
HAL Id: hal-01477835
https://hal.science/hal-01477835

Preprint submitted on 27 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Exact Exponential Branch-and-Merge Algorithm for
the Single Machine Total Tardiness Problem

Michele Garraffa, Lei Shang, Federico Della Croce, Vincent t’Kindt

To cite this version:
Michele Garraffa, Lei Shang, Federico Della Croce, Vincent t’Kindt. An Exact Exponential Branch-
and-Merge Algorithm for the Single Machine Total Tardiness Problem. 2017. �hal-01477835�

https://hal.science/hal-01477835
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

An Exact Exponential Branch-and-Merge Algorithm for
the Single Machine Total Tardiness Problem

Michele Garraffa · Lei Shang · Federico
Della Croce · Vincent T’kindt

the date of receipt and acceptance should be inserted later

Abstract This paper proposes an exact exponential algorithm for the single
machine total tardiness problem. It exploits the structure of a basic branch-
and-reduce framework based on the well known Lawler’s decomposition prop-
erty that solves the problem with worst-case complexity O∗(3n) in time and
polynomial space. The proposed algorithm, called branch-and-merge, is an im-
provement of the branch-and-reduce technique with the embedding of a node
merging operation. Its time complexity converges to O∗(2n) keeping the space
complexity polynomial. This improves upon the best-known complexity result
for this problem provided by dynamic programming across the subsets with
O∗(2n) worst-case time and space complexity. The branch-and-merge tech-
nique is likely to be generalized to other sequencing problems with similar
decomposition properties.

Keywords Exact exponential algorithm · Single machine total tardiness ·
Branch and merge

1 Introduction

Since the beginning of this century, the design of exact exponential algorithms
for NP-hard problems has been attracting more and more researchers. Al-
though the research in this area dates back to early 60s, the discovery of new
design and analysis techniques has led to many new developments. The main
motivation behind the rise of interest in this area is the study of the intrinsic

M. Garraffa, F. Della Croce
Politecnico di Torino, DAUIN, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: michele.garraffa, federico.dellacroce@polito.it

L. Shang, V. T’Kindt
Université François-Rabelais de Tours, Laboratoire d’Informatique (EA 6300), ERL CNRS
OC 6305, 64 avenue Jean Portalis, 37200 Tours, France
E-mail: shang, tkindt@univ-tours.fr

2 Michele Garraffa et al.

complexity of NP-hard problems. In fact, since the dawn of computer science,
some of these problems appeared to be solvable with a lower exponential com-
plexity than others belonging to the same complexity class. For a survey on
the most effective techniques in designing exact exponential algorithms, read-
ers are kindly referred to Woeginger’s paper [19] and to the book by Fomin et
al. [2].

In spite of the growing interest on exact exponential algorithms, few re-
sults are yet known on scheduling problems, see the survey of Lenté et al.
[11]. In [10], Lenté et al. introduced the so-called class of multiple constraint
problems and showed that all problems fitting into that class could be tackled
by means of the Sort & Search technique. Further, they showed that several
known scheduling problems are part of that class. However, all these problems
required assignment decisions only and none of them required the solution of
a sequencing problem.

This paper focuses on a pure sequencing problem, the single machine to-
tal tardiness problem, denoted by 1||∑Tj . In this problem, a jobset N =
{1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j,
a processing time pj and a due date dj are defined. The problem asks for ar-
ranging the jobset in a sequence S = (1, 2, . . . , n) so as to minimize T (N,S) =∑n
j=1 Tj =

∑n
j=1 max{Cj −dj , 0}, where Cj =

∑j
i=1 pi. The 1||∑Tj problem

is NP-hard in the ordinary sense [4]. It has been extensively studied in the
literature and many exact procedures ([3,9,12,15]) have been proposed. The
current state-of-the-art exact method of [15] dates back to 2001 and solves to
optimality problems with up to 500 jobs. All these procedures are search tree
approaches, but dynamic programming algorithms were also considered. On
the one hand, in [9] a pseudo-polynomial dynamic programming algorithm was
proposed running with complexity O(n4

∑
pi). On the other hand, the stan-

dard technique of doing dynamic programming across the subsets (see, for
instance, [2]) applies and runs with complexity O(n22n) both in time and in
space. Latest theoretical developments for the problem, including both exact
and heuristic approaches can be found in the recent survey of Koulamas [8].

In the rest of the paper, the O∗(·) notation [19], commonly used in the
context of exact exponential algorithms, is used to measure worst-case com-
plexities. Let T (·) be a super-polynomial and p(·) be a polynomial, both on
integers. In what follows, for an integer n, we express running-time bounds of
the form O(p(n) · T (n))) as O∗(T (n)). We denote by T (n) the time required
in the worst-case to exactly solve the considered combinatorial optimization
problem of size n, i.e. the number of jobs in our context. As an example, the
complexity of dynamic programming across the subsets for the total tardiness
problem can be expressed as O∗(2n).

To the authors’ knowledge, there is no available exact algorithm for this
problem running in O∗(cn) (c being a constant) and polynomial space. Admit-
tedly, one could possibly apply a divide-and-conquer approach as in [7] and
[1]. This would lead to an O∗(4n) complexity in time requiring polynomial
space. Aim of this work is to present an improved exact algorithm exploit-
ing known decomposition properties of the problem. Different versions of the

Branch-and-Merge for 1||
∑
Tj 3

proposed approach are described in Section 2. A final version making use of
a new technique called branch-and-merge that avoids the solution of several
equivalent subproblems in the branching tree is presented in Section 3. This
version is shown to have a complexity that tends toO∗(2n) in time and requires
polynomial space. Finally, Section 4 concludes the paper with final remarks.

2 A Branch-and-Reduce approach

We recall here some basic properties of the total tardiness problem and intro-
duces the notation used along the paper. Given the jobset N = {1, 2, . . . , n},
let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence, where
i < j whenever pi > pj (or pi = pj and di ≤ dj). Let also ([1], [2], . . . , [n]) be
an EDD (Earliest Due Date first) sequence, where i < j whenever d[i] < d[j] (or
d[i] = d[j] and p[i] ≤ p[j]). As the cost function is a regular performance mea-
sure, we know that in an optimal solution, the jobs are processed with no inter-
ruption starting from time zero. Let Bj and Aj be the sets of jobs that precede
and follow job j in an optimal sequence. Correspondingly, Cj =

∑
k∈Bj

pk+pj .

Similarly, if job j is assigned to position k, we denote by Cj(k) the corre-
sponding completion time and by Bj(k) and Aj(k) the sets of predecessors
and successors of j, respectively.

The main known theoretical properties are the following.

Property 1. [5] Consider two jobs i and j with pi < pj. Then, i precedes
j in an optimal schedule if di ≤ max{dj , Cj}, else j precedes i in an optimal
schedule if di + pi > Cj.

Property 2. [9] Let job 1 in LPT order correspond to job [k] in EDD order.
Then, job 1 can be set only in positions h ≥ k and the jobs preceding and
following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k − 1], [k +
1], . . . , [h]} and A1(h) = {[h+ 1], . . . , [n]}.
Property 3. [9,12,14] Consider C1(h) for h ≥ k. Job 1 cannot be set in
position h ≥ k if:

(a) C1(h) ≥ d[h+1], h < n;
(b) C1(h) < d[r] + p[r], for some r = k + 1, . . . , h.

Property 4. ([16]) For any pair of adjacent positions (i, i + 1) that can be
assigned to job 1, at least one of them is eliminated by Property 3.

