-atom of G, we have that NHmax

(w) ∩ S2 6= ∅ for every w ∈ S1. In particular,⋃
v′∈S2

NG(v′) \A =
⋃

w∈S1
NHmax

(w) = NHmax
(A).

Finally, let v ∈ S2 maximize her degree in G. Note that since u is assumed to be simple by the
hypothesis, NG[v′] ⊆ NG[v] for every v′ ∈ S2. So, let H0 be obtained from Hmax by removing
all the edges incident to a vertex in K, then making vertex v universal in A. By construction,
all the vertices in K are now pending vertices adjacent to v. Furthermore, H0 has strictly more
cut-vertices and strictly more blocks than Hmax. We claim that H0 is a square root of G, that
will arise a contradiction. Indeed, on the one hand A is a clique of H2

0 . In addition, for every
v′ ∈ S\v we have NH2

0
(v′)\A = NG(v′)\A because NHmax

[v′]∩S1 = NH0
[v′]∩S1. On the other

hand, NH2
0
(v) \ A = NHmax(S1) \ A =

(⋃
v′∈S2

NG(v′)
)
\ A = NG(v) \ A. As a result, H0 is a

square root of G with strictly more blocks than Hmax, thereby contradicting the fact that Hmax

is a maxblock square root of G. This implies as claimed that A is the closed neighbourhood of
a cut-vertex v of Hmax.

In order to complete the proof of the lemma, it suffices to prove that v cannot be an essential
cut-vertex. Indeed, let us totally order the vertices w1, w2, . . . , wk ∈ S such that i < j =⇒
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NG[wi] ⊆ NG[wj ] (it can be done since u is simple). In this situation, if for some component
C of G \ A, we have wi ∈ NG(C), then we also have wi, wi+1, . . . , wk ∈ NG(C). In particular,
since G is biconnected, it implies that wk−1, wk have a neighbour in every component of G \A.
As a result, there can be no partition P,Q of the connected components of G \ A such that
NG(P ) ∩ NG(Q) is reduced to a singleton. It thus follows from Lemma 13 that A cannot be
the closed neighbourhood of an essential cut-vertex.

A main drawback of Lemma 17 is that it does not say how to compute the desired cut-vertex
v. We show how to overcome this difficulty in the next sections. Before concluding this section,
we now state its main result.

Theorem 18. Let G = (V,E) be a connected graph that is not a clique, and let Hmax be a
square root of G. Suppose that for every block B of Hmax, we have:

• Hmax[B] has no dominated vertex, unless it is a clique;

• and it has a prime square.

If in addition, Hmax maximizes its number of blocks w.r.t. these two properties, then a clique-
atom A of G is the closed neighbourhood of a non essential cut-vertex in Hmax if and only
if it satisfies the following condition: there exists a clique cutset S ⊆ A such that, for every
component C of G \A, we have NG(C) ⊆ S2. Furthermore, all the clique-atoms satisfying this
above property can be computed in O(n + m)-time if an atom tree of G is given.

The first assumption on the blocks may look a bit artificial. However, we emphasize that it
holds for every regular graph [3]. Furthermore, we note that the condition of Theorem 18 is
related to the notion of simplicial moplex (see [4]). In fact, the atoms satisfying the condition
of the theorem are exactly the closed neighbourhoods of simplicial moplex.

Proof. Let (TG,A) be an atom tree of G. Let A ∈ A be an arbitrary clique-atom.

Suppose that v ∈ A is a non essential cut-vertex of Hmax such that NHmax [v] = A. Observe
that since G is not a clique, we have V 6= A. Furthermore, since v is non essential, there is a
unique block B of Hmax such that v ∈ B and B 6⊆ A. So, let S = NG[v]∩B. By construction S
induces a clique. Furthermore, we have that for every component C of G \ A, NG(C) ⊆ S. In
particular, let CB be the connected component of G\A that contains B \S. Such a component
surely exists since by the hypothesis, B induces a prime subgraph of G.

We claim that NG(CB) = S. Indeed, this is clear if B is a clique of G. Otherwise, let
HB = Hmax[B]. By the hypothesis, HB has no dominated vertex. In this situation, B is an
atom of G by Theorem 10. By Lemma 4, it follows that in this case, S ⊆ NG(B \ S), hence
NG(CB) = S, that proves the claim. Overall, S is a clique-cutset, and so, the clique-atom A
indeed satisfies the condition of the theorem.

Conversely, suppose that A satisfies this condition, and let us prove that it is the closed
neighbourhood of a non essential cut-vertex of Hmax. Let S ⊆ A be the clique cutset as defined
by the condition of the theorem.

We first prove as an intermediary claim that A cannot be the closed neighbourhood of an
essential cut-vertex. Indeed, since S is a clique cutset, and so, a minimal separator, there are at
least two full components of G \ S. The latter implies the existence of a connected component

2Since clique-cutsets are in bijective correspondance with the edges in an atom tree, this property is equivalent to
have A being a leaf in some atom tree.
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CS of G \ A such that NG(CS) = S. However in this situation, let P,Q be any bipartition of
the connected components of G \ A such that CS ∈ P . Since A satisfies the condition of the
theorem, we have NG(Q) ⊆ NG(P ) = S. Hence NG(P ) ∩NG(Q) = NG(Q) cannot be reduced
to a singleton because G is biconnected. By Lemma 13, this implies as claimed that A cannot
be the closed neighbourhood of an essential cut-vertex.

