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Incompressible limit of a mechanical model for tissue

growth with non-overlapping constraint. ∗

Sophie Hecht† Nicolas Vauchelet‡

Abstract

A mathematical model for tissue growth is considered. This model describes
the dynamics of the density of cells due to pressure forces and proliferation. It
is known that such cell population model converges at the incompressible limit
towards a Hele-Shaw type free boundary problem. The novelty of this work is to
impose a non-overlapping constraint. This constraint is important to be satisfied
in many applications. One way to guarantee this non-overlapping constraint is to
choose a singular pressure law. The aim of this paper is to prove that, although
the pressure law has a singularity, the incompressible limit leads to the same Hele-
Shaw free boundary problem.

Keywords: Nonlinear parabolic equation; Incompressible limit; Free boundary
problem; Tissue growth modelling.

AMS Subject Classification: 35K55; 76D27; 92C50.

1 Introduction

Mathematical models are now commonly used in the study of growth of cell tissue. For
instance, a wide literature is now available on the study of the tumor growth through
mathematical modeling and numerical simulations [2, 3, 14, 18]. In such models, we
may distinguish two kinds of description: Either they describe the dynamics of cell
population density (see e.g. [6, 8]), or they consider the geometric motion of the tissue
through a free boundary problem of Hele-Shaw type (see e.g. [16, 15, 11, 18]). Recently
the link between both descriptions has been investigated from a mathematical point of
view thanks to an incompressible limit [22].

In this paper, we depart from the simplest cell population model as proposed in
[7]. In this model the dynamics of the cell density is driven by pressure forces and
cell multiplication. More precisely, let us denote by n(t,x) the cell density depending
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on time t≥0 and position x∈Rd, and by p the mechanical pressure. The mechanical
pressure depends only on the cell density and is given by a state law p= Π(n). Cell
proliferation is modelled by a pressure-limited growth function denoted G. Mechanical
pressure generates cells displacement with a velocity whose field v is computed thanks
to the Darcy’s law. After normalizing all coefficients, the model reads

∂tn+∇·(nv) =nG(p), on R+×Rd,
v=−∇p, p= Π(n).

The choice Π(n) = γ
γ−1n

γ−1 has been taken in [22, 23, 24]. This choice allows to recover
the well-known porous medium equation for which a lot of nice mathematical properties
are now well-established (see e.g. [26]). The incompressible limit is then obtained by
letting γ going to +∞.

However, this state law does not prevent cells to overlap. In fact, it is not possible
with this choice to avoid the cell density to take value above 1 (which corresponds here
to the maximal packing density after normalization). A convenient way to avoid cells
overlapping is to consider a pressure law which becomes singular when the cell density
approaches 1. Such type of singularity is encountered, for instance, in the kinetic theory
of dense gases where the interaction between molecules is strongly repulsive at very short
distance [9]. Similar singular pressure laws have been also considered in [12, 13] to model
collective motion, in [4, 5] to model the traffic flow, and in [21] to model crowd motion
(see also the review article [19]). Then, in order to fit this non-overlapping constraint,
we consider the following simple model of pressure law given by

P (n) = ε
n

1−n
.

Finally, the model under study in this paper reads, for ε>0,

∂tnε−∇·(nε∇pε) =nεG(pε), (1.1)

pε=P (nε) = ε
nε

1−nε
. (1.2)

This system is complemented by an initial data denoted niniε . The aim of this paper is
to investigate the incompressible limit of this model, which consists in letting ε going
to 0 in the latter system.

At this stage, it is of great importance to observe that from (1.1), we may deduce an
equation for the pressure by simply multiplying (1.1) by P ′(nε) and using the relation
nε= pε

ε+pε
from (1.2),

∂tpε−(
p2ε
ε

+pε)∆pε−|∇pε|2 = (
p2ε
ε

+pε)G(pε). (1.3)

Formally, we deduce from (1.3) that when ε→0, we expect to have the relation

−p20∆p0 =p20G(p0). (1.4)

Moreover, passing formally to the limit into (1.2), it appears clearly that (1−n0)p0 = 0.
We deduce from this relation that if we introduce the set Ω0(t) ={p0>0}, then we
obtain a free boundary problem of Hele-Shaw type: On Ω0(t), we have n0 = 1 and
−∆p0 =G(p0), whereas p0 = 0 on Rd \Ω0(t). Thus although the pressure law is different,
we expect to recover the same free boundary Hele-Shaw model as in [22].
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The incompressible limit of the above cell mechanical model for tumor growth with
a pressure law given by Π(n) = γ

γ−1n
γ−1 has been investigated in [22] and in [23] when

taking into account active motion of cells. In [24], the case with viscosity, where the
Darcy’s law is replaced by the Brinkman’s law, is studied. We mention also the recent
works [17, 20] where the incompressible limit with more general assumptions on the
initial data has been investigated. However, in all these mentionned works the pressure
law do not prevent the non-overlapping of cells. Up to our knowledge, this work is the
first attempt to extend the previous result with this constraint, i.e. with a singular
pressure law as given by (1.2).

The outline of the paper is the following. In the next section we give the statement
of the main result in Theorem 2.1, which is the convergence when ε goes to 0 of the
mechanical model (1.1)–(1.2) towards the Hele-Shaw free boundary system. The rest of
the paper is devoted to the proof of this result. First, in section 3 we establish some a
priori estimate allowing to obtain space compactness. Then, section 4 is devoted to the
study of the time compactness. Thanks to compactness results, we can pass to the limit
ε→0 in system (1.1)–(1.2) in section 5, up to the extraction of a subsequence. Finally
the proof of the complementary relation (1.4) is performed in section 6.