In terms of complexity analysis, we recall (see, for instance, [6]) that, if it
is possible to bound above T (n) by a recurrence expression of the type T (n) ≤∑h
i=1 T (n−ri)+O(p(n)), then we have

∑h
i=1 T (n−ri)+O(p(n)) = O∗(α(r1, . . . , rh)n)

where α(r1, . . . , rh) is the largest root of the function f(x) = 1−∑h
i=1 x

−ri .
A basic branch-and-reduce algorithm TTBR1 (Total Tardiness Branch-

and-Reduce version 1) can be designed by exploiting Property 2, which allows
to decompose the problem into two smaller subproblems when the position of

4 Michele Garraffa et al.

the longest job 1 is given. The basic idea is to iteratively branch by assign-
ing job 1 to every possible position (1, ..., n) and correspondingly decompose
the problem. Each time job 1 is assigned to a certain position i, two different
subproblems are generated, corresponding to schedule the jobs before l (in-
ducing subproblem Bl(i)) or after l (inducing subproblem Al(i)), respectively.
The algorithm operates by applying to any given jobset S starting at time
t function TTBR1(S, t) that computes the corresponding optimal solution.
With this notation, the original problem is indicated by N = {1, ..., n} and
the optimal solution is reached when function TTBR1(N, 0) is computed.

The algorithm proceeds by solving the subproblems along the branching
tree according to a depth-first strategy and runs until all the leaves of the
search tree have been reached. Finally, it provides the best solution found
as an output. Algorithm 1 summarizes the structure of this approach, while
Proposition 1 states its worst-case complexity.

Algorithm 1 Total Tardiness Branch-and-Reduce version 1 (TTBR1)

Input: N = {1, ..., n} is the problem to be solved
1: function TTBR1(S, t)
2: seqOpt← a random sequence of jobs
3: l← the longest job in N
4: for i = 1 to n do
5: Branch by assigning job l to position i
6: seqLeft← TTBR1(Bl(i), t)
7: seqRight← TTBR1(Al(i), t+

∑
k∈Bl(i)

pk + pl)

8: seqCurrent← concatenation of seqLeft, l and seqRight
9: seqOpt← best solution between seqOpt and seqCurrent

10: end for
11: return seqOpt
12: end function

Proposition 1. Algorithm TTBR1 runs in O∗(3n) time and polynomial space
in the worst case.

Proof. Whenever the longest job 1 is assigned to the first and the last posi-
tion of the sequence, two subproblems of size n − 1 are generated. For each
2 ≤ i ≤ n− 1, two subproblems with size i− 1 and n− i are generated. Hence,
the total number of generated subproblems is 2n − 2 and the time cost re-
lated to computing the best solution of size n starting from these subproblems
is O(p(n)). This induces the following recurrence for the running time T (n)
required by TTBR1:

T (n) = 2T (n− 1) + 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n)) (1)

By replacing n with n− 1, the following expression is derived:

T (n− 1) = 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n− 1)) (2)

Branch-and-Merge for 1||
∑
Tj 5

Expression 2 can be used to simplify the right hand side of expression 1 leading
to:

T (n) = 3T (n− 1) +O(p(n)) (3)

that induces as complexity O∗(3n). The space requirement is polynomial since
the branching tree is explored according to a depth-first strategy.

An improved version of the algorithm is defined by taking into account
Property 3 and Property 4, which state that for each pair of adjacent positions
(i, i+1), at least one of them can be discarded. The worst case occurs when the
largest possible subproblems are kept. This corresponds to solving problems
with size n − 1, n − 3, n − 5, . . ., that arise by branching on positions i and
n− i+ 1 with i odd. The resulting algorithm is referred to as TTBR2 (Total
Tardiness Branch and Reduce version 2). Its structure is equal to the one of
TTBR1 depicted in Algorithm 1, but lines 5-9 are executed only when l can
be set on position i according to Property 3. The complexity of the algorithm
is discussed in Proposition 2.

Proposition 2. Algorithm TTBR2 runs in O∗((1 +
√

2)n) = O∗(2.4143n)
time and polynomial space in the worst case.

Proof. The proof is close to that of Proposition 1. We refer to problems where
n is odd, but the analysis for n even is substantially the same. The algorithm
induces a recursion of the type:

T (n) = 2T (n− 1) + 2T (n− 3) + ...+ 2T (4) + 2T (2) +O(p(n)) (4)

as the worst case occurs when we keep the branches that induce the largest
possible subproblems. Analogously to Proposition 1, we replace n with n− 2
in the previous recurrence and we obtain:

T (n− 2) = 2T (n− 3) + 2T (n− 5) + ...+ 2T (4) + 2T (2) +O(p(n− 2)) (5)

Again, we plug the latter expression into the former one and obtain the
recurrence:

T (n) = 2T (n− 1) + T (n− 2) +O(p(n)) (6)

that induces as complexity O∗((1+
√

2)n) = O∗(2.4143n). The space complex-
ity is still polynomial.

6 Michele Garraffa et al.

3 A Branch-and-Merge Algorithm

In this section, we describe how to get an algorithm running with complex-
ity arbitrarily close to O∗(2n) in time and polynomial space by integrating a
node-merging procedure into TTBR1. We recall that in TTBR1 the branching
scheme is defined by assigning the longest unscheduled job to each available
position and accordingly divide the problem into two subproblems. To facil-
itate the description of the algorithm, we focus on the scenario where the
LPT sequence (1, ..., n) coincides with the EDD sequence ([1], ..., [n]), for con-
venience we write LPT = EDD. The extension of the algorithm to the case
LPT 6= EDD will be presented at the end of the section.

Figures 1 shows how an input problem {1, ..., n} is decomposed by the
branching scheme of TTBR1. Each node is labelled by the corresponding
subproblem Pj (P denotes the input problem). Notice that from now on
Pj1,j2,...,jk , 1 ≤ k ≤ n, denotes the problem (node in the search tree) induced
by the branching scheme of TTBR1 when the largest processing time job 1 is
in position j1, the second largest processing time job 2 is in position j2 and so
on till the k-th largest processing time job k being placed in position jk.

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

P3 :{2, 3}1{4, ..., n}
Pn :{2, ..., n}1

P3P2

P1

P1,n

. . .

P1,4P1,3P1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,4 :1{3, 4}2{5, ..., n}
P1,n :1{3, ..., n}2

Fig. 1: The branching scheme of TTBR1 at the root node

To roughly illustrate the guiding idea of the merging technique introduced
in this section, consider Figures 1. Noteworthy, nodes P2 and P1,2 are identical
except for the initial subsequence (21 vs 12). This fact implies, in this particular
case, that the problem of scheduling jobset {3, ..., n} at time p1 + p2 is solved
twice. This kind of redundancy can however be eliminated by merging node P2

with node P1,2 and creating a single node in which the best sequence among
21 and 12 is scheduled at the beginning and the jobset {3, ..., n}, starting at
time p1 + p2, remains to be branched on. Furthermore, the best subsequence
(starting at time t = 0) between 21 and 12 can be computed in constant time.
Hence, the node created after the merging operation involves a constant time

Branch-and-Merge for 1||
∑
Tj 7

preprocessing step plus the search for the optimal solution of jobset {3, ..., n}
to be processed starting at time p1 + p2. We remark that, in the branching
scheme of TTBR1, for any constant k ≥ 3, the branches corresponding to
Pi and Pn−i+1, with i = 2, ..., k, are decomposed into two problems where
one subproblem has size n − i and the other problem has size i − 1 ≤ k.
Correspondingly, the merging technique presented on problems P2 and P1,2

can be generalized to all branches inducing problems of sizes less than k.
Notice that, by means of algorithm TTBR2, any problem of size less than k
requires at most O∗(2.4143k) time (that is constant time when k is fixed). In
the remainder of the paper, for any constant k ≤ n

2 , we denote by left-side
branches the search tree branches corresponding to problems P1, ..., Pk and by
right-side branches the ones corresponding to problems Pn−k+1, ..., Pn.