Finally, suppose for the sake of contradiction that A is not the closed neighbourhood of a
cut-vertex of Hmax. By Theorem 10, A is an atom in the square of some block of Hmax. By
the hypothesis, it implies that A coincide with a block of Hmax, and this block cannot be a
clique (otherwise, A would be contained in the closed neighbourhood of a cut-vertex in Hmax).
Therefore, HA = H[A] has no dominated vertex. We prove as a new intermediary claim that
A contains a unique cut-vertex of Hmax. Indeed, the set of neighbourhoods of the connected
components of G \ A is exactly the set of intersections Av ∩ A = NHA

[v], Av = NHmax
[v], for

every cut-vertex v of Hmax contained in A. In particular, Av ∩A = NHA
[v] ⊆ S. Furthermore,

recall that there exists a connected component CS of G \ A such that NG(CS) = S. Hence,
there exists v0 ∈ CS such that v0 is a cut-vertex of Hmax and Av0 ∩A = NHA

[v0] = S. Overall,
since HA has no dominated vertex, it implies as claimed that v0 is the unique cut-vertex of
Hmax contained in A.

However, in this situation, let v ∈ NHA
(v0) be arbitrary. Let H0 be obtained from Hmax by

transforming S into a clique and making every vertex of A \ S a pending vertex adjacent to
v. By construction, H0 is a square root of G with strictly more blocks than Hmax. Since the
blocks of H0 still satisfy the two assumptions of the theorem, it contradicts the maximality of
Hmax. As a result, we obtain that A is the closed neighbourhood of some cut-vertex of Hmax

(necessarily, non essential).

In order to complete the proof, we are left to prove the linear time bound in order to compute
all the clique-atoms that satisfy the desired property. We recall that given (TG,A), all the
clique-atoms can be computed in O(n + m)-time [14]. Furthermore, for every clique-atom
A, let Ω∗(A) = {A′ ∩ A | {A′, A} ∈ E(TG)} and let SA ∈ Ω∗(A) be of maximum size. By
the combination of Lemma 4 with usual properties of tree decompositions, we have that if A
satisfies the condition of the theorem then it does so with S = SA. It can be checked in time
O(
∑

S∗∈Ω∗(A) |S∗|). Overall, all the clique-atoms that satisfy the condition of the theorem can
be retrieved in time:

O(
∑
A∈A

∑
S∗∈Ω∗(A)

|S∗|) = O(
∑

{A,A′}∈E(TG)

|A ∩A′|),

that is O(n + m) by Lemma 5.

5 Reconstructing the block-cut tree of a square root

Given a graph G = (V,E), we propose a generic approach in order to compute the block-cut
tree of one of its square-roots (if any). More precisely, we remind that a square root of G that
maximizes its number of blocks is called a maxblock square root. We suppose we are given
the closed neighbourhoods of all the cut-vertices in some maxblock square root of G (the cut-
vertices may not be part of the input). Based on this information, we show how to compute for
every block of Hmax a graph that is isomorphic to its square (Theorem 19). However, in doing
so, the correspondance between the nodes in these graphs and the nodes in G is lost. Hence
for each block, we need to solve a stronger version of the H-square root problem in order to
obtain a global solution for G. This is discussed in Section 5.1.
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Theorem 19. Let Hmax be a maxblock square root of a graph G = (V,E), and let A1, A2, . . . , Ak

be the closed neighbourhoods of every cut-vertex in Hmax. For every block B of Hmax, we can
compute a graph GB that is isomorphic to its square. Furthermore, if B does not contain a
pending vertex of Hmax then we can also compute the mapping from V (GB) to B. It can be
done in O(n + m)-time in total if an atom tree of G is given.
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(a) Square root H.
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(b) Square G = H2.

x7x6x5x4x3x2x1v

S3S2S1

(c) Incidence graph for A = NH [v].

(d) Block-cut tree of IA.

Figure 6: Computation of the connected components in a square root.

The remaining of this section is devoted to the proof of Theorem 19. It is based on the
incidence graphs presented in Section 4.1. More precisely, we recall that for every clique-atom
A of G, we define Ω(A) as the multiset containing NG(C) for every connected component C
of G \Av. The incidence graph IA = Inc(Ω(A), A) is the bipartite graph with respective sides
Ω(A) and A and an edge between every S ∈ Ω(A) and every u ∈ S.

We need the following technical lemma.

Lemma 20. Let Hmax be a maxblock square root of a graph G = (V,E). A vertex has a
maximum neighbour in Hmax if and only if it is a pending vertex.

Proof. On the one hand, let v ∈ V be a pending vertex of Hmax with u being its unique
neighbour in the square root. Clearly, u is a maximum neighbour of v in Hmax. Conversely, let
u, v ∈ V be such that u is a maximum neighbour of v in Hmax. We have that NG[v] = NHmax

[u].
In particular, let H0 obtained from Hmax \ v by adding vertex v and the edge {u, v}. Since u
is a maximum neighbour of v, we have that H0 keeps the property to be a square root of G.
Furthermore, since Hmax is a maxblock square root, we obtain that H0 = Hmax. Hence, v is a
pending vertex.