2 Main result

The aim of this paper is to establish the incompressible limit ε→0 of the cell mechanical
model with non-overlapping constraint (1.1)–(1.2). Before stating our main result, we
list the set of assumptions that we use on the growth fonction and on the initial data.
For the growth function, we assume

∃Gm>0, ‖G‖∞≤Gm,
G′<0, and ∃γ>0, min

[0,PM ]
|G′|=γ,

∃PM >0, G(PM ) = 0.

(2.5)

The quantity PM , for which the growth stops, is commonly called the homeostatic
pressure [25]. This set of assumptions on the growth function is quite similar to the
one in [22], except for the bound on the growth term which is needed here due to the
singularity in the pressure law.

For the initial data, we assume that there exists ε0>0 such that for all ε∈ (0,ε0),

0≤niniε , piniε := ε
niniε

ε+niniε
≤PM ,

‖∂xininiε ‖L1(Rd)≤C, i= 1,...,d,

∃nini0 ∈L1
+(Rd), ‖niniε −nini0 ‖L1(Rd)→0 as ε→0,

∃K⊂Rd, K compact, ∀ε∈ (0,ε0), supp niniε ⊂K.

(2.6)

Notice that this set of assumptions imply that niniε is uniformly bounded in W 1,1(Rd).
We are now in position to state our main result.

Theorem 2.1 Let T >0, QT = (0,T )×Rd. Let G and (niniε ) satisfy assumptions (2.5)
and (2.6) respectively. After extraction of subsequences, both the density nε and the
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Figure 1: Comparison between numerical solutions computed with two different pres-
sure laws. The red line correspond to the cell density n solving (1.1), the dashed line
correspond to the constant value 1. On the left, the pressure law is p=P (n) = 0.5 n

1−n .
On the right, the pressure law is p= Π(n) = γ

γ−1n
γ with γ= 20.

pressure pε converge strongly in L1(QT ) as ε→0 to the limit n0∈C([0,T ];L1(Rd))∩
BV (QT ) and p0∈BV (QT )∩L2([0,T ];H1(Rd)), which satisfy

0≤n0≤1, 0≤p0≤PM , (2.7)

∂tn0−∆p0 =n0G(p0), in D′(QT ), (2.8)

and

∂tn0−∇·(n0∇p0) =n0G(p0), in D′(QT ). (2.9)

Moreover, we have the relation

(1−n0)p0 = 0, (2.10)

and the complementary relation

p20(∆p0 +G(p0)) = 0, in D′(QT ). (2.11)

This result extends the one in [22] to singular pressure laws with non-overlapping con-
straint. We notice that we recover the same limit model whose uniqueness has already
been stated in [22, Theorem 2.4].

Although our proof follows the idea in [22], several technical difficulties must be
overcome due to the singularity of the pressure law. Indeed, we first recall that with
the choice Π(n) = γ

γ−1n
γ−1, equation (1.1) may be rewritten as the porous medium

equation ∂tn+∆nγ =nG(Π(n)). A lot of estimates are known and well established for
this equation (see [26]), in particular a semiconvexity estimate is used in [22] which
allows to obtain estimate on the time derivative and thus compactness. With our choice
of pressure law, (1.1) should be consider as a fast diffusion equation. Thus we have first
to state a comparison principle to obtain a priori estimates (see Lemma 3.2). Unlike in
[22], we may not use a semiconvexity estimate to obtain estimate on the time derivative.
To do so, we use regularizing effects (see section 4). Then the convergence proof has to
be adapted for these new estimates.

Finally, we illustrate the comparison between the two pressure laws P and Π by
a numerical simulation. We display in Figure 1 the density computed thanks to a
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discretization with an upwind scheme of (1.1). In Figure 1-left, the pressure law is
p=P (n) = ε n

1−n as in (1.2) with ε= 0.5. In Figure 1-right, the pressure law is p= Π(n) =
γ
γ−1n

γ with γ= 20. We take G(p) = 10(10−p)+ as growth function (which satisfies

obviously assumption (2.5) with PM = 10). The dashed lines in these plots correspond
to the constant value 1. As expected, we observe that the density n is bounded by 1 in
the case of the pressure law P whereas it takes values greater than 1 for the pressure
law Π. This observation illustrates the fact that the choice of the pressure law Π does
not prevent from overlapping.

3 A priori estimates

3.1 Nonnegativity principle

The following Lemma establishes the nonnegativity of the density.

Lemma 3.1 Let (nε,pε) be a solution to (1.1) such that niniε ≥0 and ‖G‖∞≤Gm<∞.
Then, for all t≥0, nε(t)≥0.

Proof. We have the equation

∂tnε−∇·(nε∇pε) =nεG(pε).

We use the Stampaccchia method. We multiply by 1nε<0, then using the notation
|n|−= max(0,−n) for the negative part, we get

d

dt
|nε|−−∇·(|nε|−∇pε) = |nε|−G(pε).

We integrate in space, using assumption (2.5), we deduce

d

dt

∫
Rd
|nε|−dx≤

∫
Rd
|nε|−G(pε)dx≤Gm

∫
Rd
|nε|−dx.

So, after a time integration∫
Rd
|nε|−dx≤eGmt

∫
Rd
|niniε |−dx.

With the initial condition niniε ≥0, we deduce nε≥0.

3.2 A priori estimates

In order to use compactness results, we need first to find a priori estimates on the
pressure and the density. We first observe that we may rewrite system (1.1) as, by
using (1.2),

∂tnε−∆H(nε) =nεG(P (nε)), (3.12)

with H(n) =
∫ n
0
uP ′(u)du=P (n)−εln(P (n)+ε)+εlnε.
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Lemma 3.2 Let us assume that (2.5) and (2.6) hold. Let (nε,pε) be a solution to
(3.12)–(1.2). Then, for all T >0, we have the uniform bounds in ε∈ (0,ε0),

0≤nε∈L∞([0,T ];L1∩L∞(Rd));

0≤pε≤PM , 0≤nε≤
PM

PM +ε
≤1.