In the following subsections, we show how the node-merging procedure
can be systematically performed to improve the time complexity of TTBR1.
Basically, two different recurrent structures hold respectively for left-side and
right-side branches and allow to generate fewer subproblems at each recursion
level. The node-merging mechanism is described by means of two distinct
procedures, called LEFT MERGE (applied to left-side branches) and RIGHT MERGE

(applied to right-side branches), which are discussed in Sections 3.1 and 3.2,
respectively. The final branch-and-merge algorithm is described in Section 3.3
and embeds both procedures in the structure of TTBR1.

3.1 Merging left-side branches

The first part of the section aims at illustrating the merging operations on the
root node. The following proposition highlights two properties of the couples
of problems Pj and P1,j with 2 ≤ j ≤ k.

Lemma 1 For a couple of problems Pj and P1,j with 2 ≤ j ≤ k, the following
conditions hold:

1. The solution of problems Pj and P1,j involves the solution of a common
subproblem which consists in scheduling jobset {j+1, ..., n} starting at time
t =

∑
i=1,...,j pi.

2. Both in Pj and P1,j, at most k jobs have to be scheduled before jobset
{j + 1, ..., n}.

Proof. As problems Pj and P1,j are respectively defined by {2, ..., j}1{j +
1, ..., n} and 1{3, ..., j}2{j + 1, ..., n}, the first part of the property is straight-
forward.
The second part can be simply established by counting the number of jobs to
be scheduled before jobset {j + 1, ..., n} when j is maximal, i.e. when j = k.
In this case, jobset {k + 1, ..., n} has (n − k) jobs which implies that k jobs
remain to be scheduled before that jobset.

Each couple of problems indicated in Proposition 1 can be merged as soon
as they share the same subproblem to be solved. More precisely, (k− 1) prob-

8 Michele Garraffa et al.

lems Pj (with 2 ≤ j ≤ k) can be merged with the corresponding problems
P1,j .

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2, ..., k}1{k + 1, ..., n}

PkP2

P1

P1,n

. . .

P1,kP1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,k :1{3, ..., k}2{k + 1, ..., n}

. . .

. . .

Pn :{2, ..., n}1

P1,n :1{3, ..., n}2

(a) Left-side branches of P before performing the merging operations

P : {1, ..., n}

PnPkP2

P1

P1,n

. . .

Pσ1,kPσ1,2

. . .

Pσ1,2 :BEST(12, 21){3, ..., n}
Pσ1,k :BEST({2, ..., k}1, 1{3, ..., k}2){k + 1, ..., n}

. . .

. . .

(b) Left-side branches of P after performing the merging operations

Fig. 2: Left-side branches merging at the root node

Figure 2 illustrates the merging operations performed at the root node on
its left-side branches, by showing the branch tree before and after (Figure 2a
and Figure 2b) such merging operations. For any given 2 ≤ j ≤ k, problems Pj
and P1,j share the same subproblem {j+1, ..., n} starting at time t =

∑j
i=1 pi.

Hence, by merging the left part of both problems which is constituted by jobset
{1, ..., j} having size j ≤ k, we can delete node Pj and replace node P1,j in
the search tree by the node Pσ1,j which is defined as follows (Figure 2b):

– Jobset {j + 1, ..., n} is the set of jobs on which it remains to branch.
– Let σ1,j be the sequence of branching positions on which the j longest

jobs 1, ..., j are branched, that leads to the best jobs permutation between

Branch-and-Merge for 1||
∑
Tj 9

{2, ..., j}1 and 1{3, ..., j}2. This involves the solution of two problems of
size at most k − 1 (in O∗(2.4143k) time by TTBR2) and the comparison
of the total tardiness value of the two sequences obtained.

In the following, we describe how to apply analogous merging operations
on any node of the tree. With respect to the root node, the only additional
consideration is that the children nodes of a generic node may have already
been affected by a previous merging.

In order to define the branching scheme used with the LEFT MERGE proce-
dure, a data structure Lσ is associated to a problem Pσ. It represents a list of
k − 1 subproblems that result from a previous merging and are now the first
k − 1 children nodes of Pσ. When Pσ is created by branching, Lσ = ∅. When
a merging operation sets the first k− 1 children nodes of Pσ to Pσ1 , ..., Pσk−1 ,
we set Lσ = {Pσ1 , ..., Pσk−1}. As a conclusion, the following branching scheme
for a generic node of the tree holds.

Definition 1 The branching scheme for a generic node Pσ is defined as fol-
lows:

– If Lσ = ∅, use the branching scheme of TTBR1;
– If Lσ 6= ∅, extract problems from Lσ as the first k − 1 branches, then

branch on the longest job in the available positions from the k-th to the
last according to Property 2.

This branching scheme, whenever necessary, will be referred to as improved
branching.

Before describing how merging operations can be applied on a generic node
Pσ, we highlight its structural properties by means of Proposition 3.

Proposition 3. Let Pσ be a problem to branch on, and σ be the permutation of
positions assigned to jobs 1, . . . , |σ|, with σ empty if no positions are assigned.
The following properties hold:

1. j∗ = |σ|+ 1 is the job to branch on,
2. j∗ can occupy in the branching process, positions {`b, `b + 1, . . . , `e}, where

`b =

{
|σ|+ 1 if σ is a permutation of 1, . . . , |σ| or σ is empty

ρ1 + 1 otherwise

with ρ1 = max{i : i > 0, positions 1, . . . , i are in σ} and

`e =

{
n if σ is a permutation of 1, . . . , |σ| or σ is empty

ρ2 − 1 otherwise

with ρ2 = min{i : i > ρ1, i ∈ σ}

Proof. According to the definition of the notation Pσ, σ is a sequence of posi-
tions that are assigned to the longest |σ| jobs. Since we always branch on the
longest unscheduled job, the first part of the proposition is straightforward.
The second part aims at specifying the range of positions that job j∗ can
occupy. Two cases are considered depending on the content of σ:

10 Michele Garraffa et al.

– If σ is a permutation of 1, . . . , |σ|, it means that the longest |σ| jobs are set
on the first |σ| positions, which implies that the job j∗ should be branched
on positions |σ|+ 1 to n

– If σ is not a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs
are not set on consecutive positions. As a result, the current unassigned
positions may be split into several ranges. As a consequence of the decom-
position property, the longest job j∗ should necessarily be branched on the
first range of free positions, that goes from ρ1 to ρ2. Let us consider as an
example P1,9,2,8, whose structure is 13{5, . . . , 9}42{10, . . . , n} and the job
to branch on is 5. In this case, we have: σ = (1, 9, 2, 8), `b = 3, `e = 7. It
is easy to verify that 5 can only be branched on positions {3, . . . , 7} as a
direct result of Property 2.

Corollary 1 emphasises the fact that even though a node may contain
several ranges of free positions, only the first range is the current focus since
we only branch on the longest job in eligible positions.

Corollary 1. Problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}Ω
with π the subsequence of jobs on the first `b − 1 positions in σ and Ω the re-
maining subset of jobs to be scheduled after position `e (some of them can have
been already scheduled). The merging procedure is applied on jobset {j∗, . . . , j∗+
`e − `b} starting at time tπ =

∑
i∈Π pi where Π is the jobset of π.

The validity of merging on a general node still holds as indicated in Propo-
sition 4, which extends the result stated in Proposition 1.

Proposition 4. Let Pσ be a generic problem and let π, j∗, `b, `e, Ω be computed
relatively to Pσ according to Corollary 1. If Lσ=∅ the j-th child node Pσj is
Pσ,`b+j−1 for 1≤j≤k. Otherwise, the j-th child node Pσj is extracted from
Lσ for 1≤j≤k−1, while it is created as Pσ,`b+k−1 for j=k. For any couple of
problems Pσj and Pσ1,`b+j−1 with 2≤j≤k, the following conditions hold:

1. Problems Pσj and Pσ1,`b+j−1 with 2≤j≤k have the following structure:
– Pσj :

πj{j∗+j, . . . , j∗+`e−`b}Ω 1≤j≤k−1 and Lσ 6=∅

π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω (1≤j≤k−1;Lσ=∅)
or j=k

– Pσ1,`b+j−1:
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω

2. By solving all the problems of size less than k, that consist in scheduling
the jobset {j∗+1, . . . , j∗+j−1} between π and j∗ and in scheduling {j∗+
2, . . . , j∗+j−1} between π1 and j∗+1, both Pσj and Pσ1,`b+j−1 consist in
scheduling {j∗+j, ..., j∗+`e−`b}Ω starting at time tπj=

∑
i∈Πj pi where Πj

is the jobset of πj.