Given a clique-atom A and its incidence graph IA, we can compute the blocks of IA. Then, let
us define the following equivalence relation over the connected components of G \A: C ∼A C ′

if and only if NG(C) and NG(C ′) (taken as elements of Ω(A)) are in the same block of IA. The
latter relation naturally extends to an equivalence relation over V \ A: for every components
C,C ′ of G \ A and for every u ∈ C, u′ ∈ C ′, u ≡A u′ if and only if C ∼A C ′. In doing so, the
equivalence classes of ≡A partition the set V \A. We refer to Figure 6 for an illustration of the
procedure.
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Lemma 21. Let G = (V,E) be a graph, let Hmax be a maxblock square root of G, and let A
be a clique-atom of G. Suppose that A is the closed neighbourhood of a cut-vertex v in Hmax

and let C1, C2, . . . , Cl be the nontrivial connected components of Hmax \v. Then the equivalence
classes of ≡A are exactly the sets Ci \A, 1 ≤ i ≤ l.

Proof. Let D be a connected component of G \ A. As observed in the proof of Lemma 13, it
intersects exactly one of the sets Ci \A. Furthermore (still by the proof of Lemma 13), for every
i 6= j we have that if D ⊆ Ci \ A and D′ ⊆ Cj \ A then NG(D) and NG(D′) are in different
connected components of IA \ v. Hence, each equivalence class of ≡A intersects exactly one of
the sets Ci \A.

Conversely, let i be fixed, 1 ≤ i ≤ l, and let D,D′ ⊆ Ci \ A be two connected components
of G \ A. For every u ∈ D, u′ ∈ D′, let us consider an uu′-path (u = x0, x1, . . . , xp = u′) in
Hmax \ v. It can be transformed into an NG(D)NG(D′)-walk in IA \ v as follows.

• We replace every vertex xt /∈ A by yt = NG(Dt) with Dt being the component that
contains xt. On the way, we suppress consecutive occurences of a same node.

• This is not a walk in IA yet because there may be two consecutive vertices xt, xt+1 ∈
A. However, by Lemma 20 vertex v cannot be a maximum neighbour of xt in Hmax.
Hence, xt ∈ NHmax

(Dt) for some component Dt of G \ A. Furthermore, since xt, xt+1

are adjacent in Hmax, we have xt, xt+1 ∈ NG(Dt). We replace the sequence xt, xt+1 by
xt, NG(Dt), xt+1.

Moreover, we claim that (NG(D), v,NG(D′) is an NG(D)NG(D′)-path of IA. Indeed, since
NHmax

(D) ∪ NHmax
(D′) ⊆ A = NHmax

[v], therefore v ∈ NG(D) ∩ NG(D′), and so, the claim
follows. Altogether combined, there exist two NG(D)NG(D′)-paths of IA that are internally
vertex-disjoint, which implies that NG(D), NG(D′) ∈ Ω(A) are in a common block of IA. In
particular, all the components that intersect the set Ci \A are in the same equivalence class of
≡A.

We are now ready to prove Theorem 19.

Proof of Theorem 19. Our approach mimics the following ”naive” algorithm for computing the
blocks of Hmax. Let v ∈ V be an arbitrary cut-vertex. We compute the connected components
C1, . . . , Cl of Hmax \ v. Then, it follows from the existence of the block-cut tree that the blocks
of Hmax are exactly the blocks contained in the subgraphs Hmax[C1 ∪ {v}], . . . ,Hmax[Cl ∪ {v}].
Each of the subgraphs can thus be considered separately.

More formally, we consider the cut-vertices v1, . . . , vk of Hmax sequentially. At each step i
we maintain a T -decomposition of Hmax, that is, a collection of subgraphs Ti with the property
that every block is contained in a unique subgraph of the collection. Initially, T1 = {Hmax}. We
ensure that each cut-vertex vi, vi+1 . . . , vk is contained in a unique subgraph of Ti. In particular,
we consider the unique subgraph Hi that contains vi and we compute the components C1, . . . , Cl

of Hi \vi. We finally construct the collection Ti+1 from Ti \{Hi} by adding, for every 1 ≤ j ≤ l,
the subgraph Hi[Cj ∪ {vi}] to the current collection. Note that the graphs in the final set Tk+1

are exactly the atoms of Hmax.

Back to the square G, we consider the sets A1, A2, . . . , Ak sequentially. Our purpose for
proving Theorem 19 is to maintain an ”atom forest” Fi: with an atom tree for the square of
every subgraph in Ti. This cannot be done in general, as we may not know the cut-vertices of
Hmax (we know for sure their closed neighbourhoods). However, we prove that it can be done
for all the subgraphs of Ti that are not reduced to a pending vertex and its (unique) neighbour
in Hmax.
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We set initially F1 = {(TG,A)} with (TG,A) being an atom tree of G. Furthermore, at each
step i we ensure that each set Ai, Ai+1, . . . , Ak is a bag in a unique atom tree in Fi. For every
1 ≤ i ≤ k, we consider the unique (Ti,Ai) ∈ Fi such that Ai ∈ Ai. It represents an atom tree
of Gi = H2

i . Let Ω∗(Ai) = {Ai ∩A′ | {Ai, A
′} ∈ E(TG)}.