More generally, we have the comparison principle: If nε, mε are respectively
subsolution and supersolution to (3.12), with initial data niniε , mini

ε as in (2.6) and
satisfying niniε ≤mini

ε . Then for all t>0, nε(t)≤mε(t).
Finally, we have that (nε)ε is uniformly bounded in L∞([0,T ],W 1,1(Rd)) and (pε)ε

is uniformly bounded in L1([0,T ],W 1,1(Rd)).

Proof. Comparison principle.
Let nε be a subsolution and mε a supersolution of (3.12), we have

∂t(nε−mε)−∆(H(nε)−H(mε))≤nεG(P (nε))−mεG(P (mε)).

Notice that, since the function H is nondecreasing, the sign of nε−mε is the same as
the sign of H(nε)−H(mε). Moreover,

∆f(y) =f ′′(y)|∇y|2 +f ′(y)∆y,

so for y=H(nε)−H(mε) and f(y) =y+ is the positive part, the so-called Kato inequality
reads ∆f(y)≥f ′(y)∆y. Thus multiplying the latter equation by 1nε−mε>0, we obtain

∂t|nε−mε|+−∆|H(nε)−H(mε)|+≤|nε−mε|+G(P (nε))

+mε(G(P (nε))−G(P (mε)))1nε−mε>0.

From assumption (2.5), we have that G is nonincreasing. Thus, since n 7→P (n) is
increasing, we deduce that the last term of the right hand side is nonpositive. Since G
is uniformly bounded we obtain

∂t|nε−mε|+−∆|H(nε)−H(mε)|+≤Gm|nε−mε|+.

After an integration over Rd,

d

dt

∫
Rd
|nε−mε|+dx≤Gm

∫
Rd
|nε−mε|+dx.

Then, integrating in time, we deduce∫
Rd
|nε−mε|+dx≤eGmt

∫
Rd
|niniε −mini

ε |+dx.

Since we have niniε ≤mini
ε , we deduce that for all t>0, |nε−mε|+(t) = 0.

L∞ bounds.
We define nM = PM

ε+PM
, such that pM =P (nM ), then applying the comparison prin-

ciple with mε=nM , we deduce, using also the assumption on the initial data (2.6) that
for all 0<ε≤ ε0, nε≤nM . Moreover, since 0 is clearly a subsolution to (3.12), we also
have by the comparison priniciple nε≥0. Since nM ≤1, we have 0≤nε≤nM ≤1 which
implies

0≤pε≤PM .
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L1 bound of n,p.
By nonnegativity, after a simple integration in space of equation (1.1), we deduce

d

dt
‖nε‖L1(Rd)≤Gm‖nε‖L1(Rd), (3.13)

where we use (2.5). Integrating in time give the L1 bound,

‖nε‖L1(Rd)≤eGmt‖niniε ‖L1(Rd).

Then, using pε=nε(ε+pε) by (1.2), we get from the bound pε≤PM , which has been
proved above,

‖pε‖L1(Rd)≤ (ε+PM )

∫
Rd
|nε|dx≤CeGmt‖niniε ‖L1(Rd).

Estimates on the x derivative.
We derive equation (3.12) with respect to xi for i= 1,. ..,d,

∂t∂xinε−∆(H ′(nε)∂xinε) =∂xinεG(pε)+nεG
′(pε)∂xipε.

Multiplying by sign(∂xinε), we get

∂t|∂xinε|−∆(∂xiH(nε))sign(∂xinε) = |∂xinε|G(pε)+nεG
′(pε)∂xipεsign(∂xinε).

We can remark that sign(∂xinε) = sign(∂xiH(nε)), so, by the same token as above, we
have

∆(∂xiH(nε))sign(∂xinε)≥∆(|∂xiH(nε)|).

Moreover, sign(∂xinε) = sign(∂xipε), thus ∂xipεsign(∂xinε) = |∂xipε|. By assumption
(2.5), we know that

G′(pε)≤−γ<0,

we deduce
∂t|∂xinε|−∆(|∂xiH(nε)|)≤|∂xinε|Gm−γnε|∂xipε|.

After an integration in time and space,

‖∂xinε‖L1(Rd) +γ

∫ t

0

∫
Rd
nε|∂xipε|dxds≤eGmt‖∂xininiε ‖L1(Rd). (3.14)

This latter inequality provides us with a uniform bound on the space derivative of
nε in L1. Then

‖∂xipε‖L1(Rd) =

∫
Rd
|∂xipε|dx=

∫
Rd

ε

(1−nε)2
|∂xinε|dx.

We split the integral in two: Either nε≤1/2 and then ε
(1−nε)2 ≤C; or nε>1/2.

‖∂xipε‖L1(Rd)≤C
∫
nε≤1/2

|∂xinε|dx+

∫
nε>1/2

|∂xipε|dx

≤C
∫
nε≤1/2

|∂xinε|dx+2

∫
nε>1/2

1

2
|∂xipε|dx

≤CeGmt
∫
nε≤1/2

|∂xininiε |dx+2

∫
nε>1/2

nε|∂xipε|dx,
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where we have used the estimate (3.14) for the last inequality. Then, integrating in
time, we deduce, using again the estimate (3.14)

‖∂xipε‖L1(QT )≤C
′eGmt‖∂xininiε ‖L1(Rd).

It concludes the proof.

3.3 Compact support

The following Lemma proves that assuming that the initial data is compactly supported,
then the pressure is compactly supported for any time with a control of the growth of
the support.