Branch-and-Merge for 1||
∑
Tj 11

Proof. The first part of the statement follows directly from Definition 1 and
simply defines the structure of the children nodes of Pσ. The problem Pσj is the
result of a merging operation with the generic problem Pσ,`b+j−1 and it could
possibly coincide with Pσ,`b+j−1, for each j=1, ..., k−1. Furthermore, Pσj is ex-
actly Pσ,`b+j−1 for j=k. The generic structure of Pσ,`b+j−1 is π{j∗+1, . . . , j∗+
j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω, and the merging operations preserve the job-
set to schedule after j∗. Thus, we have Πj=Π∪{j∗, ..., j∗+j−1} for each
j=1, ..., k−1, and this proves the first statement. Analougosly, the structure of
Pσ1,`b+j−1 is π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω. Once the
subproblem before j∗+1 of size less than k is solved, Pσ1,`b+j−1 consists in
scheduling the jobset {j∗+j, ..., j∗+`e−`b} at time tπj=

∑
i∈Πj pi. In fact, we

have that Πj=Π1∪{j∗+2, . . . , j∗+j−1}∪{j∗+1}=Π∪{j∗, . . . , j∗+j−1} .

Pσ

PσkPσ2

Pσ1 . . .

Pσ1,`b+k����Pσ1,`b+1

. . .

. . .

�����
Pσ1,`b+k−1

. . .

Pσ1,j∗+1 Pσ1,j∗+k−1

Fig. 3: Merging for a generic left-side branch

Analogously to the root node, each couple of problems indicated in Propo-
sition 4 can be merged. Again, (k − 1) problems Pσj (with 2 ≤ j ≤ k) can
be merged with the corresponding problems Pσ1,`b+j−1. Pσj is deleted and
Pσ1,`b+j−1 is replaced by Pσ1,j∗+j−1 (Figure 3), defined as follows:

– Jobset {j∗ + j, ..., j∗ + `e − `b}Ω is the set of jobs on which it remains to
branch on.

– Let σ1,j∗+j−1 be the sequence of positions on which the j∗ + j − 1 longest
jobs 1, ..., j∗ + j − 1 are branched, that leads to the best jobs permutation
between πj and π1{j∗ + 2, . . . , j∗ + j − 1}(j∗ + 1) for 2 ≤ j ≤ k − 1, and
between π{j∗ + 1, . . . , j∗ + j − 1}j∗ and π1{j∗ + 2, . . . , j∗ + j − 1}(j∗ + 1)
for j = k. This involves the solution of one or two problems of size at most
k − 1 (in O∗(2.4143k) time by TTBR2) and the finding of the sequence
that has the smallest total tardiness value knowing that both sequences
start at time 0.

12 Michele Garraffa et al.

The LEFT MERGE procedure is presented in Algorithm 2. Notice that, from a
technical point of view, this algorithm takes as input one problem and produces
as an output its first child node to branch on, which replaces all its k left-side
children nodes.

Algorithm 2 LEFT MERGE Procedure

Input: Pσ an input problem of size n, with `b, j
∗ accordingly computed

Output: Q: a list of problems to branch on after merging
1: function LEFT MERGE(Pσ)
2: Q←∅
3: for j=1 to k do
4: Create Pσj (j-th child of Pσ) by the improved branching with the subproblem

induced by jobset {j∗+1, . . . , j∗+j−1} solved if Lσ=∅ or j=k
5: end for
6: for j=1 to k−1 do
7: Create P

σ1j (j-th child of Pσ1) by the improved branching with the subproblem
induced by jobset {j∗+2, . . . , j∗+j−1} solved if Lσ1=∅ or j=k

8: Lσ1←Lσ1∪BEST(Pσj+1 , Pσ1j)
9: end for

10: Q←Q∪Pσ1

11: return Q
12: end function

Lemma 2 The LEFT MERGE procedure returns one node to branch on in O(n)
time and polynomial space. The corresponding problem is of size n− 1.

Proof. The creation of problems Pσ1,`b+j−1, ∀j = 2, . . . , k, can be done in
O(n) time. The call of TTBR2 costs constant time. The BEST function called
at line 8 consists in computing then comparing the total tardiness value of
two known sequence of jobs starting at the same time instant: it runs in O(n)
time. The overall time complexity of LEFT MERGE procedure is then bounded
by O(n) time as k is a constant. Finally, as only node Pσ1 is returned, its size
is clearly n− 1 when Pσ has size n.

In the final part of this section, we discuss the extension of the algorithm
in the case where LPT 6= EDD. In this case, Property 2 allows to discard
subproblems associated to branching in some positions. Notice that if a prob-
lem P can be discarded according to this property, then we say that P does
not exist and its associated node is empty.

Lemma 3 Instances such that LPT = EDD correspond to worst-case in-
stances for which the LEFT MERGE procedure returns one node of size n− 1 to
branch on, replacing all the k left-side children nodes of its parent node.

Proof. Let us consider the improved branching scheme. The following exhaus-
tive conditions hold:

1. 1 = [1] and 2 = [2];
2. 1 = [j] with j ≥ 2;

Branch-and-Merge for 1||
∑
Tj 13

3. 1 = [1] and 2 = [j] j ≥ 3.

In case 1, the branching scheme matches the one of Figure 2, hence Lemma 3
holds according to 2. In case 2, the problem Pσ1 is empty if no problem has
been merged to its position in the tree previously. The node associated to
Pσ1,`b+`−1, ∀` ≤ k, can then be considered as empty node, hence the merging
can be done by simply moving the problem Pσ` into Pσ1,`b+`−1. As a conse-
quence, the node returned by LEFT MERGE only contains the merged nodes as
children nodes, whose solution is much faster than solving a problem of size
n − 1. If Pσ1 is not empty due to a previous merging operation, the merg-
ing can be performed in the ordinary way. In case 3, the nodes associated to
Pσ1,`b+1, ..., Pσ1,`b+j−2 may or may not be empty depending on the previous
merging operation concerning Pσ1 , in either case the merging can be done. The
same reasoning holds for nodes associated to Pσ` and Pσ1,`b+`−1 for ` ≥ j.

In general, the solution of problems Pσ` , ∀` = 2, . . . , k, can always be
avoided. In the worst case, the node associated to Pσ1 contains a subproblem
of size n−1, otherwise with the application of Property 2, it contains a problem
whose certain children are set as empty.

3.2 Merging right-side branches

Due to the branching scheme, the merging of right-side branches involves
a more complicated procedure than the merging of left-side branches. In the
merging of left-side branches, it is possible to merge some nodes associated to
problems P` with children nodes of P1, while for the right-side branches, it is
not possible to merge some nodes P` with children nodes of Pn. We can only
merge children nodes of P` with children nodes of Pn. Let us more formally
introduce the right merging procedure and, again, let k < n

2 be the same
constant parameter as used in the left merging.

Figure 4 shows an example on the structure of merging for the k right-
side branches with k = 3. The root problem P consists in scheduling jobset
{1, . . . , n}. Unlike left-side merging, the right-side merging is done horizontally
for each level. Nodes that are involved in merging are colored. For instance, the
black square nodes at level 1 can be merged. Similarly, the black circle nodes
at level 1 can be merged, the grey square nodes at level 2 can be merged and
the grey circle nodes at level 2 can be merged. Notice that each right-side
branch of P is expanded to a different depth which is actually an arbitrary
decision: the expansion stops when the first child node has size n − k − 1 as
indicated in the figure. This eases the computation of the final complexity.