• First we compute the number si of vertices of Gi that are uniquely contained in Ai. It
can be computed in time O(|Ai| +

∑
S∗∈Ω∗(Ai)

|S∗|). By Lemma 3, all these vertices are
simplicial in G, with their closed neighbourhood in G being Ai. Since vi is a maximum
neighbour (in the square root) for all the simplicial vertices in Ai, by Lemma 20 there
are exactly si trivial connected components of Hmax \ vi. Note that each such component
induces a block isomorphic to K2.

• We then compute the blocks of the incidence graph IAi
= Inc(Ω(Ai), Ai). Note that

each block represents an equivalence class of ≡Ai
in G (not in Gi). Furthermore, as

explained in the proof of Theorem 11, it can be done using the reduced incidence graph
I∗Ai

= Inc(Ω∗(Ai), Ai). So, it can be done in time O(
∑

S∗∈Ω∗(Ai)
|S∗|).

Let C1, C2, . . . , Cq be the remaining q = l − si connected components of Hi \ v (we
remove from the list the trivial components that correspond to the si simplicial vertices
in Ai). There is a bijection between these components and the nontrivial components
C ′1, C

′
2, . . . , C

′
q of Hmax \ v. Moreover by Lemma 21, the set of equivalence classes of ≡Ai

is exactly {C ′j \ Ai | 1 ≤ j ≤ q}. Since by Lemma 20 vertex vi cannot be a maximum
neighbour of the vertices in these components, we can thus obtain the sets Cj ∪{vi} from
NG[C ′j \Ai] ∩ V (Hi), for every 1 ≤ i ≤ q.

• By the properties of tree decompositions, each set Cj ∪ {v} corresponds to a collection
Cj of the subtrees in Ti \Ai. Namely, these subtrees are obtained from the blocks of I∗Ai

,
by grouping the subtrees whose respective intersections with Ai are in the same block of
I∗Ai

. Let us remove all the subtrees of Ti \Ai that are not part of Cj . Then, let us replace
Ai by Ai ∩ (Cj ∪ {v}). We so obtain a tree decomposition (Ti,j ,Ai,j) for the square of
Hi[Cj∪{v}]. Finally, in order to obtain Fi+1 fron Fi\{(Ti,Ai)}, we add all the (Ti,j ,Ai,j)
in the collection, for every 1 ≤ j ≤ q.

Formally, the tree decompositions (Ti,j ,Ai,j) are not exactly atom trees since they may
contain non maximal prime subgraphs (e.g., the bag Ai ∩ (Cj ∪ {v})). However, it is
necessary to keep these additional bags for the correctness of the algorithm. Indeed,
consider the special case of a block B that is dominated by at least two cut-vertices
vi1 , vi2 . At the ith1 step, we replace Ai1 by B in the unique tree-decomposition (Ti1,j ,Aj)
containing Ai2 . This is clearly not an atom since B ⊆ Ai2 . However, deleting this bag
could result in missing B. This is also why we need to compute ≡Ai in G rather than in
the subgraph Gi.

Overall, the time complexity is in:

O(
∑
A∈A

∑
S∗∈Ω∗(A)

|S∗|) = O(
∑

{A,A′}∈E(TG)

|A ∩A′|),

that is O(n + m) by Lemma 5.

Having a closer look at our reconstruction method, we observe that it can only be mistaken
in classifying the simplicial vertices of G. This is why we need Lemma 20.
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5.1 Discussion: obtaining a global solution from the blocks

By Theorem 19, we can compute, for every block of the desired square root, a graph that is
isomorphic to its square. Then, we wish to solve the H-square root problem for each output
graph separately, that can be done assuming the blocks are part of a class H for which the
problem is trivial, or at least tractable. However, doing so, we may not be able to reconstruct
a square root for the original graph. Indeed, the closed neighbourhoods of cut-vertices are
imposed, and these additional constraints may be violated by the partial solutions. We thus
need to solve a stronger version of the problem.

Problem 2 (H-square root with neighbours constraints).

Input: A graph G = (V,E); a list NF of pairs 〈v,Nv〉 with v ∈ V, Nv ⊆ V \ v; a list NA

of subsets Ni ⊆ V, 1 ≤ i ≤ k.

Question: Are there a graph H ∈ H and a collection v1, v2, . . . , vk ∈ V of pairwise disjoint
vertices such that:

• for every 〈v,Nv〉 ∈ NF , we have NH [v] = Nv

• for every 1 ≤ i ≤ k, we have NH [vi] = Ni; furthermore, 〈vi, Ni〉 /∈ NF ?

Intuitively, the list NF represents the essential cut-vertices and their closed neighbourhoods
in the block. The list NA represents the closed neighbourhoods of non essential cut-vertices.
Let us point out that these two lists can be computed as a byproduct of the computation of
the blocks.