Lemma 3.3 (Finite speed of propagation) Under the same assumptions as in
Theorem 2.1, we have that supp pε⊂B(0,R(t)) with R(t)≤2

√
C(T + t), where

B(0,R(t)) is the ball of center 0 and radius R(t).

Proof. Using the equation on pε (1.3),

∂tpε−(
p2ε
ε

+pε)∆pε−|∇pε|2 = (
p2ε
ε

+pε)G(pε)≤Gm(
p2ε
ε

+pε).

Let us introduce for C>0,

p̃(t,x) =

(
C+

|x|2

4(θ+ t)

)
+

,

with θ= d
4Gm

. Then p̃ is compactly supported in B(0,Rθ(t)) with Rθ(t) = 2
√
C(θ+ t).

We have

∂tp̃=
|x|2

4(θ+ t)2
1|x|≤Rθ(t), |∇p̃|2 =

|x|2

4(θ+ t)2
1|x|≤Rθ(t),

and

∆p̃=− d

(θ+ t)
, for |x|<Rθ(t).

Then, for all t∈ [0,θ],

∂tp̃−(
p̃2

ε
+ p̃)∆p̃−|∇p̃|2−Gm(

p̃2

ε
+ p̃) = (

p̃2

ε
+ p̃)(

d

(θ+ t)
−Gm)≥0. (3.15)

In other words, p̃ is a supersolution for the equation for the pressure. Let us show that
it implies that p≤ p̃. We define ñ= p̃

ε+p̃ =N(p̃). We know that

N ′(p̃) =
ε

(ε+ p̃)2
>0.

Then, on the one hand, multiplying (3.15) with by N ′(p̃) we get

∂tñ−∇.(ñ∇p̃)−Gmñ≥0.

On the other hand, from (1.1),

∂tnε−∇.(nε∇pε)≤Gmnε.
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By the comparison principle (see Lemma 3.2), we have

niniε ≤ ñini⇒nε≤ ñ.

Thus, for all t∈ [0,θ],
piniε ≤ p̃(t= 0)⇒pε≤ p̃.

and pε(t) is compactly supported in B(0,Rθ(t)) provided we choose C large enough such
that piniε (x)≤ p̃(t= 0,x), which can be done thanks to our assumption on the initial data
(2.6).

Since pε is uniformly bounded in L∞, we may iterate the process on [θ,2θ]. After
several iterations, we reach the time T and prove the result on [0,T ].

3.4 L2 estimate for ∇p
In the following Lemma, we state a uniform L2 estimate on the gradient of the pressure.

Lemma 3.4 (L2 estimate for ∇p) Under the same assumptions as in Theorem 2.1,
we have a uniform bound on ∇pε in L2(QT ).

Proof. For a given function ψ we have, multiplying (1.1) by ψ(nε),

∂tnεψ(nε)−∇(nε∇pε)ψ(nε) =nεG(pε)ψ(nε).

Let Ψ be an antiderivative of ψ, we have thanks to an integration by parts

d

dt

∫
Rd

Ψ(nε)dx+

∫
Rd
nε∇nε ·∇pεψ′(nε)dx=

∫
Rd
nεG(pε)ψ(nε)dx.

We choose ψ such as nε∇nε ·∇pεψ′(nε) = |∇pε|2, i.e. nεψ
′(nε) =p′(nε). After straight-

forward computations, we find ψ(n) = ε(ln(n)− ln(1−n)+ 1
1−n ) and Ψ(n) = εn(ln(n)−

ln(1−n)). It gives

d

dt

∫
Rd
εnε ln

( nε
1−nε

)
dx+

∫
Rd
|∇pε|2dx≤Gm

∫
Rd
εnε

∣∣∣∣ln(nε)− ln(1−nε)+
1

1−nε

∣∣∣∣ dx.
We integrate in time, using also the expression of pε in (1.2),∫

Rd
εnε ln

(pε
ε

)
dx−

∫
Rd
εniniε ln

(
niniε

1−niniε

)
dx+

∫ T

0

∫
Rd
|∇pε|2dxdt

≤Gm
∫ T

0

∫
Rd

(
εnε

∣∣∣ ln(pε
ε

)∣∣∣+pε

)
dx.

Then, to have a bound on the L2-norm of ∇pε, it suffices to prove a uniform control on∫
Rd εnε|ln(pεε )|dx. We have∫

Rd
εnε| ln

(pε
ε

)
|dx≤

∫
Rd
εnε| lnpε|dx+εln(ε)

∫
Rd
nεdx.

The second term of the right hand side is small when ε is small thanks to the L1 bound
on nε, thus it is uniformly bounded. Using the expression of pε in (1.2), we get∫

Rd
εnε| ln(

pε
ε

)|dx≤
∫
Rd

(1−nε)pε| lnpε|dx+C.
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Then, since 0≤pε≤PM and since x 7→x| lnx| is uniformly bounded on [0,PM ], we get∫
Rd

(1−nε)pε|ln(pε)|dx≤C
∫
Rd

1pε>0dx.

We conclude thanks to Lemma 3.3, which provides a uniform control on the support of
pε.

4 Regularizing effect and time compactness

As already noticed in [23], regularizing effects, similar to the ones observed for the heat
equation [1, 10], allow to deduce estimates on the time derivatives.

Lemma 4.1 Under the assumptions (2.5) and (2.6), the weak solution (ρk,pk) satisfies
the estimates

∂tpε≥−
κpε
t
, ∂tnε≥−

κnε
t
,

for a large enough (independent of ε) constant κ.