More generally, Figure 5 shows the right-side search tree and the content
of the nodes involved in the merging in a generic way.

The rest of this section intends to describe the merging by following the
same lines as for left merging. We first extend the notation Pσ in the sense

14 Michele Garraffa et al.

. . .

· · · · · · · · ·

· · · · · ·

· · ·

P

Pn−2
Pn−1 Pn

Pn−2,1

Pn−1,1,2

Pn−2,n−3 Pn−1,n−2

Pn−1,1,n−2

Pn,n−2

Pn,n−1

Pn,1,n−1
Pn,1,n−2

Pn,1,2,3

size:n−k−1

size:n−k−1

size:n−k−1

Level 0

Level 1

Level 3

Level 2

...

Fig. 4: An example of right-side branches merging for k = 3

. . .

· · · · · ·

P

Pn−k+1
Pq Pn

Pq,1,...,`,j

Pn−k+1,n−k

· · · · · ·

· · · · · ·

...

· · · · · · · · ·

...

· · ·

������Pn,1,...,`,j

· · · · · ·

...

· · · · · · · · ·

...

Level 0

Level 1

Level `

Level `− 1

...

Pq,1,...,`,j : (2, . . . , `+1){`+3, ..., j+1}(`+2){j+2, ..., q}1{q+1, ..., n}

Pσ1,`+2,•,j+2,n

Pσ1,`+2,•,j+2,n : (2, . . . , `+1){`+3, ..., j+1} BEST
max{j+1,n−k+`+1}≤q≤n

((`+2){j+2, ..., q}1{q+1, ..., n})

Fig. 5: Generic right-side merging at the root node

that σ may now contain placeholders. The i-th element of σ is either the
position assigned to job i if i is fixed, or • if job i is not yet fixed. The •
sign is used as placeholder, with its cardinality below indicating the number
of consecutive •. As an example, the problem {2, . . . , n − 1}1n can now be
denoted by Pn−1, •

n−2
,n. The cardinality of • may be omitted whenever it is

Branch-and-Merge for 1||
∑
Tj 15

not important for the presentation or it can be easily deduced as in the above
example. Note that this adapted notation eases the presentation of right merge
while it has no impact on the validity of the results stated in the previous
section.

Proposition 5. Let Pσ be a problem to branch on. Let j∗, `b, `e, ρ1 and ρ2
be defined as in Proposition 3. Extending Corollary 1, problem Pσ has the
following structure:

π{j∗, . . . , j∗ + `e − `b}γΩ′

where π is defined as in Corollary 1 and γ is the sequence of jobs on posi-
tions ρ2, . . . , ρ3 with ρ3 = max{i : i ≥ ρ2, positions ρ2, . . . , i are in σ} and Ω′

the remaining subset of jobs to be scheduled after position ρ3 (some of them
can have been already scheduled). The merging procedure is applied on jobset
{j∗, . . . , j∗ + `e − `b} preceded by a sequence of jobs π and followed by γΩ′.

Proof. The problem structure stated in Corollary 1 is refined on the part of Ω.
Ω is split into two parts: γ and Ω′. The motivation is that γ will be involved
in the right merging, just like the role of π in left merging.

Proposition 6 shed lights on how to merge the right side branches originated
from the root node.

Proposition 6. For each problem in the set

S`,j=

Pσ:

|σ|=`+2,
max{j+1, n−k+`+1}≤σ1≤n,
σi=i−1, ∀i∈{2, . . . , `+1},
σ`+2=j

 1

with 0≤`≤k−1, n−k≤j≤n−1, and with σi referring to the position of job
i in σ, we have the two following properties:

1. The solution of problems in S`,j involves the solution of a common sub-
problem which consists in scheduling jobset {`+3, ..., j+1} starting at time

t`=
∑`+1
i=2 pi.

2. For any problem in S`,j, at most k+1 jobs have to be scheduled after jobset
{`+3, ..., j+1}.

Proof. As each problem Pσ is defined by (2, . . . , `+1){`+3, ..., j+1}(`+2){j+
2, ..., σ1}1{σ1+1, ..., n}, the first part of the property is straightforward.
Besides, the second part can be simply established by counting the number of
jobs to be scheduled after jobset {`+3, ..., j+1} when j is minimal, i.e. when
j=n−k. In this case, (`+2){j+2, ..., σ1}1{σ1+1, ..., n} contains k+1 jobs.

The above proposition highlights the fact that some nodes can be merged
as soon as they share the same initial subproblem to be solved. More precisely,
at most k−`−1 nodes associated to problems Pq,1..`,j , max{j+1, n−k+`+1} ≤
q ≤ (n − 1), can be merged with the node associated to problem Pn,1..`,j ,

1 Placeholders do not count in the cardinality of σ

16 Michele Garraffa et al.

∀j = (n − k), ..., (n − 1). The node Pn,1..`,j is replaced in the search tree by
the node Pσ1,`+2,•,j+2,n defined as follows (Figure 5):

– Jobset {`+ 3, ..., j + 1} is the set of jobs on which it remains to branch.
– Let σ1,`+2,•,j+2,n be the sequence containing positions of jobs {1, . . . , ` +

2, j + 2, . . . , n} and placeholders for the other jobs, that leads to the best
jobs permutation among (`+2){j+2, ..., q}1{q+1, ..., n}, max{j+1, n−k+
`+ 1} ≤ q ≤ n. This involves the solution of at most k problems of size at
most k+1 (in O∗(k×2.4143k+1) time by TTBR2) and the determination of
the best of the computed sequences knowing that all of them start at time t,
namely the sum of the jobs processing times in (2, . . . , `+1){`+3, ..., j+1}.
The merging process described above is applied at the root node, while an

analogous merging can be applied at any node of the tree. With respect to the
root node, the only additional consideration is that the right-side branches of
a general node may have already been modified by previous mergings. As an
example, let us consider Figure 6. It shows that, subsequently to the merging
operations performed from P , the right-side branches of Pn may not be the
subproblems induced by the branching scheme. However, it can be shown in a
similar way as per left-merge, that the merging can still be applied.

P

Pn−1 Pn

Pn−1,n−2

����Pn,n−2 Pn,n−1

· · ·

· · · · · ·

· · ·· · ·
Pn,n−1,n−3

Pn−1,n−2

Pn−1,n−2,n−3

Fig. 6: The right branches of Pn have been modified when performing right-
merging from P

In order to define the branching scheme used with the RIGHT MERGE proce-
dure, a data structure Rσ is associated to a problem Pσ. It represents a list of
subproblems that result from a previous merging and are now the k right-side
children nodes of Pσ. When a merging operation sets the k right-side children
nodes of Pσ to Pσn−k+1 , ..., Pσn , we set Rσ = {Pσn−k+1 , ..., Pσn}, otherwise we
have Rσ = ∅. As a conclusion, the following branching scheme for a generic
node of the tree is defined. It is an extension of the branching scheme defined
in Definition 1.

Branch-and-Merge for 1||
∑
Tj 17

Definition 2 The branching scheme for a generic node Pσ is defined as fol-
lows:

– If Rσ = ∅, use the branching scheme defined in Definition 1;
– If Lσ = ∅ and Rσ 6= ∅, branch on the longest job in the available positions

from the 1st to the (n− k)-th, then extract problems from Rσ as the last
k branches.

– If Lσ 6= ∅ and Rσ 6= ∅, extract problems from Lσ as the first k−1 branches,
then branch on the longest job in the available positions from the k-th to
the n− k-th, finally extract problems from Rσ as the last k branches.

This branching scheme, whenever necessary, will be referred to as improved
branching. It generalizes, also replaces, the one introduced in Definition 1

Proposition 7 states the validity of merging a general node, which extends
the result in Proposition 6.