Furthermore, non essential cut-vertices correspond to the vertices v1, . . . , vk to be computed.
Notice that we need to ensure the pairwise disjointness of the vertices vi in case there may be
true twins in the square root. We also need to ensure that 〈vi, Ni〉 /∈ NF for the same reason.
Finally, let us point out that if we can solve H-square root with neighbours constraints
for each square of block separately, then a square root for the original graph can be found by
connected some pending vertices to the cut-vertices. The latter correspond to the simplicial
vertices of G that are contained in the closed neighbourhood of a cut-vertex in its root.

We note that in the special case when NA = ∅ (i.e., all the cut-vertices are known), our
problem reduces to a particular case of H-square root with labels; this other variant of
the problem has already received some attention in the literature [19].

6 Application to trees of cycle-powers

A cycle-power graph is any jth-power Cj
n of the n-node cycle Cn, for some j ≥ 1. In particular,

if j = 1 then C1
n is exactly the cycle Cn. If 2 ≤ j ≤ bn/2c − 1 then Cj

n is a 2j-regular graph.
Otherwise, j ≥ bn/2c and the graph Cj

n is isomorphic to the complete graph Kn.

Definition 22. A tree of cycle-powers is a graph whose blocks are cycle-power graphs.

This above class generalizes the classes of trees, block graphs and cacti: where all the blocks
are edges, complete subgraphs and cycles, respectively. Other relevant examples are the class
of cactus-block graphs: where all the blocks are either cycles or complete subgraphs [42]; and
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the Gallai trees, that are the cactus-block graphs with no block being isomorphic to an even
cycle [18].

The remaining of the section is devoted to prove the following result:

Theorem 23. The squares of trees of cycle-powers can be recognized in polynomial-time.

Up to conceptually simple changes, the proof of Theorem 23 also applies to all the subclasses
mentioned above. This solves for the first time the complexity of the H-square root problem
when H is the class of cactus-block graphs or the class of Gallai trees:

Theorem 24. The squares of cactus-block graphs, resp. the squares of Gallai trees, can be
recognized in polynomial-time.

On the complexity point of view, our algorithm runs in O(nm)-time. This improves upon
the O(n4)-time algorithm of [20] for the recognition of squares of cacti. Furthermore, the main
bottleneck is the computation of an atom tree for the graph, that requires O(nm)-time [5].
Indeed, all the other operations can be performed in linear-time. It implies that for graphs
where an atom tree is easier to compute, such as chordal squares, we achieve a better time
complexity. In particular, we retrieve as particular cases the linear-time algorithms for the
recognition of squares of trees and block graphs of [28].

The remaining of the section is divided as follows. We first prove in Lemma 26 that if a graph
has a square root that is a tree of cycle-powers then in particular, there is one such square root
whose cut-vertices can be computed by using the constructions of Theorems 11 and 18. Then,
we show with Lemma 29 that for each graph output by the algorithm of Theorem 19 (isomorphic
to the square of a block), the H-square root with neighbours constraints problem can
be solved in linear time.

6.1 Existence of a nice square root

We start with a basic property of cycle-power graphs.

Lemma 25. For every j, n ≥ 1, the cycle-power graph Cj
n is prime.

Proof. This is clear if j ≥ bn/2c for then Cj
n is isomorphic to the complete graph Kn. Thus

from now on, assume 1 ≤ j < bn/2c. Let us label the vertices of Cj
n by Zn, in such a

way that vertex i is adjacent to the vertices i ± k, 1 ≤ k ≤ j. It has been noted in [13]
that every minimal separator S of Cj

n is the union of two disjoint ”circular intervals”, i.e.,
S = {i1, i1 + 1, . . . , i1 + j − 1} ∪ {i2, i2 + 1, . . . , i2 + j − 1} for some i1, i2. Furthermore, the
only two (full) components of Cj

n \ S have respective vertex-sets {i1 + j, i1 + j + 1, . . . , i2 − 1}
and {i2 + j, i2 + j + 1, . . . , i1 − 1} (indices are taken modulo n). In this situation, i1 and i2 are
at distance at least j + 1 in Cn. So, they cannot be adjacent in Cj

n. As a result, no minimal
separator of Cj

n can be a clique, hence Cj
n is prime.

In order to prove the next result, we use classical techniques in the study of circular-arc
graphs (intersection graphs of intervals on the cycle) [47]. Indeed, every cycle-power graph is a
circular-arc graph [31].
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Lemma 26. Let G = (V,E) be a graph that is not a clique. Let Hmax be a square root of G
that is a tree of cycle-powers and maximizes its number of blocks w.r.t this property. The set
of closed neighbourhoods of the cut-vertices in Hmax can be computed in O(n + m)-time if an
atom tree of G is given.

Proof. Note that since every cycle-power graph is regular, and it has a prime square by
Lemma 25, the blocks of Hmax satisfy the two assumptions of Theorem 18. Furthermore,
the characterization of this theorem allows to compute all the clique-atoms that can be the
closed neighbourhood of a non essential cut-vertex in Hmax. In order to prove that they are
exactly the set of these closed neighbourhoods, it suffices to prove that given Hmax, the graph
modification used in Theorem 18 (in order to increase the number of non essential cut-vertices)
outputs a tree of cycle-powers. Indeed, this modification takes a block B of the square root
that has diameter two and contains a unique cut-vertex v; it makes of S = NHmax[B][v] a clique
and it connects all the remaining vertices of B \S to an arbitrary vertex of S \ v. In the special
case where Hmax[B] = Cj

n, dbn/2c /2e ≤ j < bn/2c, this modification results in a clique S
of size 2j + 1 (that induces the complete graph Cj

2j+1) and pending vertices. See Figures 7a
and 7b for an illustration. Therefore, by maximality of the number of blocks in Hmax, the
closed neighbourhoods of non essential cut-vertices in Hmax are exactly the clique-atoms that
satisfy the condition of Theorem 18. They can be computed in linear-time if an atom tree of G
is given.