Proof. Let us denote wε= ∆pε+G(pε), the equation on the pressure (1.3) reads

∂tpε=

(
p2ε
ε

+pε

)
wε+ |∇pε|2. (4.16)

The proof is divided into several steps. We first find a lower bound for wε by using
the comparison principle. Then we deduce estimates on the density and on the pressure.

1st step. Thanks to (4.16), we deduce an equation satisfied by wε. On the one hand,
by multiplying (4.16) by G′(pε), we deduce, since G is decreasing from (2.5)

∂tG(pε)≥G′(pε)
(p2ε
ε

+pε
)
wε+2∇G(pε) ·∇pε. (4.17)

On the other hand, we have

∂t∆pε=∆wε
(p2ε
ε

+pε
)

+2∇
(p2ε
ε

+pε
)
·∇wε+wε∆(

p2ε
ε

+pε)

+2∇pε ·∇(∆pε)+2

d∑
i,j=1

(∂xixjpε)
2

≥∆wε(
p2ε
ε

+pε)+2∇(
p2ε
ε

+pε) ·∇wε+wε∆(
p2ε
ε

+pε)

+2∇pε ·∇(∆pε)+
2

d
(∆pε)

2.

Thus, with (4.17), we deduce that wε= ∆pε+G(pε) satisfies

∂twε≥∆wε(
p2ε
ε

+pε)+2∇(
p2ε
ε

+pε) ·∇wε+wε

(
∆pε(

2pε
ε

+1)+
2

ε
|∇pε|2

+(
p2ε
ε

+pε)G
′(pε)

)
+2∇pε ·∇wε+

2

d
(∆pε)

2.
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By definition of wε, we have (∆pε)
2≥w2

ε −2G(pε)wε. Thus we deduce that

∂twε≥F(wε), (4.18)

where we have used the notation

F(w) :=∆w(
p2ε
ε

+pε)+2∇(
p2ε
ε

+2pε) ·∇w+
2

ε
|∇pε|2w+w2(

2pε
ε

+1+
2

d
)

−w
(
G(pε)(

2pε
ε

+1+
4

d
)−(

p2ε
ε

+pε)G
′(pε)

)
. (4.19)

Following an idea of [10] which has been generalized in [23], we introduce the function

W (t,x) =−h(pε(t,x))

t
, (4.20)

where the function h will be defined later such that W is a subsolution for (4.18). We
compute

∂tW =
W 2

h(pε)
− h
′(pε)

t
∂tpε,

∇W =−h
′(pε)

t
∇pε, ∆W =−h

′(pε)

t
∆pε−

h′′(pε)

t
|∇pε|2.

Using again equation (4.16), we have

∂tW =
W 2

h(pε)
− h
′(pε)

t
(
p2ε
ε

+pε)∆pε−
h′(pε)

t
(
p2ε
ε

+pε)G(pε)−
h′(pε)

t
|∇pε|2

=
W 2

h(pε)
+(

p2ε
ε

+pε)∆W +
h′′(pε)

t
|∇pε|2(

p2ε
ε

+pε)−
h′(pε)

t
|∇pε|2

− h
′(pε)

t
(
p2ε
ε

+pε)G(pε). (4.21)

By definition of F(W ) in (4.19), we deduce with (4.21),

∂tW =F(W )+4(
pε
ε

+1)|∇pε|2
h′(pε)

t
+

2

ε

h(pε)

t
|∇pε|2

+W 2
( 1

h(pε)
− 2pε

ε
−1− 2

d

)
+
h′′(pε)

t
|∇pε|2(

p2ε
ε

+pε)−
h′(pε)

t
|∇pε|2

− h
′(pε)

t
(
p2ε
ε

+pε)G(pε)+W
(
G(pε)(

2pε
ε

+1+
4

d
)−(

p2ε
ε

+pε)G
′(pε)

)
.

We may rearrange it into

∂tW =F(W )+W 2
( 1

h(pε)
− 2pε

ε
−1− 2

d

)
+
|∇pε|2

t

((
h(pε)(

p2ε
ε

+pε)
)′′

+h′(pε)
)

− h
′(pε)

t
(
p2ε
ε

+pε)G(pε)+W
(
G(pε)(

2pε
ε

+1+
4

d
)−(

p2ε
ε

+pε)G
′(pε)

)
. (4.22)

Let us choose
h(p) =

κε

p+ε
, (4.23)

11



where κ>0 is chosen large enough (independent of ε) such that

1

h(pε)
=
pε+ε

κε
≤ 2pε

ε
+1+

2

d
.

Thanks to this choice, we have

(
h(pε)(

p2ε
ε

+pε)
)′′

+h′(pε) =− κε

(pε+ε)2
≤0,

and

−h
′(pε)

t
(
p2ε
ε

+pε) =W
pε
ε
.

Finally, we obtain from (4.22)

∂tW ≤F(W )+W
(
G(pε)(

pε
ε

+1+
4

d
)−(

p2ε
ε

+pε)G
′(pε)

)
≤F(W ),

where we use the fact that by definition (4.20) we have W ≤0 (recalling also that G is
decreasing by assumption (2.5)).

Thus, by the sub- and super-solution technique, we deduce, using also (4.18) that

wε≥W =− κε

t(pε+ε)
. (4.24)

2nd step. Using again equation (4.16), we get from (4.24)

∂tpε≥ (
p2ε
ε

+pε)W =−κpε
t
,

which is the first inequality of Lemma 4.1. Finally, by definition (1.2), we have also
nε= pε

pε+ε
. Thus

∂tnε=
ε

(pε+ε)2
∂tpε≥−

κεpε
t(pε+ε)2

=−κnε(1−nε)
t

,

where we use the definition (1.2) for the last identity. We conclude easily the proof.