Proposition 7. Let Pσ be a generic problem and let π, j∗, `b, `e, γ, Ω′ be com-
puted relatively to Pσ according to Proposition 5. If Rσ=∅, the right merging
on Pσ can be easily performed by considering Pσ as a new root problem. Sup-
pose Rσ 6=∅, the q-th child node Pσq is extracted from Rσ, ∀n′−k+1≤q≤n′,
where n′=`e−`b+1 is the number of children nodes of Pσ. The structure of
Pσq is π{j∗+1, ..., j∗+q−1}γqΩ′.

For 0≤`≤k−1 and n′−k≤j≤n′−1, the following conditions hold:

1. Problems in Sσ`,j have the following structure:
π(j∗+1, . . . , j∗+`){j∗+`+2, ..., j∗+j}(j∗+`+1){j∗+j+1, ..., j∗+q−1}γqΩ′ with
q varies from max{j+1, n−k+`+1} to n′.

2. The solution of all problems in Sσ`,j involves the scheduling of a jobset
{j∗+j+1, ..., j∗+q−1}, max{j+1, n−k+`+1}≤q≤n′, which is of size less
than k. Besides, for all problems in Sσ`,j it is required to solve a com-
mon subproblem made of jobset {j∗+`+2, ..., j∗+j} starting after π(j∗+
1, . . . , j∗+`) and before (j∗+`+1){j∗+j+1, ..., j∗+q−1}γqΩ′.

Proof. The proof is similar to the one of Proposition 4. The first part of the
statement follows directly from Definition 2 and simply defines the structure
of the children nodes of Pσ. For the second part, it is necessary to prove that
{j∗+j+1, ..., j∗+q−1}γq consists of the same jobs for any valid value of q.
Actually, since right-merging only merges nodes that have common jobs fixed
after the unscheduled jobs, the jobs present in {j∗+j+1, ..., j∗+q−1}γq and the
jobs present in {j∗+j+1, ..., j∗+q−1}j∗{j∗+q, ..., j∗+n′−1}γ, max{j+1, n−
k+`+1}≤q≤n′, must be the same, which proves the statement.

Analogously to the root node, given the values of ` and j, all the problems
in Sσ`,j can be merged. More precisely, we rewrite σ as α•

n′
β where α is the

sequence of positions assigned to jobs {1, . . . , j∗−1}, •
n′

refers to the jobset

to branch on and β contains the positions assigned to the rest of jobs. At

18 Michele Garraffa et al.

most k−`−1 nodes associated to problems Pα,`b+q−1,`b..`b+`−1,`b+j−1,•,β , with
max{j+1, n′−k+`+1}≤q≤n′−1, can be merged with the node associated to
problem Pα,`e,`b..`b+`−1,`b+j−1,•,β .

Node Pα,`e,`b..`b+`−1,`b+j−1,•,β is replaced in the search tree by node Pα,σ`,`b,j ,•,β
defined as follows:

– Jobset {j∗+`+2, ..., j∗+j} is the set of jobs on which it remains to branch.
– Let σ`,`b,j be the sequence of positions among

{(`b+q−1, `b..`b+`−1, `b+j−1) : max{j+1, n′−k+`+1}≤q≤n′−1}

associated to the best job permutation on (j∗+`+1){j∗+j+1, ..., j∗+q−
1}γq, ∀max{j+1, n′−k+`+1}≤q≤n′. This involves the solution of k prob-
lems of size at most k+1 (in O∗(k×2.4143k+1) time by TTBR2) and the
determination of the best of the computed sequences knowing that all
of them start at time t, namely the sum of the jobs processing times in
π(j∗+1, . . . , j∗+`){j∗+`+2, ..., j∗+j}.
The RIGHT MERGE procedure is presented in Algorithm 3. Notice that, sim-

ilarly to the LEFT MERGE procedure, this algorithm takes as input one problem
Pσ and provides as an output a set of nodes to branch on, which replaces
all its k right-side children nodes of Pσ. It is interesting to notice that the
LEFT MERGE procedure is also integrated.

A procedure MERGE RIGHT NODES (Algorithm 4) is invoked to perform the
right merging for each level ` = 0, ..., k − 1 in a recursive way. The initial
inputs of this procedure (line 13 in RIGHT MERGE) are the problem Pσ and the
list of its k right-side children nodes, denoted by rnodes. They are created
according to the improved branching (lines 4-12 of Algorithm 3). Besides, the
output is a list Q containing the problems to branch on after merging. In the
first call to MERGE RIGHT NODES, the left merge is applied to the first element
of rnodes (line 2), all the children nodes of nodes in rnodes not involved in
right nor left merging, are added to Q (lines 3-7). This is also the case for
the result of the right merging operations at the current level (lines 8-11). In
Algorithm 4, the value of r indicates the current size of rnodes. It is reduced
by one at each recursive call and the value (k − r) identifies the current level
with respect to Pσ. As a consequence, each right merging operation consists
in finding the problem with the best total tardiness value on its fixed part,
among the ones in set Sσk−r,j . This is performed by the BEST function (line 10
of MERGE RIGHT NODES) which extends the one called in Algorithm 2 by taking
at most k subproblems as input and returning the dominating one.

The MERGE RIGHT NODES procedure is then called recursively on the list
containing the first child node of the 2nd to r-th node in rnodes (lines 13-17).
Note that the procedure LEFT MERGE is applied to every node in rnodes except
the last one. In fact, for any specific level, the last node in rnodes belongs to
the last branch of Pσ, which is Pσ,lb+n−1,•,β . Since Pσ,lb+n−1,•,β is put into Q
at line 14 of RIGHT MERGE, it means that this node will be re-processed later
and LEFT MERGE will be called on it at that moment. Since the recursive call of
MERGE RIGHT NODES (line 18) will merge some nodes to the right-side children

Branch-and-Merge for 1||
∑
Tj 19

nodes of Pα,`b, •
nr−1

,βr , the latter one must be added to the list L of Pα, •
nr
,βr

(line 19). In addition, since we defined L as a list of size either 0 or k−1, lines
20-24 add the other (k − 2) nodes to Lα, •

nr
,βr .

It is also important to notice the fact that a node may have its L or R
structures non-empty, if and only if it is the first or last child node of its
parent node. A direct result is that only one node among those involved in a
merging may have its L or R non-empty. In this case, these structures need to
be associated to the resulting node. The reader can always refer to Figure 4
for a more intuitive representation.

Algorithm 3 RIGHT MERGE Procedure

Input: Pσ = Pα,•
n
,β a problem of size n, with `b, j

∗ computed according to Proposition 3

Output: Q : a list of problems to branch on after merging
1: function RIGHT MERGE(Pσ)
2: Q← ∅
3: nodes← ∅
4: if Rσ = ∅ then
5: for q = n−k+1 to n do
6: Create Pα,`b+q−1,•,β by branching
7: δ ← the sequence of positions of jobs {j∗+q, . . . , j∗+n−1} fixed by TTBR2
8: nodes← nodes+Pα,`b+q−1,•,δ,β
9: end for

10: else
11: nodes←Rσ
12: end if
13: Q← Q∪MERGE RIGHT NODES(nodes, Pσ)
14: Q← Q∪nodes[k] . The last node will be re-processed
15: return Q
16: end function

Lemma 4 The RIGHT MERGE procedure returns a list of O(n) nodes in poly-
nomial time and space.
The solution of the associated problems involves the solution of 1 subproblem of
size (n−1), of (k−1) subproblems of size (n−k−1), and subproblems of size i
and (nq−(k−r)−i−1), ∀r = 2, ..., k; q = 1, ..., (r−1); i = k, ..., (n−2k+r−2).