(a) A pending block. (b) Non-essential cut-vertex. (c) A ”splittable” block. (d) Essential cut-vertex.

Figure 7: Local modifications of the blocks.

Similarly, we have by Lemma 13 that the essential cut-vertices of Hmax are a subset of the
set C that is computed with the algorithm of Theorem 11. In order to prove that the set of
essential cut-vertices of Hmax is exactly C, it suffices to prove that given Hmax, an appropriate
variant of the graph modification of Lemma 14 (in order to increase the number of essential cut-
vertices) outputs a tree of cycle-powers. As before, this operation takes a block B of the square
root that has diameter two (i.e., B is a clique-atom of G that is not contained in the closed
neighbourhood of any cut-vertex). We can thus write Hmax[B] = Cj

n, dbn/2c /2e ≤ j < bn/2c.
Furthermore, let v1, v2, . . . , vk, k ≥ 2 be the cut-vertices that are contained in B.

First we prove as an intermediary claim that k = 2, i.e., B only contains two cut-vertices.
Furthermore, these two vertices v1, v2 have a unique common neighbour in B. In order to prove
the claim, we see each of the NCj

n
[vi] as a circular interval of 2j + 1 consecutive vertices on the

cycle Cn. Observe that since B satisfies the assumptions of Lemma 14, the sets NHmax
[vi] \ B

can be bipartitioned into two nonempty parts P,Q such that NG(P )∩NG(Q) = {v}. We derive
the following consequences from this observation:

• The sets NCj
n
[vi] cannot span all the edges of Cn (the underlying cycle of the block).
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Indeed, suppose by contradiction that every two consecutive vertices on this cycle are
contained in one of the corresponding intervals of length 2j. Then, any bipartition of the
sets NHmax

[vi]\B into two non empty parts P and Q would result in |NG(P )∩NG(Q)| ≥ 2,
that is a contradiction.

• In this situation, the sets NCj
n
[vi] are fully contained in an interval subgraph of Cj

n (not
necessarily induced), and we can see them as intervals on the infinite line. Since B is
a clique of G, these intervals are pairwise intersecting. So, by the Helly property, they
have a nonempty common intersection. This intersection must be reduced to v since
otherwise, there could not exist a bipartition P,Q of the sets NHmax [vi] \ B such that
NG(P ) ∩NG(Q) = {v}.

• Finally, since all the intervals that represent the sets NCj
n
[vi] on the line have the same

length (equal to the degree 2j) and a nonempty common intersection, the only possibility
so that they can be bipartitioned into two sets that only intersect in v is that there are
only two such intervals.

Altogether combined, this proves as claimed that B only contains two cut-vertices v1, v2 and
that they have a unique common neighbour v in B.

In Cj
n, these three vertices thus correspond to some triple (v1, v, v2) = (i, i + j, i + 2j) for

some i ∈ Zn (indices are taken modulo n). Let us split the underlying cycle Cn of B into the
three intervals I1 = NCj

n
[v1] = {i− j, i− j + 1, . . . , i = v1, i+ 1, . . . , i+ j = v}, I2 = NCj

n
[v2] =

{i+ j = v, i+ j + 1, . . . , i+ 2j = v2, i+ 2j + 1, . . . , i+ 3j} and I3 = B \ (I1 ∪ I2) (with possibly
I3 being empty). By construction, I1 ∩ I2 = {v} and I1 ∩ I3 = I2 ∩ I3 = ∅. In order to make
of vertex v a cut-vertex, we finally replace Cj

n by two cliques with respective vertex-sets I1, I2

(both isomorphic to Cj
2j+1) and pending vertices i3 ∈ I3 only adjacent to i = v. See Figures 7c

and 7d for an illustration. This operation preserves the property for the square root to be a tree
of cycle-powers. Therefore, by maximality of the number of blocks in Hmax, the essential cut-
vertices of Hmax and their closed neighbourhood are exactly those computed by Algorithm 1.
By Theorem 11, they can be computed in linear-time if an atom tree of G is given.

6.2 Solving a problem on circular intervals

Our proof of the previous Lemma 26 uses classical techniques in the study of circular-arc graphs
(intersection graphs of intervals on the cycle) [47]. A circular-arc model is a mapping between
the nodes of a circular-arc graph and some arcs/intervals on a cycle so that two vertices are
adjacent if and only if the corresponding arcs intersect. We further exploit the relationship with
this class of graphs and cycle-power graphs in order to prove Lemma 29.

Before proving the result, we make the following observation that is of independent interest.

Fact 27. Let H be the square root of a graph G = (V,E) and let u, v ∈ V be true twins in G.
Then, Hu↔v: obtained from H by exchanging the neighbours of u and v, is also a square root
of G 3.