Thanks to this latter Lemma, we may deduce uniform estimates on the time deriva-
tive of nε and pε.

Lemma 4.2 For any τ >0, we have that ∂tnε is uniformly bounded in
L∞([τ,T ];L1(Rd)) and ∂tpε is uniformly bounded in L1([τ,T ]×Rd).

Proof. We use the equality |∂tnε|=∂tnε+2|∂tnε|−, where we recall that | · |− denotes
the negative part. Thus

‖∂tnε‖L1(Rd) =
d

dt

∫
Rd
nεdx+2

∫
Rd
|∂tnε|−dx

≤
(
Gm+

2κ

t

)
‖nε‖L1(Rd),
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where we have used equation (3.13) to bound the first term and Lemma 4.1 for the
second term. By the same token, we have

‖∂tpε‖L1([τ,T ]×Rd) =

∫ T

τ

d

dt

∫
Rd
pεdx+2

∫ T

τ

∫
Rd
|∂tpε|−dx

≤‖pε(T )‖L1(Rd) +‖pε‖L∞([τ,T ];L1(Rd))2κln(T/τ).

We conclude the proof thanks to the estimates on nε and pε in L1∩L∞ obtained in
Lemma 3.2.

5 Convergence

This section is devoted to the proof of Theorem 2.1 apart from the complementary
relation (2.11) which is postponed to the next section.

Since the sequences (nε)ε and (pε)ε are bounded in W 1,1
loc (QT ), due to Lemma 3.2

and 4.2, we may apply the Helly theorem and recover strong convergence in L1
loc(QT ),

up to an extraction. If we want to extend this local convergence to a global convergence
in L1(QT ) we need to prove that we can control the mass in an initial strip and in the
tail. Indeed, let ε,ε′>0, R>0, τ >0

‖nε−nε′‖L1(QT ) =

∫ T

0

∫
Rd
|nε(t,x)−nε′(t,x)|dxdt

≤
∫ T

τ

∫
B(0,R)

|nε(t,x)−nε′(t,x)|dxdt

+

∫ T

τ

∫
Rd\B(0,R)

|nε(t,x)−nε′(t,x)|dxdt

+

∫ τ

0

∫
Rd
|nε(t,x)−nε′(t,x)|dxdt.

Since we have strong convergence of nε in L1
loc(QT ),∫ T

τ

∫
B(0,R)

|nε(t,x)−nε′(t,x)|dxdt−→
ε→0

0.

Then we have to control the two other terms in the right hand side.
The control of the initial strip comes from the L1 estimate of n,∫ τ

0

∫
Rd
|nε(t,x)−nε′(t,x)|dxdt≤

∫ τ

0

(
‖nε(t,x)‖L1(Rd) +‖nε′(t,x)‖L1(Rd)

)
dt−→
τ→0

0

For the control of the tail we consider φ∈C∞(R) such that 0≤φ≤1, φ(x) = 0 for
|x|<R−1 and φ(x) = 1 for |x|>R. We define φR(x) =φ(x/R). Then∫ T

τ

∫
Rd\B(0,R)

|nε(t,x)−nε′(t,x)|dxdt≤
∫ T

τ

∫
Rd\B(0,R)

|nε(t,x)−nε′(t,x)|φRdxdt

≤
∫ T

τ

∫
Rd\B(0,R)

(nε(t,x)+nε′(t,x))φRdxdt,

13



where the notation C stand for a generic nonnegative constant. Moreover, using equa-
tion (3.12), we deduce

d

dt

∫
Rd
nεφRdx=

∫
Rd
H(nε)∆φRdx+

∫
Rd
nεG(pε)φRdx

≤CR−2‖∆φ‖L∞ +Gm

∫
Rd
nεφRdx.

Then, integrating on [0,T ], we get

0≤
∫
Rd
nεφRdx≤eGmT

(∫
Rd
niniε φR+CR−2T

)
≤eGmT

(
‖niniε −nini‖L1(Rd) +

∫
Rd
niniφRdx+CR−2T

)
.

By assumption (2.6), since the initial data is uniformly compactly supported, we deduce
that the right hand side tends to 0 as R goes to +∞ and ε goes to 0. Then (nε)ε is a
Cauchy sequence in L1(QT ). It implies its convergence in L1(QT ). The convergence of
the pressure follows from the same kind of computation. The only difference is for the
control of the tail and which is directly given by the estimate

0≤
∫
Rd
pεφRdx≤ (ε+PM )

∫
Rd
nεφRdx.

Therefore, we can extract subsequences and pass to the limit in the equation

(1−nε)pε= εnε,

which implies
(1−n0)p0 = 0.

This is the relation (2.10). We can also pass to the limit in the uniform estimate of
Lemma 3.2 which provides (2.7) and n0,p0∈BV (QT ).

Limit model. We first recall that from (3.12), we have

∂tnε−∆(pε−εln(pε+ε)) =nεG(pε).

We get,
εlnε≤ εln(pε+ε)≤ εln(PM +ε).

Thus, the term in the Laplacien converges strongly to p0 as ε goes to 0. Then, thanks to
the strong convergence of nε and pε, we deduce that in the sense of distribution (n0,p0)
satisfies (2.8). Moreover, due to the uniform estimate on ∇p in L2(QT ) of Lemma 3.4,
we can show, by passing into the limit in a product of a weak-strong convergence, that
in the sense of distribution (n0,p0) satisfies (2.9).

Time continuity. Let us define 0<t1<t2≤T , η>0. For a given R>0, we consider
a smooth function ζR on Rd such that 0≤ ζR≤1, ζR(x) = 1 for |x|<R−1 and ζR(x) = 0
for |x|>R. We have∫

Rd
|n0(t2)−n0(t1)|dx=

∫
Rd
|n0(t2)−n0(t1)|ζRdx+

∫
Rd
|n0(t2)−n0(t1)|(1−ζR)dx.