Proof. The first part of the result follows directly from Algorithm 3. The only
lines where nodes are added to Q in RIGHT MERGE are lines 13-14. In line 14,
only one problem is added to Q, thus it needs to be proved that the call on
MERGE RIGHT NODES (line 13) returns O(n) nodes. This can be computed by
analysing the lines 2-7 of Algorithm 4. Considering all recursive calls, the total
number of nodes returned by MERGE RIGHT NODES is (

∑k−1
i=1 (k − i)(n − 2k −

i)) + k− 1 which yields O(n). The number of all the nodes considered in right
merging is bounded by a linear function on n. Furthermore, all the operations
associated to the nodes (merging, creation, etc) have a polynomial cost. As a
consequence, Algorithm 3 runs in polynomial time and space.

20 Michele Garraffa et al.

Algorithm 4 MERGE RIGHT NODES Procedure

Input: rnodes = [Pα, •
n1
,β1 , . . . , Pα, •

nr
,βr], ordered list of r last children nodes with `b

defined on any node in rnodes. |α|+ 1 is the job to branch on and nr = n1 + r − 1.
Output: Q, a list of problems to branch on after merging
1: function MERGE RIGHT NODES(rnodes, Pσ)
2: Q← LEFT MERGE(Pα, •

n1
,β1)

3: for q = 1 to r − 1 do
4: for j = `b + k to `b + n1 − 1 do
5: Q← Q ∪ Pα,j, •

nq−1
,βq

6: end for
7: end for
8: for j = `b + n1 to `b + nr do
9: Solve all the subproblems of size less than k in Sσk−r,j

10: Rα, •
nr
,βr ←Rα, •

nr
,βr + BEST(Sσk−r,j)

11: end for
12: if r > 2 then
13: newnodes← ∅
14: for q = 2 to r − 1 do
15: newnodes← newnodes+ LEFT MERGE(Pα, •

nq
,βq)

16: end for
17: newnodes← newnodes+ Pα,`b, •

nr−1
,βr

18: Q← Q ∪ MERGE RIGHT NODES(newnodes, Pσ)
19: Lα, •

nr
,βr ← Pα,`b, •

nr−1
,βr

20: for q = 2 to k − 1 do
21: Create Pα,`b+q−1, •

nr−1
,βr by branching

22: δ ← the sequence of positions of jobs {|α|+ 2, . . . , |α|+ q} fixed by TTBR2
23: Lα, •

nr
,βr ← Lα, •

nr
,βr + Pα,`b+q−1,δ, •

nr−1
,βr

24: end for
25: end if
26: return Q
27: end function

Regarding the sizes of the subproblems returned by RIGHT MERGE, the node
added in line 14 of Algorithm 3 contains one subproblem of size (n − 1),
corresponding to branching the longest job on the last available position. Then,
the problems added by the call to MERGE RIGHT NODES are added to Q. In
line 2 of Algorithm 4, the size of the problem returned by LEFT MERGE is
reduced by one unit when compared to the input problem which is of size
(n−k− (k−r)). Note that (k−r) is the current level with respect to the node
tackled by Algorithm 4. As a consequence, the size of the resulting subproblem
is (n − k − (k − r) − 1). Note that this line is executed (k − 1) times, ∀r =
k, . . . , 2, corresponding to the number of calls to MERGE RIGHT NODES. In line
5 of Algorithm 4, the list of nodes which are not involved in any merging
operation are added to Q. This corresponds to couples of problems of size i
and (nq − (k− r)− i− 1), ∀i = k, ..., (n− k− 1) and this proves the last part
of the lemma.

Branch-and-Merge for 1||
∑
Tj 21

Lemma 5 Instances such that LPT = EDD correspond to worst-case in-
stances for which the RIGHT MERGE procedure returns O(n) nodes to branch
on, whose subproblems are listed in Lemma 4, replacing all the k right-side
children nodes of its parent node.

Proof. The proof follows similar reasoning as the one in Lemma 3. In general,
if LPT 6= EDD then the number of nodes in Sσ`,j (defined in Proposition 7)
could be less, since some nodes may not be created due to Property 2. However,
all the nodes inside Sσ`,j can still be merged to one except when Sσ`,j is empty.
In either case, we can achieve at least the same reduction as the case of LPT =
EDD.

3.3 Complete algorithm and analysis

We are now ready to define the main procedure TTBM (Total Tardiness Branch-
and-Merge), stated in Algorithm 5 which is called on the initial input problem
P : {1, ..., n}. The algorithm has a similar recursive structure as TTBR1. How-
ever, each time a node is opened, the sub-branches required for the merging
operations are generated, the subproblems of size less than k are solved and
the procedures LEFT MERGE and RIGHT MERGE are called. Then, the algorithm
proceeds recursively by extracting the next node from Q with a depth-first
strategy and terminates when Q is empty.

Proposition 8 determines the time complexity of the proposed algorithm.
In this regard, the complexity of the algorithm depends on the value given to
k. The higher it is, the more subproblems can be merged and the better is the
worst-case time complexity of the approach.

Proposition 8. Algorithm TTBM runs in O∗((2 + ε)n) time and polynomial
space, where ε→ 0 for large enough values of k.

Proof. The proof is based on the analysis of the number and the size of the
subproblems put in Q when a single problem P ∗ is expanded. As a consequence
of Lemma 3 and Lemma 5, TTBM induces the following recursion:

T (n) =2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=k

(T (i) + T (nq − (k − r)− i− 1))

+ (k − 1)T (n1 − 1) +O(p(n))

First, a simple lower bound on the complexity of the algorithm can be de-
rived by the fact that the procedures RIGHT MERGE and LEFT MERGE provide
(among the others) two subproblems of size n−1, based on which the following
inequality holds:

T (n) > 2T (n− 1) (7)

22 Michele Garraffa et al.

Algorithm 5 Total Tardiness Branch and Merge (TTBM)

Input: P : {1, ..., n}: input problem of size n
n
2
> k ≥ 2: an integer constant

Output: seqOpt: an optimal sequence of jobs
1: function TTBM(P ,k)
2: Q← P
3: seqOpt← a random sequence of jobs
4: while Q 6= ∅ do
5: P ∗ ← extract next problem from Q (depth-first order)
6: if the size of P ∗ < 2k then
7: Solve P ∗ by calling TTBR2
8: end if
9: if all jobs {1, ..., n} are fixed in P ∗ then

10: seqCurrent← the solution defined by P ∗

11: seqOpt← best solution between seqOpt and seqCurrent
12: else
13: Q← Q ∪ LEFT MERGE(P ∗) . Left-side nodes
14: for i = k + 1, ..., n− k do
15: Create the i-th child node Pi by branching scheme of TTBR1
16: Q← Q ∪ Pi
17: end for
18: Q← RIGHT MERGE(P ∗) . Right-side nodes
19: end if
20: end while
21: return seqOpt
22: end function

By solving the recurrence, we obtain that T (n) = ω(2n). As a consequence,
the following inequality holds:

T (n) > T (n− 1) + . . .+ T (1) (8)

In fact, if it does not hold, we have a contradiction on the fact T (n) = ω(2n).

Now, we consider the summation
∑n1−(k−r)−2
i=k (T (nq − (k− r)− i− 1)). Since

nq = n1 + q − 1, we can simply expand the summation as follows:

n1−(k−r)−2∑
i=k

(T (nq − (k − r)− i− 1)) = T (q) + ...+ T (n1 − (k − r) + q − k − 2)

. We know that k ≥ q, then q − k ≤ 0 and the following inequality holds:

T (q) + ...+ T (n1 − (k − r) + q − k − 2) ≤
n1−(k−r)−2∑

i=q

T (i)

.