We base on this fact in order to solve the following technical case:

Lemma 28. Let G = (V,E); NF ; NA be an instance of H-square root with neighbours
constraints such that G is a clique and H is the class of cycle-power graphs. Furthermore,
let H be a square root of G such that:

3Of course, if u and v are (non)adjacent in H then they remain so in Hu↔v. In fact, this is just a relabeling of u
and v by v and u, respectively.
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• H is isomorphic to a non complete cycle-power graph;

• for every Ni ∈ NA, there is some vi ∈ V such that NH [vi] = Ni;

• for every 〈v,Nv〉 ∈ NF , there is some v′ ∈ V such that NH [v′] = Nv.

Then, it can be checked in linear-time whether G; NF ; NA is a yes-instance.

Proof. Let H = Cj
n, for some dbn/2c /2e ≤ j < bn/2c. We consider the sets 〈v,Nv〉 ∈ NF

sequentially until obtaining a valid solution for G; NF ; NA (if any). If NH [v] = Nv then there
is nothing to do. Else, NH [v] 6= Nv and let v′ 6= v be such that NH [v′] = Nv. In this situation,
we replace H by Hv↔v′ . Since v and v′ are twins in the clique G, this is still a square root of
G. Furthermore, suppose that this change violates a neighbours constraint. There are different
cases to be considered. In every case, we can conclude that G; NF ; NA is a no-instance.

• Suppose that 〈v,NH [v]〉 ∈ NF . Since we have NH [v] 6= Nv, it follows that G; NF ; NA is
a no-instance. Similarly, if 〈v′, Nv〉 ∈ NF then since H does not contain any pair of true
twins, we can deduce that G; NF ; NA is a no-instance.

• Suppose that v ∈ Ni, v′ /∈ Ni, for some Ni ∈ NA. By contradiction if G; NF ; NA

is a yes-instance then, in any solution for this instance, there must be wi ∈ Ni whose
closed neighbourhood is Ni. Furthermore, wi ∈ (Ni ∩Nv) \ v since v ∈ Ni. In this
situation, since any solution must be a square root of G isomorphic to Cj

n, we claim
that |Ni ∩ Nv| ≥ j + 1. Indeed, this intersection must contain all the path of length j,
starting from v and containing wi, on the underlying cycle Cn. However, since v′ /∈ Ni and
NH [v′] = Nv then we have |Ni ∩Nv| ≤ j, that is a contradiction. Therefore, G; NF ; NA

is a no-instance in this case.

The case when v ∈ Nu, v′ /∈ Nu, for some 〈u,Nu〉 ∈ NF is similar to this one.

• Finally, suppose that v /∈ Ni, v′ ∈ Ni, for some Ni ∈ NA. Let vi ∈ V be such that
NH [vi] = Ni. Since H = Cj

n, v′ ∈ Ni and NH [v′] = Nv, we obtain that |Ni ∩Nv| ≥ j + 1.
However, suppose by contradiction that G; NF ; NA is a yes-instance. Let us fix a solution
for this instance and let wi ∈ V be the vertex whose closed neighbourhood is Ni in the
solution. In this situation, since any solution must be a square root of G isomorphic to
Cj

n, and we have |Ni∩Nv| ≥ j+1, it must be the case that v ∈ Ni, that is a contradiction.
As a result, G; NF ; NA is a no-instance in this case.

As before, the case when v /∈ Nu, v′ ∈ Nu, for some 〈u,Nu〉 ∈ NF is similar to this one.

Overall, we can scan once the neighbours constraints and make the desired replacements. Each
replacement can be made in constant-time, assuming we maintain a cyclic ordering over the
vertices in H (representing the underlying cycle Cn). Then we scan again all the neighbours
constraints and we check whether all of them are satisfied. It takes linear-time.

We can now solve the problem in its full generality as follows.

Lemma 29. H-square root with neighbours constraints can be solved in linear-time
when H is the class of cycle-power graphs.

Proof. Let G = (V,E); NF ; NA be an instance of the problem. There are two cases to be
considered.

• Suppose that G is a clique. If there is no further constraint (i.e., NA = NF = ∅) then
G; NF ; NA is trivially a yes-instance. This is also the case if for every 〈v,Nv〉 ∈ NF we
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have |Nv| = n, and similarly for every Ni ∈ NA we have |Ni| = n. Let us now assume
that all these sets are pairwise different and they have equal odd size 2j + 1 (supposedly
representing the closed neighbourhood of some vertex in Cj

n) for some dbn/2c /2e ≤ j <
bn/2c.
We reduce to the case when NF = ∅. More precisely, let N ′F = ∅ and let N ′A be obtained
from NA by adding Nv for every 〈v,Nv〉 ∈ NF . If G; NF ; NA is a yes-instance then
it is also the case for G; N ′F ; N ′A. Conversely, if G; N ′F ; N ′A is a yes-instance then
by Lemma 28, we can decide in linear-time whether the same holds for G; NF ; NA.
Therefore, from now on assume that NF = ∅ and let NA = N1, N2, . . . , Nk. We are
left for proving the existence of a one-to-one mapping ϕ : V → Zn such that each set
Ni, 1 ≤ i ≤ k, is a ”circular interval” of consecutive points on the cycle Cn.