14



We have∫
Rd
|n0(t2)−n0(t1)|(1−ζR)dx≤

∫
Rd
n0(t2)(1−ζR)dx+

∫
Rd
n0(t1)(1−ζR)dx

with 1−ζR a function which is zero on B(0,R−1). Thus, as for the control of the tail,
for R large enough, we have, uniformly for 0<t1<t2≤T ,∫

Rd
|n0(t2)−n0(t1)|(1−ζR)dx≤η.

In addition, we know from Lemma 4.1 (and the L∞ bound on n0) that ∂tn0≥−Ct , so
∂t(n0 +C ln(t))≥0. Then, since t1<t2,∫

Rd
|n0(t2)−n0(t1)|ζRdx≤

∫
Rd

(n0(t2)+C ln(t2)−(n0(t1)+C ln(t1)))ζRdx

+

∫
Rd
C(ln(t2)− ln(t1))ζRdx

≤
∫ t2

t1

∫
Rd
∂t(n0 +C ln(t))ζRdxdt+

∫
Rd
C(ln(t2)− ln(t1))ζRdx.

Then, using equation (2.8) and an integration by parts, we obtain∫
Rd
|n0(t2)−n0(t1)|ζRdx≤

∫ t2

t1

∫
Rd

(
p0∆ζR+n0G(p0)ζR

)
dxdt

+2

∫
Rd
C(ln(t2)− ln(t1))ζRdx

≤C(t2− t1)(||∆ζR||∞+1)+2C(ln(t2)− ln(t1))

∫
Rd
ζRdx.

Then we can choose (t1,t2) close enough such that∫
Rd
|n0(t2)−n0(t1)|ζRdx≤η.

We conclude that n0∈C((0,T ),L1(Rd)).

Initial trace For any test function 0≤ ζ(x)≤1, we have from (3.12),∫
Rd
nε(t)ζ dx−

∫
Rd
niniε ζ dx=

∫ t

0

∫
Rd

(∆H(nε)+nεG(pε))ζ dxds

=

∫ t

0

∫
Rd

(H(nε)∆ζ+nεG(pε)ζ)dxds.

Letting ε going to 0, we obtain with (2.6),∫
Rd
n0(t)ζ dx−

∫
Rd
nini0 ζ dx=

∫ t

0

∫
Rd

(p0∆ζ+n0G(p0)ζ)dxds.

Letting t→0 we can conclude that n0(0) =nini0 .
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6 Complementary relation

In this section we prove the complementary relation

p20(∆p0 +G(p0)) = 0.

In the weak sense, this identity reads, for any test function φ,∫∫
QT

(
−2φp0|∇p0|2−p20∇p0 ·∇φ+φp20G(p0)

)
dxdt= 0. (6.25)

The proof is divided into two steps.

1st step. In this first step we prove the inequality ≥0 in (6.25). We start with the
pressure equation (1.3) that we multiply by ε

ε∂tpε−pε(ε+pε)∆pε−ε|∇pε|2 =pε(ε+pε)G(pε).

We multiply by a test function φ∈D((0,T )×Rd) and integrate,∫∫
QT

p2εφ(∆pε+G(pε))dxdt= ε

∫∫
QT

φ(∂tpε−|∇pε|2−pε(∆pε+G(pε))dxdt

= ε

∫∫
QT

(φ∂tpε+pε∇pε ·∇φ−φpεG(pε)) dxdt,

where we use an integration by parts for the last identity. From the estimates in Lemma
3.2, we have∣∣∣∣ε∫∫

QT

(
φ∂tpε+pε∇pε ·∇φ−φpεG(pε)

)
dxdt

∣∣∣∣
≤ ε
(
‖φ‖L∞‖∂tpε‖L1(QT ) +‖∇φ‖L∞PM‖∇pε‖L1(QT ) +‖φ‖L∞Gm‖pε‖L1(QT )

)
−→
ε→0

0.

We deduce that for any test function φ∈D((0,T )×Rd),∫∫
QT

(
−2φpε|∇pε|2−p2ε∇pε∇φ+φp2εG(pε)

)
dxdt−→

ε→0
0. (6.26)

Since we have strong convergence of (pε)ε and weak convergence of (∇pε)ε, we can pass
into the limit in the last two term in (6.26),∫∫

QT

(
−p2ε∇pε∇φ+φp2εG(pε)

)
dxdt−→

ε→0

∫∫
QT

(
−p20∇p0∇φ+φp20G(p0)

)
dxdt.

Now we are looking for the limit of the first term in (6.26). We have pε|∇pε|2 = 4
9 |∇p

3/2
ε |2.

By weak convergence of ∇p3/2ε =p
1/2
ε ∇pε and with Jensen inequality (since x 7→x2 is

convex),

liminf
ε→0

∫∫
QT

φpε|∇pε|2dxdt≤
∫∫

QT

φ|∇p3/20 |2dxdt.

Thus, we conclude from (6.26) that

0≤
∫∫

QT

(
−2φp0|∇p0|2−p20∇p0∇φ+φp20G(p0)

)
dxdt,
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which is a first inequality for (6.25).

2nd step. Now we want to show the reverse inequality, i.e.

0≥
∫∫

QT

(
−2φp0|∇p0|2−p20∇p0∇φ+φp20G(p0)

)
dxdt.