As a consequence, we can bound above T (n) as follows:

Branch-and-Merge for 1||
∑
Tj 23

T (n) =2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=k

(T (i) + T (nq − (k − r)− i− 1))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=q

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=1

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

By using Equation 8, we obtain the following:

T (n) ≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

r−1∑
q=1

n1−(k−r)−2∑
i=1

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

r−1∑
q=1

2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

Finally, we apply some algebraic steps and we use the equality n1 = n− k to
derive the following upper limitation of T (n):

T (n) ≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑
r=2

(r − 1)2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k) + 2(k − 1)T (n1 − 1)

+

k−1∑
r=2

(r − 1)2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+ (k − 1)4T (n1 − 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 4T (n− k − 1) + 5(k − 1)T (n− k − 1) +O(p(n))

= 2T (n− 1) + (5k − 1)T (n− k − 1) +O(p(n))

24 Michele Garraffa et al.

k T (n)
3 O∗(2.5814n)
4 O∗(2.4302n)
5 O∗(2.3065n)
6 O∗(2.2129n)
7 O∗(2.1441n)
8 O∗(2.0945n)
9 O∗(2.0600n)
10 O∗(2.0367n)
11 O∗(2.0217n)
12 O∗(2.0125n)
13 O∗(2.0070n)
14 O∗(2.0039n)
15 O∗(2.0022n)
16 O∗(2.0012n)
17 O∗(2.0007n)
18 O∗(2.0004n)
19 O∗(2.0002n)
20 O∗(2.0001n)

Table 1: The time complexity of TTBM for values of k from 3 to 20

Note that O(p(n)) includes the cost for creating all nodes for each level
and the cost of all the merging operations, performed in constant time.

The recursion T (n) = 2T (n − 1) + (5k − 1)T (n − k − 1) + O(p(n)) is an
upper limitation of the running time of TTBM. Recall that its solution is
T (n) = O∗(cn) where c is the largest root of the function:

fk(x) = 1− 2

x
− 5k − 1

xk+1
(9)

.
As k increases, the function fk(x) converges to 1 − 2

x , which induces a
complexity of O∗(2n). Table 1 shows the time complexity of TTBM obtained
by solving Equation 9 for all the values of k from 3 to 20. The base of the
exponential is computed by solving Equation 9 by means of a mathematical
solver and rounding up the fourth digit of the solution. The table shows that
the time complexity is O∗(2.0001n) for k ≥ 20.

4 Conclusions

This paper focused on the design of exact branching algorithms for the sin-
gle machine total tardiness problem. By exploiting some inherent properties
of the problem, we first proposed two branch-and-reduce algorithms, indi-
cated with TTBR1 and TTBR2. The former runs in O∗(3n), while the latter
achieves a better time complexity in O∗(2.4143n). The space requirement is
polynomial in both cases. Furthermore, a technique called branch-and-merge,
is presented and applied onto TTBR1 in order to improve its performance. The

Branch-and-Merge for 1||
∑
Tj 25

final achievement is a new algorithm (TTBM) with time complexity converging
to O∗(2n) and polynomial space. The same technique can be tediously adapted
to improve the performance of TTBR2, but the resulting algorithm achieves
the same asymptotic time complexity as TTBM, and thus it was omitted. To
the best of authors’ knowledge, TTBM is the polynomial space algorithm that
has the best worst-case time complexity for solving this problem.

Beyond the new established complexity results, the main contribution of
the paper is the branch-and-merge technique. The basic idea is very simple,
and it consists of speeding up branching algorithms by avoiding to solve iden-
tical problems. The same goal is traditionally pursued by means of Memoriza-
tion [2], where the solution of already solved subproblems are stored and then
queried when an identical subproblem appears. This is at the cost of exponen-
tial space. In contrast, branch-and-merge discards identical subproblems but
by appropriately merging, in polynomial time and space, nodes involving the
solution of common subproblems. When applied systematically in the search
tree, this technique enables to achieve a good worst-case time bound. On a
computational side, it is interesting to notice that node merging can be relaxed
to avoid solving in O∗(2.4143k), with k fixed, subproblems at merged nodes.
Thus, we reduce to the comparison of active nodes with already branched nodes
with the requirement of keeping use of a polynomial space. This can also be
seen as memorization but with a fixed size memory used to store already ex-
plored nodes. This leads to the lost of a reduced worst-case time bound but
early works [17] have shown that this can lead to substantially good practical
results, at least on some scheduling problems.

As a future development of this work, our aim is twofold. First, we aim at
applying the branch-and-merge algorithm to other combinatorial optimization
problems in order to establish its potential generalization to other problems.
Second, we want to explore the pratical efficiency of this algorithm on the single
machine total tardiness problem and compare it with relaxed implementation
where a node comparison procedure is implemented with a fixed memory space
used to store already branched nodes, in a similar way than in [17].

References

1. H.L. Bodlaender, F.V. Fomin, A.M.C.A. Koster, D. Kratsch and D.M. Thilikos (2012),
“On Exact Algorithms for Treewidth”, ACM Transactions on Algorithms, 9 (1), article
12, 23 pages.

2. F.V. Fomin and D. Kratsch, “Exact exponential algorithms”, Springer Science &
Business Media, 2010.

3. F. Della Croce, R. Tadei, P. Baracco and A. Grosso (1998), “A new decomposition
approach for the single machine total tardiness scheduling problem”, Journal of the Op-
erational Research Society 49, 1101–1106.

4. J. Du and J. Y. T. Leung (1990), “Minimizing total tardiness on one machine is NP–
hard”, Mathematics of Operations Research 15, 483–495.

5. H. Emmons (1969), “One-machine sequencing to minimize certain functions of job tar-
diness”, Operations Research 17, 701–715.

6. D. Eppstein (2001), “Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction”’. In Proc. Symposium on Discrete Algorithms, SODA’01, 329-337.

26 Michele Garraffa et al.

7. Y. Gurevich and S. Shelah (1987), “Expected computation time for the hamiltonian path
problem”, Siam Journal on Computing, 16, 486-502.

8. C. Koulamas (2010),“The single-machine total tardiness scheduling problem: review and
extensions”, European Journal of Operational Research, 202, 1-7.

9. E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize
total tardiness”, Annals of Discrete Mathematics 1, 331–342.

10. C. Lenté, M. Liedloff, A. Soukhal and V. T’Kindt (2013), “On an extension of the Sort
& Search method with application to scheduling theory”, Theoretical Computer Science,
511, 13-22.

11. C. Lenté, M. Liedloff, A. Soukhal and V. T’Kindt (2014), “Exponential Algorithms for
Scheduling Problems”’, HAL, https://hal.archives-ouvertes.fr/hal-00944382.

12. C. N. Potts and L. N. Van Wassenhove (1982), “A decomposition algorithm for the
single machine total tardiness problem”, Operations Research Letters 5, 177–181.

13. J.M. Robson (1986), “Algorithms for maximum independent sets”, Journal of Algo-
rithms, 7, 425-440.

14. W. Szwarc (1993), “Single machine total tardiness problem revisited”, Y. Ijiri (ed.),
Creative and Innovative Approaches to the Science of Management, Quorum Books,
Westport, Connecticut (USA), 407–419.

15. W. Szwarc, A. Grosso and F. Della Croce (2001), “Algorithmic paradoxes of the single
machine total tardiness problem”, Journal of Scheduling 4, 93–104.

16. W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total
tardiness problem”, Operations Research Letters 19, 243–250.

17. V. T’kindt, F. Della Croce and C. Esswein (2004). “Revisiting branch and bound search
strategies for machine scheduling problems”, Journal of Scheduling 7(6), 429–440.

18. A. Tucker (2012), “Applied combinatorics” 6th Edition, New York: Wiley.
19. G.J. Woeginger (2003), “Exact algorithms for NP-hard problems: a survey”. In M.

Juenger, G. Reinelt, and G. Rinaldi, (eds.) Combinatorial Optimization - Eureka! You
shrink!, volume 2570 of Lecture Notes in Computer Science, 185-207, Springer-Verlag.

	Introduction
	A Branch-and-Reduce approach
	A Branch-and-Merge Algorithm
	Conclusions