For this purpose, let v1, v2, . . . , vk /∈ V . We construct a graph G′ with vertex-set V ∪
{v1, v2, . . . , vk}. For every 1 ≤ i ≤ k, there is an edge in G′ between vi and every v ∈ Ni.
Furthermore, for every j 6= i, vi and vj are adjacent in G′ if and only if Ni ∩Nj 6= ∅. We
claim that there exists a mapping ϕ as defined above if and only if G′ is a circular-arc
graph. Indeed, on the one direction, if such a mapping ϕ exists then it naturally induces
a circular-arc model for G′: with each vertex v ∈ V being assigned the singleton interval
(ϕ(v)); and each vertex vi being assigned the circular interval ϕ(Ni). Conversely suppose
that G′ is a circular-arc graph and let us fix a circular-arc model for this graph. Since V is
an independent set of G′, the arcs that correspond to these vertices in the model must be
pairwise disjoint. We can use any circular ordering over these pairwise disjoint intervals
in order to define a one-to-one mapping ϕ : V → Zn. Furthermore, for every 1 ≤ i ≤ k,
since it must correspond an arc to vi in the model, this mapping ϕ should satisfy that the
vertices in ϕ(Ni) are consecutive.

As a result the claim is proved. Since circular-arc graphs can be recognized in linear-
time [34], we are done in this case.

• Else, G is not a clique. Since G is assumed to be the square of a cycle-power graph,
there must exist some j < dbn/2c /2e such that: G is isomorphic to C2j

n ; the sets
Nv, for every 〈v,Nv〉 ∈ NF , and the sets Ni, 1 ≤ i ≤ k, are pairwise different and
they have an equal odd size 2j + 1 (supposedly representing the closed neighbourhood of
some vertex in Cj

n). It can be verified in linear-time [31]. Furthermore, in such situation,
we are left for proving the existence of a one-to-one mapping ϕ : V → Zn such that: ϕ is
an isomorphism of G and C2j

n ; for every 〈v,Nv〉 ∈ NF , the vertices in Nv are consecutive
with v being in the middle of the interval; each set Ni, 1 ≤ i ≤ k, is a ”circular interval”
of consecutive points on the cycle Cn.

Given ϕ, we can construct a circular-arc model for G = C2j
n in the natural way with

ϕ(V ) = Zn representing the extremal points of the arcs. It follows from [21] that a cycle-
power graph that is not a clique has a unique such model up to rotation and reflection. So,
let us compute this model. It takes linear-time [34]. Moreover, as proved in [21], we can
obtain the desired mapping ϕ by labeling the vertices of G following a circular ordering of
the starting points in this model. In such a situation, we are left to check whether all the
neighbours constraints of NF and NA are satisfied by ϕ. It can be done in linear-time.

Altogether combined, we can finally prove Theorem 23.

Proof of Theorem 23. Given a graph G = (V,E), the problem is trivial when G is a clique. So,
we assume from now on that G is not a clique. We compute an atom tree of G. It can be done
in O(nm)-time [5]. Our objective is to compute a square root H of G that is a tree of cycles
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and maximizes its number of blocks w.r.t. this property. Assuming H exists, by Lemma 26 all
the closed neighbourhood of the cut-vertices in H can be computed in O(n + m)-time.

Then, we aim at computing the squares of the blocks of H, using Theorem 19. For this
purpose, we only need to prove that the result of Lemma 20 holds for H. Observe that since
in any cycle-power graph that is not a clique, there cannot be a dominated vertex, therefore
there cannot be any vertex with a maximum neighbour either. It follows from this observation
that, provided H exists, a cut-vertex v of H can be a maximum neighbour of some other
vertex w only if w is contained in a connected component C of H \ v that induces a clique.
Furthermore, C cannot contain any other cut-vertex of H (otherwise, v could not possibly be
a maximum neighbour of w). In such situation, the clique C can be ”splitted” into pending
vertices adjacent to v. Hence, the result of Lemma 20 holds for any square root that is a tree
of cycles and maximizes its number of blocks w.r.t. this property. The latter is enough so that
we can reuse the algorithm of Theorem 19 in order to compute, for every block of H, a graph
isomorphic to its square. It can be done in O(n + m)-time.

We finally need to solve the H-square root with neighbours constraints problem for
each of these output graphs separately. By Lemma 29, this last part of the algorithm can be
performed in O(n + m)-time in total.

7 Conclusion

We intend the framework introduced in this paper to be applied for solving the H-square
root problem in other graph classes — where the structure of the blocks is well-understood.
We note by passing that a full characterization of non essential cut-vertices in the square roots
would improve this framework and make it a bit less technical. In particular, this would leave
us with solving a simpler variant of the H-square root with labels problem on the blocks.
This is left as an interesting open question.

More generally, we aim at better understanding the relationships between small-size separa-
tors in a graph and small-diameter separators in its square. For instance, we believe that by
studying the relationships between edge-separators in a graph and quasi-clique cutsets in its
square (clique with one edge removed), we might be able to extend our framework in order to
recognize the squares of outerplanar graphs. Let us mention that the complexity of recognizing
the squares of planar graphs is still open.
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