We know that
∂tnε−∆qε=nεG(pε),

with qε=pε−εln(pε+ε). Thanks to the inequality εln(ε)≤ εln(pε+ε)≤ εln(pM +ε), and
the strong convergence pε→p0, we know that qε→p0 as ε→0. Because

∆qε=∂tnε−nεG(pε),

we deduce from Lemma 3.2 that ∆qε∈L∞([0,T ];L1(Rd)). It gives us compactness in
space but not in time. Thus, following the idea of [22], we use a regularization process
’à la Steklov’.

Let introduce a time regularizing kernel ωη≥0 such that supp(ωη)⊂R−. Then with
the notations nε,η =ωη ∗tnε, qε,η =ωη ∗t qε, where the convolution holds only in the time
variable,

∂tnε,η−∆qε,η = (nεG(pε))∗ωη (6.27)

We denote Uε= ∆qε,η, then

Uε=∂tnε,η−(nεG(pε))∗ωη
=nε ∗∂tωη−(nεG(pε))∗ωη

Since nε and nεG(pε) are uniformly bounded in W 1,1(QT ) from Lemma 3.2, (Uε)ε is
bounded in W 1,1(QT ) and we can extract a converging subsequence, still denoted (Uε)ε,
converging towards U0 in L1

loc(Rd) for η fixed. Moreover

U0 = ∆p0 ∗ωη.

We multiply (6.27) by P ′(nε) = ε
(1−nε)2 = 1

ε (pε+ε)2,

ε

(1−nε)2
∂tnε,η−

1

ε
(pε+ε)2∆qε,η =

1

ε
(pε+ε)2(nεG(pε))∗ωη.

Then, passing to the limit ε→0, we obtain, thanks to the above remark

ε2

(1−nε)2
∂tnε,η−→

ε→0
p20∆p0 ∗ωη+p20(n0G(p0))∗ωη.

So we are left to prove that for any η>0, we have

lim
ε→0

ε2

(1−nε)2
∂tnε,η≤0.
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We compute for a fixed η>0,

ε2

(1−nε)2
∂tnε,η(t,x) =

∫
R

ε2

(1−nε(t,x))2
∂tnε(s,x)ωη(t−s,x)ds

=

∫
R

ε2

(1−nε(s,x))2
∂tnε(s,x)ωη(t−s,x)ds

+

∫
R

(
ε2

(1−nε(t,x))2
− ε2

(1−nε(s,x))2
)(∂tnε(s,x)+

C

s
)ωη(t−s,x)ds

−C
∫
R
(

ε2

(1−nε(t,x))2
− ε2

(1−nε(s,x))2
)
ωη(t−s,x)

s
ds

= I ε+ II ε+ III ε,

where C is a constant such that ∂tnε(s,x)+ C
t ≥0.

For the first term we have∫
Rd
| I ε|dxds≤ ε

∫∫
QT

|∂tpε(s,x)|ωη(t−s,x)dxds

≤ ε‖ωη‖L∞‖∂tpε‖L1(QT )≤ εCη
−→
ε→0

0.

For the second term, we have

ε2

(1−nε(t,x))2
= (pε+ε)2

and ∂t(pε+ε)2 = 2(pε+ε)∂tpε≥−C
′

t . Let 0≤ ξ∈C∞c (Q) and τ >0 the smallest time in
its support, we then have for t≥ τ

∂t(pε+ε)2(t,x)≥−C
′

τ
.

So integrating on (t,s)⊂ (τ,+∞)

ε2

(1−nε(t,x))2
− ε2

(1−nε(s,x))2
≤ C

′

τ
(s− t).

Then ∫∫
Q

ξ II ε≤
C ′

τ
η

∫∫
Q

∫
R

(∂tnε(s,x)+
C

τ
)ωη(t−s,x)dsdxdt≤C ′τη,

where we use the bound on ∂tn in Lemma 4.2.
For the third term, since s≥ t>0, for any test function ξ as above,∫∫

Q

ξ III ε=−C
∫∫

Q

ξ

∫
R

((pε(t)+ε)2−(pε(s)+ε)2)
ωη(t−s,x)

s
ds

−→
ε→0
−C

∫∫
Q

ξ

∫
R

(p0(t)2−p0(s)2)
ωη(t−s,x)

s
dsdxdt

−→
ε→0
−C

∫∫
Q

ξ

[
p20(t)

∫
R

ωη(t−s,x)

s
ds−

∫
R

p0(s)2

s
ωη(t−s,x)ds

]
dxdt

= o
η→0

(1).
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So for all test function ξ as above, and all η>0,∫∫
QT

ξ(p20∆p0 ∗ωη+p20(n0G(p0))∗ωη)dxdt≤ o
η→0

(1).

Now it remain to pass to the limit η→0 in the regularization process. Thanks to an
integration by parts,

0≥
∫∫

QT

(−2ξp0∇p0 ·∇p0 ∗ωη−p20∇ξ ·∇p0 ∗ωη+ξp20(n0G(p0))∗ωη)dxdt.

From the L2 estimate on ∇p0 (Lemma 3.4) and the L1∩L∞ estimate on p0 (Lemma
3.2), we deduce that we can pass to the limit η→0 and get

0≥
∫∫

QT

(−2ξp0|∇p0|2−p20∇ξ ·∇p0 +ξp20n0G(p0))dxdt.

Finally, from (2.10), we have p0n0 =p0. It concludes the proof.
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[23] B. Perthame, F. Quiròs, M. Tang, N. Vauchelet, Derivation of a Hele-Shaw type
system from a cell model with active motion, Interfaces and Free Boundaries 16
(2014), 489–508.

[24] B. Perthame, N. Vauchelet, Incompressible limit of mechanical model of tumor
growth with viscosity, Phil. Trans. R. Soc. A 373 (2015): 20140283.

[25] J. Ranft, M. Basana, J. Elgeti, J.-F. Joanny, J. Prost, F. Jülicher, Fluidization of
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